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Programs and Assertions

Programs (e expressions, b boolean expr.)

xX:=e
S1;S2

if b then S1 else S2 fi
while b do S od

A State assigns a value to each variable.
A program starts in an initial state. It ends in a final state or does
not terminate.
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Assertions

Assertions

Conditions on state. They specify a subset of states. E.g. x > y.
Formally, assertions are formulae of first-order logic.

Assertions use logical connectives.

PAQ P and @

PV Q Por @

-P not P

P=Q whenever P is true so is @ )
Reasoning

AXIOMS = P = Q
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A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

r:i=x; q:=0;
while r > y do

r=r-y; q:=q+1
od
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A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

r:i=x; q:=0;
while r > y do
r=r-y; q:=q+1

od
X lylqg]lr
8 [3]2]2
8 |0
-8/3|0|-8
6 3113
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A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

{0<y AN 0<x} Precondition
r:i=x; q:=0;
while r > y do

r=r-y; q:=q+1

od
X lylqg]lr
8 [3]2]2
8 |0
-8/3|0|-8
6 3113
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A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

{0<y AN 0<x} Precondition
r:i=x; q:=0;
while r > y do
r=r-y; q:=q+1
od
{x=yxq+r N 0<r<y} Postcondition

X |ylq]|r
8 3|22
8 |0

-8130]-8
6 3|13
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Program specification

e S Program (fragment)

@ P Precondition
Assumed to be true when S starts.

@ @ Postcondition
Required to be true when S terminates.

Advantages
@ Clear and Unambiguous articulation of what program must do.

@ Separation of concern: User versus developer.
interface specification.

@ Can be formally verified.
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Annotated Program

{0<y AN 0<x} (1)

r:=x; q:=0; (2) \ v

{0<y NO<x AN r=x A g=0} (3)

inv : (4)

while r>y do (6)

— { Ay<rr ()
ri=r-y; q:=q+1 (8) \ v/
{0<r ANO<y AN x=yxq+r} 9)

od (10)

{r<y A ) (11)

{x=yxqg+r N 0<r<y} (12)
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Assertions

Pre-condition and post-condition.

Location Invariants

e Control location: a position before a program statement

@ Location Invariant: Condition which is true every time control
reaches the location.
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Assertions

Pre-condition and post-condition.

Location Invariants

e Control location: a position before a program statement

@ Location Invariant: Condition which is true every time control
reaches the location.

Loop Invariant
Consider while b do S od.

@ A condition which holds every time condition b is tested.
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Given predicate @
Q[e/x] denotes @ with x substituted by e
E.g. x <O0[x+1/x] gives x +1 < 0.

{Qle/xl} x=e {Q) T
Example: {x+1 <0} x:=x+1 {x < 0}

Sequential Composition

{P} S1 {Q1}, Q1= Q, {@} S{R} RL
{P} S1: %2 {R}
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Hoare Logic (2)

P=Py {P}S{Q), Q=0Q R}
{P} S {Q}

<

Conditional Statement

{PAb} S {Q}, {PA-b} S {Q}
{P} if b the?“Sl elseh_Sg fi {Q} Q4/
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}

ri=r-y; q:=q+1 ~— ~
{0<r ANO<y AN x=yxq+r}
——— —
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)

()

(3)
(4)
(5)
(6)
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)

()

3

4

(3)
(4)
q:=q+1 (5)
{0§r/\0<y/\x:y*/q‘+r} (6)
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)
(2)
(3)
{0<r AO0<y Ax=yx(qg+1)+r} (4)
q:=q+1 (5)
{0<r ANO<y AN x=yxq+r} (6)
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)
(2)
r=r-y; (3)
0srAO0<y Ax=yx(g+1)+r} (4)
q:=q+1 - (5)
{0<r ANO<y AN x=yxq+r} (6)
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)

{0<r—y AO<y A (2)
x=yx*(qg+1)+(r—y)}

r=r-y; (3)

{0<r ANO<y AN x=yx(g+1)+r} (4)

q:=q+1 (5)

{0<r ANO<y AN x=yxq+r} (6)
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Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r} \
r=r-y; q:=q+1 \k/
{0<r ANO<y ANx=yxq+r}

