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Randomized Algorithms

Different from Deterministic Algorithms

Different from Non-deterministic Algorithms (aka NP
problems)

As atomic steps, the algorithm uses a random number
generator with specified distribution over specified set
outcomes.

Result of the algorithm depends on input as well as the
random number generated.

For a decision problem, we analyse the probability of getting
correct answer.

With repeated trials we can guarantee success with almost 1
probability. We analyse expected running time.
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Approximate MaxSAT

Optimization Problem Given a rectified 3CNF formula φ with
variables x1, . . . , xn and clauses C1, . . . ,Ck , the aim is to find an
assignment which satisfies the maximum number of clauses. Value
of solution is number of clauses satisfied. We approximate
MaxSAT.
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Approximate MaxSAT

Optimization Problem Given a rectified 3CNF formula φ with
variables x1, . . . , xn and clauses C1, . . . ,Ck , the aim is to find an
assignment which satisfies the maximum number of clauses. Value
of solution is number of clauses satisfied. We approximate
MaxSAT.

An assignment is uniformly randomly generated.

Random variable Z gives the number of satisfied clauses.

Indicator random variable Zi = 1 iff clause Ci is satisfied.
Hence Z = Σk

i=1Zi .

In rectified 3CNF , each clause Ci = (l1 ∨ l2 ∨ l3) has 3 distinct
variables. Hence E (Zi ) = 7/8.
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Approximate MaxSAT

Optimization Problem Given a rectified 3CNF formula φ with
variables x1, . . . , xn and clauses C1, . . . ,Ck , the aim is to find an
assignment which satisfies the maximum number of clauses. Value
of solution is number of clauses satisfied. We approximate
MaxSAT.

An assignment is uniformly randomly generated.

Random variable Z gives the number of satisfied clauses.

Indicator random variable Zi = 1 iff clause Ci is satisfied.
Hence Z = Σk

i=1Zi .

In rectified 3CNF , each clause Ci = (l1 ∨ l2 ∨ l3) has 3 distinct
variables. Hence E (Zi ) = 7/8.

Calculate E (Z ) = E (Σk
i=1Zi ) = Σk

i=1 E (Zi ) = 7k/8.
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Multishot Algorithm

One shot Algorithm: Expected to satisfy 7k/8 clauses. (What
does this mean?)

Multi shot Algorithm: Repeatedly generate assignment
randomly and check how many clauses it satisfies. Stop when
assigment satisfies at least 7k/8 clauses.

Guaranteed to generate assignment which satisfies at least
7k/8 clauses.

What is the expected running time?
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Waiting Time Bound: Multiple trials till success

Bernoulli trial A Random trial with outcomes T ,F with
probability of success p. We consider a sequence of
independant Bernoulli trials.

What is the expected number of independant trials till we get
a success?

Let R be random variable giving number of trials till success.
E [R] = 1 ∗ p + 2 ∗ (1− p) ∗ p + 3 ∗ (1− p)2 ∗ p + . . .

This simplifies to E [R] = 1/p.
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Derandomization using conditional expectations

Consider a formula φ with k clauses where each clause has at most
3 literals (non-overlapping).

E (φ) = ΣC∈φ (1− 1/(2|C |).
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Derandomization using conditional expectations

Consider a formula φ with k clauses where each clause has at most
3 literals (non-overlapping).

E (φ) = ΣC∈φ (1− 1/(2|C |).

For a variable x , let φx = φ[1/x ] be simplified. Similarly φ¬x .

Let #x be number of ”true” clauses in φx . Similarly, #¬x
E (φ) = 1/2 · (E (φx) + #x)) + 1/2 · (E (φ¬x) + #¬x))
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Derandomization using conditional expectations

Consider a formula φ with k clauses where each clause has at most
3 literals (non-overlapping).

E (φ) = ΣC∈φ (1− 1/(2|C |).

For a variable x , let φx = φ[1/x ] be simplified. Similarly φ¬x .

Let #x be number of ”true” clauses in φx . Similarly, #¬x
E (φ) = 1/2 · (E (φx) + #x)) + 1/2 · (E (φ¬x) + #¬x))

Algorithm

1 Pick variable x .

2 Compute E1 = E (φ), E2 = (E (φx) + #x)) and
E3 = (E (φ¬x) + #¬x)).

3 If E1 < E2 set x = 1 otherwise x = 0.

4 Goto (1) till variables are unassigned.
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Example

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

φx1 = (1 ∨ ¬x2 ∨ ¬x3) ∧ (0 ∨ x2 ∨ x3) ∧ (1 ∨ x2 ∨ x3)
= (x2 ∨ x3)

#x1 = 2.

E (φx1) = (1 (1/(22))) = 3/4.
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Randomized Quicksort

Guaranteed to produce sorted array for any input

Expected execution time O(n · lg(n)) for any input.

Same as quicksort with modified selection of pivot.

Central Pivot A pivot which split S in S+ and S− such that
|S+| ≥ 1/4 · |S | and |S−| ≥ 1/4 · |S |.
Repeats random selection of pivot till a central pivot is found.
Then partitions the array.
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Algorithm
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Analysis

Theorem

Randomized partition step with central splitter takes Expected
time O(n) on any input.

P.K. Pandya Design and Analysis of Algorithms CS218M



Analysis

Theorem

Randomized partition step with central splitter takes Expected
time O(n) on any input.

Hence, recurrence of Expected worst-case execution time of
randomized quicksort is roughly
T (n) = T (n/(4/3)) + T (n/(1/4)) +Θ(n).
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Analysis

Theorem

Randomized partition step with central splitter takes Expected
time O(n) on any input.

Hence, recurrence of Expected worst-case execution time of
randomized quicksort is roughly
T (n) = T (n/(4/3)) + T (n/(1/4)) +Θ(n).

Solution using recursion tree is T (n) = O(n · lg(n)).
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Analysis (2)

Theorem

Randomized partition step with central splitter takes Expected
time O(n) on any input.
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Theorem
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give central pivot.

Hence for a random choice of pivot ai ∈ S , the probability
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Analysis (2)

Theorem

Randomized partition step with central splitter takes Expected
time O(n) on any input.

Given array S , Half of its elements when chosen as pivot will
give central pivot.

Hence for a random choice of pivot ai ∈ S , the probability
that ai is a central pivot is p = 1/2.

Hence, the waiting time bound states that the expected
number of iterations to find the central pivot is 1/p i.e. 2.
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Randomized Complexity Classes

Class ZPP
L ∈ ZPP if there exists a randomized algorithm M(x , y) which is
polynomial time in expectation such that

x ∈ L ⇒ Pry [M(x , y) = 1] ≥ α with α = 1.

x /∈ L ⇒ Pry [M(x , y) = 1] ≤ β with β = 0.

Hence, the randomized algorithm neither produces false
negative nor false positive.
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Randomized Complexity Classes

Class ZPP
L ∈ ZPP if there exists a randomized algorithm M(x , y) which is
polynomial time in expectation such that

x ∈ L ⇒ Pry [M(x , y) = 1] ≥ α with α = 1.

x /∈ L ⇒ Pry [M(x , y) = 1] ≤ β with β = 0.

Hence, the randomized algorithm neither produces false
negative nor false positive.

Other Randomized Complexity Classes

Choosing α = 2/3, β = 0 we get the class RP.
Choosing α = 2/3, β = 1/3 we get the class BPP.
Clearly, P ⊆ ZPP ⊆ RP ⊆ BPP.
Open Problem: P = BPP?
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