Design and Analysis of Algorithms
CS218M

Correctness of Algorithms

Paritosh Pandya
Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

Programs and Assertions

Programs (e expressions, b boolean expr.)

xX:=e
S1;S2

if b then S1 else S2 fi
while b do S od

A State assigns a value to each variable.
A program starts in an initial state. It ends in a final state or does
not terminate.

P.K. Pandya Design and Analysis of Algorithms CS218M

Assertions

Assertions

Conditions on state. They specify a subset of states. E.g. x > y.
Formally, assertions are formulae of first-order logic.

Assertions use logical connectives.

PAQ P and @

PV Q Por @

-P not P

P=Q whenever P is true so is @)
Reasoning

AXIOMS = P = Q

P.K. Pandya Design and Analysis of Algorithms CS218M

A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

r:i=x; q:=0;
while r > y do

r=r-y; q:=q+1
od

P.K. Pandya Design and Analysis of Algorithms CS218M

A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

r:i=x; q:=0;
while r > y do
r=r-y; q:=q+1

od
X lylqg]lr
8 [3]2]2
8 |0
-8/3|0|-8
6 3113

P.K. Pandya Design and Analysis of Algorithms CS218M

A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

{0<y AN 0<x} Precondition
r:i=x; q:=0;
while r > y do

r=r-y; q:=q+1

od
X lylqg]lr
8 [3]2]2
8 |0
-8/3|0|-8
6 3113

P.K. Pandya Design and Analysis of Algorithms CS218M

A Simple Program

Problem
Compute quotient g and reminder r of integers x divided by y.

{0<y AN 0<x} Precondition
r:i=x; q:=0;
while r > y do
r=r-y; q:=q+1
od
{x=yxq+r N 0<r<y} Postcondition

X |ylq]|r
8 3|22
8 |0

-8130]-8
6 3|13

P.K. Pandya Design and Analysis of Algorithms CS218M

Program specification

e S Program (fragment)

@ P Precondition
Assumed to be true when S starts.

@ @ Postcondition
Required to be true when S terminates.

Advantages
@ Clear and Unambiguous articulation of what program must do.

@ Separation of concern: User versus developer.
interface specification.

@ Can be formally verified.

P.K. Pandya Design and Analysis of Algorithms CS218M

Annotated Program

{0<y AN 0<x} (1)

r:=x; q:=0; (2) \ v

{0<y NO<x AN r=x A g=0} (3)

inv : (4)

while r>y do (6)

— { Ay<rr ()
ri=r-y; q:=q+1 (8) \ v/
{0<r ANO<y AN x=yxq+r} 9)

od (10)

{r<y A) (11)

{x=yxqg+r N 0<r<y} (12)

P.K. Pandya Design and Analysis of Algorithms CS218M

Assertions

Pre-condition and post-condition.

Location Invariants

e Control location: a position before a program statement

@ Location Invariant: Condition which is true every time control
reaches the location.

P.K. Pandya Design and Analysis of Algorithms CS218M

Assertions

Pre-condition and post-condition.

Location Invariants

e Control location: a position before a program statement

@ Location Invariant: Condition which is true every time control
reaches the location.

Loop Invariant
Consider while b do S od.

@ A condition which holds every time condition b is tested.

P.K. Pandya Design and Analysis of Algorithms CS218M

Given predicate @
Q[e/x] denotes @ with x substituted by e
E.g. x <O0[x+1/x] gives x +1 < 0.