{0<rAO<y<rAx=yxq+r} (1){(/

{0<r—y AO<y A (2)
x=yx*(qg+1)+(r—y)}

r=ry; (3)

{0<r ANO<y Ax=yx*x(g+1)+r} (4)

q:=q+1 (5)

{0<rAO0<y Ax=yxq+r} (6)
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While Statement

R

Let P be loop invariant. It holds every time the loop condition is
tested. ‘Dﬂi A M —t
{PAb} S {P}
{P} while b d&S od {P A -b}

Proving Termination
Let t be bound function. Bound function is integer valued total
function.

While Rule ‘
Q=P 'H\‘\f\‘rj(& \ A-
{PADb} S {P} AN fart

PA-b = R hf.O-'—?’\g

PAb = t>0
(PAbAt=k} S {t <k} T 2 QLSS
{Q} while bdo S od {R}
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While Rule Intuition

Premises:

Initially the invariant holds. (PR1)

Each loop iteration preserves loop invariant. (PR2)

Each loop iteration decrements bound function from a positive
value. (PR4)

Loop terminates before making bound function non-positive.
(PR5)

Conclusion:

On termination invariant must hold and also loop condition must
be false. These together imply post condition by PR3.

The loop must terminate as bound function cannot decrement
indefinitely from a positive value.
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Annotated Program

{0<y AN O0O<x} (1)
r:=x; q:=0; (2)
0 0<x r=x =0 3
—a{inj:y B " : '\w' E4§\\/

{bound : r} (5)
while r>y do (6)
{ ANy<rh o (7)

r=r-y; q:=q+1 (8) \ \/
(9)
od WV A ’ (10)
/{r <y A } (11)
>{x:y>|<q-s-r/\0<r<y} \{}' (12)
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Efficient Multiplication

{0<b}
x:=a; y:=b; =0 ;

BV S AR EAY
while y > 0 do
v AN >OB

(
(
(
(
(
(y) th g
if even(y) then
i’lx\if\‘}% A Q.\/e\n(‘%) (
X:=x+x; y:=y/2 (
g\"l: V\\/} E
(
(
(
(
(
(
(
(

else

y:=y-1; z:=z4x

— N N N N e
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Efficient Multipliation (2)

{0< b} (1) Ce o Cowg'
x:=a; y:=b; z:=0 ; (2 @CW\] A
{inv: 0<y Az+xxy=axb} (3)
{bound : y} @)
while y > 0 do 5y O dm)
{inv. A y >0} (6)
if even(y) then . (;)
inv. Ny >0 A even(x
i::x+x;yy::y/2 v 593 OC\M) OCW)
{inv} (10)
else (11)
{inv. Ay >0 A —even(x)} (12)
y:=y-1;, zi=z+x (13)
{inv} (14)
fi (15)
; {inv} ﬁ?; W‘D
o r
{inv A y <0} (18) © (M L
{z=axb} (19)
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Founders of Formal Verification

First Order Logic for Assertions

Alan Turing Bob Floyd Tony Hoare Edsgar Dijkstra

=

V.

Other Contributors

e O.J. Dahl (Data structuring)
@ S. Cook (Relative Completeness)

David Gries, The Science of Programming, Springer-Verlag.

P.K. Pandya Design and Analysis of Algorithms CS218M



Essentials of First-Order Predicate Logic

A language for describing mathematical structures.

A structure Y = (S, F, G)
S - set of values.
called Domain, written as |U]
F - set of functions over S
G - set of relations over S

Pair (F, G) is called the signature.

w Natural Numbers
R Real Numbers

Bool ({071}7 {/\7_'}’ {:})
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Formalizing Properties of Structure
QY™ d\\l (‘YA‘\ !

