
Design and Analysis of Algorithms
CS218M

Network Flow Algorithms

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Network Flow Problem

A flow network is a directed graph G = (V ,E) where each edge
(u, v) has a non-negative integer capacity c(u, v) ≥ 0. The graph
has source vertex s and sink vertext t.

s has no incoming edges. t has no outgoing edges.

For all internal nodes v there is a path s � v � t.

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

Let f out(v) = Σe out of v f (e) and f in(v) = Σe in to v f (e).

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

Let f out(v) = Σe out of v f (e) and f in(v) = Σe in to v f (e).

Define value of flow f as f out(s).

P.K. Pandya Design and Analysis of Algorithms CS218M

Finding Maximum Flow

P.K. Pandya Design and Analysis of Algorithms CS218M

Finding Maximum Flow

Find a path P = s � t. Let Bottleneck(P) be the smallest
capacity on the path. Initial flow f has value Bottleneck(P).

P.K. Pandya Design and Analysis of Algorithms CS218M

Finding Maximum Flow

Find a path P = s � t. Let Bottleneck(P) be the smallest
capacity on the path. Initial flow f has value Bottleneck(P).

Given current flow f , find augmenting path P = s � t. Check
that it is feasible and push Bottleneck(P) additional flow to
get revised flow f �.

P.K. Pandya Design and Analysis of Algorithms CS218M

Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

P.K. Pandya Design and Analysis of Algorithms CS218M

Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

Forward edges: Edges e with residual capacity
c(e)− f (e) > 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

Forward edges: Edges e with residual capacity
c(e)− f (e) > 0.

Backward edges: Reverse e of edges e with f (e) > 0 allowing
reverse flow upto f (e).

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

Claim: f � is a valid flow in G , c .

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

Claim: f � is a valid flow in G , c .

Augmentation f � from f can be computed in time O(E).

P.K. Pandya Design and Analysis of Algorithms CS218M

Ford-Fulkerson Algorithm (1956) for Max-Flow

P.K. Pandya Design and Analysis of Algorithms CS218M

Example: Ford Fulkerson

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

Theorem

If f ∗ is the flow such that there is no s � t path in Gf (i.e. f ∗ is
returned by Ford-Fulkerson algorithm), then we can construct an
s, t cut A∗,B∗ such that f ∗ = c(A∗,B∗). Hence f ∗ is max flow
and A∗,B∗ is min cut.

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

Theorem

If f ∗ is the flow such that there is no s � t path in Gf (i.e. f ∗ is
returned by Ford-Fulkerson algorithm), then we can construct an
s, t cut A∗,B∗ such that f ∗ = c(A∗,B∗). Hence f ∗ is max flow
and A∗,B∗ is min cut.

Construction: Let A∗ be all nodes v s.t. s � v in Gf . Let
B∗ = V − A∗.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof Idea

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximal Matching in Bipartate Graph

Matching M ⊆ E s.t. every v ∈ X ∪Y occurs at most once in
M.

Maximal Matching. Perfect Matching.

P.K. Pandya Design and Analysis of Algorithms CS218M

Hall’s Theorem

A bipartate graph (X ;Y ,E) with |X | = |Y | has
either a perfect matching

or there exists A ⊆ X s.t. |A| > |E (A)|.

P.K. Pandya Design and Analysis of Algorithms CS218M