{Qle/xl} x=e {Q) T
Example: {x+1 <0} x:=x+1 {x < 0}

Sequential Composition

{P} S1 {Q1}, Q1= Q, {@} S{R} RL
{P} S1: %2 {R}

P.K. Pandya Design and Analysis of Algorithms CS218M

Hoare Logic (2)

P=Py {P}S{Q), Q=0Q R}
{P} S {Q}

<

Conditional Statement

{PAb} S {Q}, {PA-b} S {Q}
{P} if b the?“Sl elseh_Sg fi {Q} Q4/

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}

ri=r-y; q:=q+1 ~— ~
{0<r ANO<y AN x=yxq+r}
——— —

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)

()

(3)
(4)
(5)
(6)

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)

()

3

4

(3)
(4)
q:=q+1 (5)
{0§r/\0<y/\x:y*/q‘+r} (6)

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)
(2)
(3)
{0<r AO0<y Ax=yx(qg+1)+r} (4)
q:=q+1 (5)
{0<r ANO<y AN x=yxq+r} (6)

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)
(2)
r=r-y; (3)
0srAO0<y Ax=yx(g+1)+r} (4)
q:=q+1 - (5)
{0<r ANO<y AN x=yxq+r} (6)

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r}
r=r-y; q:=q+1
{0<r ANO<y ANx=yxq+r}

(1)

{0<r—y AO<y A (2)
x=yx*(qg+1)+(r—y)}

r=r-y; (3)

{0<r ANO<y AN x=yx(g+1)+r} (4)

q:=q+1 (5)

{0<r ANO<y AN x=yxq+r} (6)

P.K. Pandya Design and Analysis of Algorithms CS218M

Proofs using Hoare Logic Rules

Claim: {0<r ANO0<y A x=yx*xq+r AN y<r} \
r=r-y; q:=q+1 \k/
{0<r ANO<y ANx=yxq+r}

{0<rAO<y<rAx=yxq+r} (1){(/

{0<r—y AO<y A (2)
x=yx*(qg+1)+(r—y)}

r=ry; (3)

{0<r ANO<y Ax=yx*x(g+1)+r} (4)

q:=q+1 (5)

{0<rAO0<y Ax=yxq+r} (6)

P.K. Pandya Design and Analysis of Algorithms CS218M

While Statement

R

Let P be loop invariant. It holds every time the loop condition is
tested. ‘Dﬂi A M —t
{PAb} S {P}
{P} while b d&S od {P A -b}

Proving Termination
Let t be bound function. Bound function is integer valued total
function.

While Rule ‘
Q=P 'H\‘\f\‘rj(& \ A-
{PADb} S {P} AN fart

PA-b = R hf.O-'—?’\g

PAb = t>0
(PAbAt=k} S {t <k} T 2 QLSS
{Q} while bdo S od {R}

P.K. Pandya Design and Analysis of Algorithms CS218M

While Rule Intuition

Premises:

Initially the invariant holds. (PR1)

Each loop iteration preserves loop invariant. (PR2)

Each loop iteration decrements bound function from a positive
value. (PR4)

Loop terminates before making bound function non-positive.
(PR5)

Conclusion:

On termination invariant must hold and also loop condition must
be false. These together imply post condition by PR3.

The loop must terminate as bound function cannot decrement
indefinitely from a positive value.

P.K. Pandya Design and Analysis of Algorithms CS218M

Annotated Program

{0<y AN O0O<x} (1)
r:=x; q:=0; (2)
0 0<x r=x =0 3
—a{inj:y B " : '\w' E4§\\/

{bound : r} (5)
while r>y do (6)
{ ANy<rh o (7)

r=r-y; q:=q+1 (8) \ \/
(9)
od WV A ’ (10)
/{r <y A } (11)
>{x:y>|<q-s-r/\0<r<y} \{}' (12)

Design and Analysis of Algorithms CS218M

& O O S
STy g £ mlH
(e}) \ * A
A £ RS £ ¥
Bl 5a7P | | ~— Te
Vi g N) -l
VARE| g -
ﬁ_ > 13 + -l
lu ...|vw flM- ..\lf\.
o (= L —
\IH U Y BN O
] 7 oYe [
D
< S
2 Y A oyl
PV e S R VAN = \
15 EEupeSh gENmpe
\W/ nwﬂl. o .\O < U / N){J /._ \l\.\v
i nm o\ ‘.Jn/L.unO D W 7] ,
~ \Ohl .m.\ - ~F 4\# A... A
.luT - N o ritu QJV S L
A .MVUO/U - - £ .«/} 5
o e e 0
RS ey,
\rn—— >
=