Some valid properties of w

Vy.(0<y V 0=y) é’
Vx. x <x+1
Vx,y, z. (x*(y+z) = x*xy+xx2)

div(x,y) means x “divides’ y
div(x,y) e g, xxz= y )\\’ ('b/ A)
prime(x) means x is a prime. 3‘6 ?J‘(b — b\'

prime(x) & Vy.
(div(y,x) = y=1Vy=x)

O, 4)= b\g /(xm&u\
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Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

Terms

o Examples: x+0%y 1*z
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Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)
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Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)

e State (valuation) o : Var — [U]|.
Eg. o(x)=3,0(y) =4,0(z) =2.
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Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

Terms

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)
e State (valuation) o : Var — [U]|.
Eg o(x)=3,0(y) =4,0(z) =2.
@ Value of term t in structure U and state o is 6(t) € |U]

P.K. Pandya Design and Analysis of Algorithms CS218M



Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)
e State (valuation) o : Var — [U]|.
Eg. o(x)=3,0(y) =4,0(z) =2.
@ Value of term t in structure U and state o is 6(t) € |U]
@ 5(x+0xy) = 3+0x4 = 3.
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Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)

e State (valuation) o : Var — [U]|.
Eg o(x)=3,0(y) =4,0(z) =2.
@ Value of term t in structure U and state o is 6(t) € |U]
@ 5(x+0xy) = 3+0x4 = 3.
@ Semantics: §(x) = o(x)
G(f(tr,....tn) = f(6(t1),...,6(tn))
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First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
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First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
@ Syntax: v = tH =t | R(t,...,tn)
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First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz

@ Syntax: v = tH =t | R(t,...,tn)

e U,o = 1 denotes that v evaluates to true in U, o .
U, o [~ 1) denotes that 1) evaluates to false in U, 0.
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First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
@ Syntax: v = tH =t | R(t,...,tn)
e U,o = 1 denotes that v evaluates to true in U, o .
U, o [~ 1) denotes that 1) evaluates to false in U, 0.
o Let o(x) =3,0(y) =4,0(z) = 2. Then,
w,o E(x+0xy < 1xz). (why?)
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First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
@ Syntax: v = tH =t | R(t,...,tn)

e U,o = 1 denotes that v evaluates to true in U, o .
U, o [~ 1) denotes that 1) evaluates to false in U, 0.

o Let o(x) =3,0(y) =4,0(z) = 2. Then,
w,o E(x+0xy < 1xz). (why?)

@ Semantics:
U,o =t =t iff 6(t1) =5(t)
U,o0 E R(t1,...,t,) iff
R(6(t1),...,6(tn))
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

e U,o = ¢ denotes that ¢ evaluates to true in U, o.
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).

@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

e U,o = ¢ denotes that ¢ evaluates to true in U, o.

@ Formula dx.¢ states that there exists a choice of value of x
(ignoring the value given by o(x)) which makes ¢ true.

Formula Vx.¢ states that all choice of value of x (ignoring the
value given by o(x)) make ¢ true.
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).

@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

e U,o = ¢ denotes that ¢ evaluates to true in U, o.

@ Formula dx.¢ states that there exists a choice of value of x
(ignoring the value given by o(x)) which makes ¢ true.

Formula Vx.¢ states that all choice of value of x (ignoring the
value given by o(x)) make ¢ true.

o Let o(x) =0. Then, w,o = (Vy. (x <y V x=y)). (why?)
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Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..
e U,o = ¢ denotes that ¢ evaluates to true in U, o.

@ Formula dx.¢ states that there exists a choice of value of x
(ignoring the value given by o(x)) which makes ¢ true.
Formula Vx.¢ states that all choice of value of x (ignoring the
value given by o(x)) make ¢ true.

o Let o(x) =0. Then, w,o = (Vy. (x <y V x=y)). (why?)
e Semantics: o’ is x-variant of o if o(y) = o'(y) for all y # x.
U,o = 3x.¢ iff

U,0' = ¢ for some x-variant ¢’ of o
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Sorted (A, i,j) def

1<i<j<n =
Vili < i< j= Ali"l < A[i' +1]
Partition(A, i, j, k) def
1<i<j<k<n A
Vi (i<i"<j=All'l <AJ]) A
(VK. < K < k = A[j] < A[K])

Then,

Partition(A, i, j, k)
= A Sorted(A,i,j —1) = Sorted(A, i, k)
A Sorted(A,j + 1, k)
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