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Maximum Subarray Problem

(Reference CLRS 4.1)
Problem: Find slice of array whose sum of elements is maximum
amongst all slices.
E.g. FIND MAXIMUM SUBARRAY (A, 1, n) gives
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Maximum Subarray Problem

(Reference CLRS 4.1)
Problem: Find slice of array whose sum of elements is maximum
amongst all slices.
E.g. FIND MAXIMUM SUBARRAY (A, 1, n) gives

i , j , S = FIND MAXIMUM SUBARRAY (A, low , high)

Let sum(A, i , j) = Σk=j
k=i A[k]

pre 1 ≤ low ≤ high ≤ n

post low ≤ i ≤ j ≤ high ∧ S = sum(i , j) ∧
∀(k , l) : low ≤ k ≤ l ≤ high. sum(A, k , l) ≤ S
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Naive Solution
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Divide and Conquer Algorithm
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Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid
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Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.
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Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Choose the maximum of the two.
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Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Find also the maximum slice (i , j) crossing the mid point,
s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high
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Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Find also the maximum slice (i , j) crossing the mid point,
s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

FIND MAX CROSSING SUBARRAY (A, low ,mid , high) gives
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Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Find also the maximum slice (i , j) crossing the mid point,
s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

FIND MAX CROSSING SUBARRAY (A, low ,mid , high) gives

Choose tha maximum of the three slices.
This gives the maximum subarray within (low , high). (Why?)
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Divide and Conquer Algorithm
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Case 3: Divide and Conqueer
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Case 3: Divide and Conqueer

Strategy

We choose i independantly so that highest leftsum .
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Case 3: Divide and Conqueer

Strategy

We choose i independantly so that highest leftsum .
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Case 3: Divide and Conqueer

Strategy

We choose i independantly so that highest leftsum .

post: leftsum = sum(A, i ,mid) ∧
∀k : low ≤ k ≤ mid .sum(A, j ,mid) ≤ leftsum
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Case 3: Divide and Conqueer
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Complexity of
FIND MAX CROSSING SUBARRAY (A, low ,mid , high)

Let n = high − low and low ≤ mid ≤ high.
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Complexity of
FIND MAXIMUM SUBARRAY (A, low , high)

Let n = high − low
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Recurrence

T (1) = c1
T (n) = 2 ∗ T (n/2) + c2 ∗ n for n > 1

Solution
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Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.
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Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method
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Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

n − 1 additions of n-bit numbers after shifting by i bits,
0 ≤ i < n − 1.
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Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

n − 1 additions of n-bit numbers after shifting by i bits,
0 ≤ i < n − 1.

Each addition take O(n) time.

P.K. Pandya Design and Analysis of Algorithms CS218M



Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

n − 1 additions of n-bit numbers after shifting by i bits,
0 ≤ i < n − 1.

Each addition take O(n) time.

Overall complexity O(n2).
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A Divide and Conquer Solution
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
4 multiplications of n/2-bit numbers. 4 ∗ T (n/2)
3 additions (with shifting) of n/2-bit numbers. O(n).
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
4 multiplications of n/2-bit numbers. 4 ∗ T (n/2)
3 additions (with shifting) of n/2-bit numbers. O(n).

Recurrence:
T (1) = c1
T (n) = 4 ∗ T (n/2) + c2 ∗ n for n > 1
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A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
4 multiplications of n/2-bit numbers. 4 ∗ T (n/2)
3 additions (with shifting) of n/2-bit numbers. O(n).

Recurrence:
T (1) = c1
T (n) = 4 ∗ T (n/2) + c2 ∗ n for n > 1

T (n) = O(n2). How?
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Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.
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Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.
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Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

(x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0
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Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

(x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

Compute x1y1 and x0y0 and p = (x1 + x0)(y1 + y0).
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Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

(x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

Compute x1y1 and x0y0 and p = (x1 + x0)(y1 + y0).

Compute (x0y1 + x1y0) as p − (x1y1 + x0y0).
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Karatsuba Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

Complexity

T (1) = c1
T (n) = 3 ∗ T (n/2) + c2 ∗ n for n > 1
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Karatsuba Algorithm

Complexity

T (1) = c1
T (n) = 3 ∗ T (n/2) + c2 ∗ n for n > 1

Hence, T (n) = O(nlg(3)) = n1.59 (Why?)
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Some Advanced Divide and Conquer Algorithms

Strassen Matrix Multiplication. (ref: CLRS 4.2)

Fast Fourier Transform. (ref: KT 5.6)

Finding Closest pair of points in 2-D plane. (ref: KT 5.4)
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