Efficient Multiplication

{0<b}
x:=a; y:=b; =0 ;

BV S AR EAY
while y > 0 do
v AN >OB

(
(
(
(
(
(y) th g
if even(y) then
i’lx\if\‘}% A Q.\/e\n(‘%) (
X:=x+x; y:=y/2 (
g\"l: V\\/} E
(
(
(
(
(
(
(
(

else

y:=y-1; z:=z4x

— N N N N e

Design and Analysis of Algorithms CS218M

Efficient Multipliation (2)

{0< b} (1) Ce o Cowg'
x:=a; y:=b; z:=0 ; (2 @CW\] A
{inv: 0<y Az+xxy=axb} (3)
{bound : y} @)
while y > 0 do 5y O dm)
{inv. A y >0} (6)
if even(y) then . (;)
inv. Ny >0 A even(x
i::x+x;yy::y/2 v 593 OC\M) OCW)
{inv} (10)
else (11)
{inv. Ay >0 A —even(x)} (12)
y:=y-1;, zi=z+x (13)
{inv} (14)
fi (15)
; {inv} ﬁ?; W‘D
o r
{inv A y <0} (18) © (M L
{z=axb} (19)

P.K. Pandya Design and Analysis of Algorithms CS218M

Founders of Formal Verification

First Order Logic for Assertions

Alan Turing Bob Floyd Tony Hoare Edsgar Dijkstra

=

V.

Other Contributors

e O.J. Dahl (Data structuring)
@ S. Cook (Relative Completeness)

David Gries, The Science of Programming, Springer-Verlag.

P.K. Pandya Design and Analysis of Algorithms CS218M

Essentials of First-Order Predicate Logic

A language for describing mathematical structures.

A structure Y = (S, F, G)
S - set of values.
called Domain, written as |U]
F - set of functions over S
G - set of relations over S

Pair (F, G) is called the signature.

w Natural Numbers
R Real Numbers

Bool ({071}7 {/\7_'}’ {:})

P.K. Pandya Design and Analysis of Algorithms CS218M

Formalizing Properties of Structure
QY™ d\\l (‘YA‘\ !

Some valid properties of w

Vy.(0<y V 0=y) é’
Vx. x <x+1
Vx,y, z. (x*(y+z) = x*xy+xx2)

div(x,y) means x “divides’ y
div(x,y) e g, xxz= y)\\’ ('b/ A)
prime(x) means x is a prime. 3‘6 ?J‘(b — b\'

prime(x) & Vy.
(div(y,x) = y=1Vy=x)

O, 4)= b\g /(xm&u\

Design and Analysis of Algorithms CS218M

P.K. Pandya

Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

Terms

o Examples: x+0%y 1*z

P.K. Pandya Design and Analysis of Algorithms CS218M

Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)

P.K. Pandya Design and Analysis of Algorithms CS218M

Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)

e State (valuation) o : Var — [U]|.
Eg. o(x)=3,0(y) =4,0(z) =2.

P.K. Pandya Design and Analysis of Algorithms CS218M

Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

Terms

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)
e State (valuation) o : Var — [U]|.
Eg o(x)=3,0(y) =4,0(z) =2.
@ Value of term t in structure U and state o is 6(t) € |U]

P.K. Pandya Design and Analysis of Algorithms CS218M

Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)
e State (valuation) o : Var — [U]|.
Eg. o(x)=3,0(y) =4,0(z) =2.
@ Value of term t in structure U and state o is 6(t) € |U]
@ 5(x+0xy) = 3+0x4 = 3.

