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Optimal Network Flow Problem

A flow network is a directed graph G = (V ,E ) where each edge
(u, v) has a non-negative integer capacity c(u, v) ≥ 0. The graph
has source vertex s and sink vertext t.

s has no incoming edges. t has no outgoing edges.

For all internal nodes v there is a path s � v � t.
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Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)
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Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

Let f out(v) = Σe out of v f (e) and f in(v) = Σe in to v f (e).
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Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

Let f out(v) = Σe out of v f (e) and f in(v) = Σe in to v f (e).

Define value of flow f as f out(s).
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Finding Maximum Flow
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Finding Maximum Flow

Find a path P = s � t. Let Bottleneck(P) be the smallest
capacity on the path. Initial flow f has value Bottleneck(P).

P.K. Pandya Design and Analysis of Algorithms CS218M



Finding Maximum Flow

Find a path P = s � t. Let Bottleneck(P) be the smallest
capacity on the path. Initial flow f has value Bottleneck(P).

Given current flow f , find augmenting path P = s � t. Check
that it is feasible and push Bottleneck(P) additional flow to
get revised flow f �.
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Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .
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Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

Forward edges: Edges e with residual capacity
c(e)− f (e) > 0.
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Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

Forward edges: Edges e with residual capacity
c(e)− f (e) > 0.

Backward edges: Reverse e of edges e with f (e) > 0 allowing
reverse flow upto f (e).
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Augmenting the Flow
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Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f ) being the smallest capacity on P .
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Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f ) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.
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Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f ) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

Claim: f � is a valid flow in G , c .

P.K. Pandya Design and Analysis of Algorithms CS218M



Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f ) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

Claim: f � is a valid flow in G , c .

Augmentation f � from f can be computed in time O(E ).
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Ford-Fulkerson Algorithm (1956) for Max-Flow
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Example: Ford Fulkerson
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Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .
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Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).
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Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

Theorem

If f ∗ is the flow such that there is no s � t path in Gf (i.e. f ∗ is
returned by Ford-Fulkerson algorithm), then we can construct an
s, t cut A∗,B∗ such that f ∗ = c(A∗,B∗). Hence f ∗ is max flow
and A∗,B∗ is min cut.
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Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

Theorem

If f ∗ is the flow such that there is no s � t path in Gf (i.e. f ∗ is
returned by Ford-Fulkerson algorithm), then we can construct an
s, t cut A∗,B∗ such that f ∗ = c(A∗,B∗). Hence f ∗ is max flow
and A∗,B∗ is min cut.

Construction: Let A∗ be all nodes v s.t. s � v in Gf . Let
B∗ = V − A∗.
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Proof Idea
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Maximal Matching in Bipartate Graph

Matching M ⊆ E s.t. every v ∈ X ∪Y occurs at most once in
M.

Maximal Matching. Perfect Matching.
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Hall’s Theorem

A bipartate graph (X ;Y ,E ) with |X | = |Y | has
either a perfect matching

or there exists A ⊆ X s.t. |A| > |E (A)|.
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