P.K. Pandya Design and Analysis of Algorithms CS218M

Natural Numbers w

Domain {0,1,2,...}
Functions 0, 1, +, %
Relations <, =
What do f.o.l. formulas over w look like?

o Examples: x+0%y 1*z
@ Syntax: t = x | f(t1,...,tn)

e State (valuation) o : Var — [U]|.
Eg o(x)=3,0(y) =4,0(z) =2.
@ Value of term t in structure U and state o is 6(t) € |U]
@ 5(x+0xy) = 3+0x4 = 3.
@ Semantics: §(x) = o(x)
G(f(tr,....tn) = f(6(t1),...,6(tn))

P.K. Pandya Design and Analysis of Algorithms CS218M

First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz

P.K. Pandya Design and Analysis of Algorithms CS218M

First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
@ Syntax: v = tH =t | R(t,...,tn)

P.K. Pandya Design and Analysis of Algorithms CS218M

First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz

@ Syntax: v = tH =t | R(t,...,tn)

e U,o = 1 denotes that v evaluates to true in U, o .
U, o [~ 1) denotes that 1) evaluates to false in U, 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
@ Syntax: v = tH =t | R(t,...,tn)
e U,o = 1 denotes that v evaluates to true in U, o .
U, o [~ 1) denotes that 1) evaluates to false in U, 0.
o Let o(x) =3,0(y) =4,0(z) = 2. Then,
w,o E(x+0xy < 1xz). (why?)

P.K. Pandya Design and Analysis of Algorithms CS218M

First order logic (cont)

Atomic Formulae

e Example: x+0xy < lxz
@ Syntax: v = tH =t | R(t,...,tn)

e U,o = 1 denotes that v evaluates to true in U, o .
U, o [~ 1) denotes that 1) evaluates to false in U, 0.

o Let o(x) =3,0(y) =4,0(z) = 2. Then,
w,o E(x+0xy < 1xz). (why?)

@ Semantics:
U,o =t =t iff 6(t1) =5(t)
U,o0 E R(t1,...,t,) iff
R(6(t1),...,6(tn))

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

e U,o = ¢ denotes that ¢ evaluates to true in U, o.

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).

@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

e U,o = ¢ denotes that ¢ evaluates to true in U, o.

@ Formula dx.¢ states that there exists a choice of value of x
(ignoring the value given by o(x)) which makes ¢ true.

Formula Vx.¢ states that all choice of value of x (ignoring the
value given by o(x)) make ¢ true.

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).

@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..

e U,o = ¢ denotes that ¢ evaluates to true in U, o.

@ Formula dx.¢ states that there exists a choice of value of x
(ignoring the value given by o(x)) which makes ¢ true.

Formula Vx.¢ states that all choice of value of x (ignoring the
value given by o(x)) make ¢ true.

o Let o(x) =0. Then, w,o = (Vy. (x <y V x=y)). (why?)

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulas

@ Formula ¢ is made of atomic formulas using boolean
connectives A, V, -, = as well as quantifiers dx.¢ and Vx.¢.

e Eg. (Vy.(x<yVx=y)).
@ Syntax: ¢ = Y | ;1 AP | 2 | Ix..
e U,o = ¢ denotes that ¢ evaluates to true in U, o.

@ Formula dx.¢ states that there exists a choice of value of x
(ignoring the value given by o(x)) which makes ¢ true.
Formula Vx.¢ states that all choice of value of x (ignoring the
value given by o(x)) make ¢ true.

o Let o(x) =0. Then, w,o = (Vy. (x <y V x=y)). (why?)
e Semantics: o’ is x-variant of o if o(y) = o'(y) for all y # x.
U,o = 3x.¢ iff

U,0' = ¢ for some x-variant ¢’ of o

P.K. Pandya Design and Analysis of Algorithms CS218M

Sorted (A, i,j) def

1<i<j<n =
Vili < i< j= Ali"l < A[i' +1]
Partition(A, i, j, k) def
1<i<j<k<n A
Vi (i<i"<j=All'l <AJ]) A
(VK. < K < k = A[j] < A[K])

Then,

Partition(A, i, j, k)
= A Sorted(A,i,j —1) = Sorted(A, i, k)
A Sorted(A,j + 1, k)

P.K. Pandya Design and Analysis of Algorithms CS218M

