
Design and Analysis of Algorithms
CS218M

Divide and Conquer Algorithms (2)

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M



Maximum Subarray Problem

(Reference CLRS 4.1)
Problem: Find slice of array whose sum of elements is maximum
amongst all slices.
E.g. FIND MAXIMUM SUBARRAY (A, 1, n) gives

P.K. Pandya Design and Analysis of Algorithms CS218M



Maximum Subarray Problem

(Reference CLRS 4.1)
Problem: Find slice of array whose sum of elements is maximum
amongst all slices.
E.g. FIND MAXIMUM SUBARRAY (A, 1, n) gives

i , j , S = FIND MAXIMUM SUBARRAY (A, low , high)

Let sum(A, i , j) = Σk=j
k=i A[k]

pre 1 ≤ low ≤ high ≤ n

post low ≤ i ≤ j ≤ high ∧ S = sum(i , j) ∧
∀(k , l) : low ≤ k ≤ l ≤ high. sum(A, k , l) ≤ S

P.K. Pandya Design and Analysis of Algorithms CS218M



Naive Solution

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Choose the maximum of the two.

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Find also the maximum slice (i , j) crossing the mid point,
s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Find also the maximum slice (i , j) crossing the mid point,
s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

FIND MAX CROSSING SUBARRAY (A, low ,mid , high) gives

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

Split array slice (low , high) in two halves at mid

Recursively, find Maximum slices in left and right halves.

Find also the maximum slice (i , j) crossing the mid point,
s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

FIND MAX CROSSING SUBARRAY (A, low ,mid , high) gives

Choose tha maximum of the three slices.
This gives the maximum subarray within (low , high). (Why?)

P.K. Pandya Design and Analysis of Algorithms CS218M



Divide and Conquer Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Case 3: Divide and Conqueer

P.K. Pandya Design and Analysis of Algorithms CS218M



Case 3: Divide and Conqueer

Strategy

We choose i independantly so that highest leftsum .

P.K. Pandya Design and Analysis of Algorithms CS218M



Case 3: Divide and Conqueer

Strategy

We choose i independantly so that highest leftsum .

P.K. Pandya Design and Analysis of Algorithms CS218M



Case 3: Divide and Conqueer

Strategy

We choose i independantly so that highest leftsum .

post: leftsum = sum(A, i ,mid) ∧
∀k : low ≤ k ≤ mid .sum(A, j ,mid) ≤ leftsum

P.K. Pandya Design and Analysis of Algorithms CS218M



Case 3: Divide and Conqueer

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of
FIND MAX CROSSING SUBARRAY (A, low ,mid , high)

Let n = high − low and low ≤ mid ≤ high.

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of
FIND MAXIMUM SUBARRAY (A, low , high)

Let n = high − low

P.K. Pandya Design and Analysis of Algorithms CS218M



Recurrence

T (1) = c1
T (n) = 2 ∗ T (n/2) + c2 ∗ n for n > 1

Solution

P.K. Pandya Design and Analysis of Algorithms CS218M





Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

P.K. Pandya Design and Analysis of Algorithms CS218M



Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

P.K. Pandya Design and Analysis of Algorithms CS218M



Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

n − 1 additions of n-bit numbers after shifting by i bits,
0 ≤ i < n − 1.

P.K. Pandya Design and Analysis of Algorithms CS218M



Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

n − 1 additions of n-bit numbers after shifting by i bits,
0 ≤ i < n − 1.

Each addition take O(n) time.

P.K. Pandya Design and Analysis of Algorithms CS218M



Integer multiplication

(Reference: KT 5.5)
Problem: Given n-bit binary unsigned numbers x , y find z = a ∗ b
where z has 2n bits.

Naive Method

n − 1 additions of n-bit numbers after shifting by i bits,
0 ≤ i < n − 1.

Each addition take O(n) time.

Overall complexity O(n2).

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
4 multiplications of n/2-bit numbers. 4 ∗ T (n/2)
3 additions (with shifting) of n/2-bit numbers. O(n).

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
4 multiplications of n/2-bit numbers. 4 ∗ T (n/2)
3 additions (with shifting) of n/2-bit numbers. O(n).

Recurrence:
T (1) = c1
T (n) = 4 ∗ T (n/2) + c2 ∗ n for n > 1

P.K. Pandya Design and Analysis of Algorithms CS218M



A Divide and Conquer Solution

Split n-bit number x into two n/2-bit numbers x1, x2 in the
middle.

x = x1 · 2n/2 + x0 and y = y1 · 2n/2 + y0.

Hence,

Complexity: T (n)
4 multiplications of n/2-bit numbers. 4 ∗ T (n/2)
3 additions (with shifting) of n/2-bit numbers. O(n).

Recurrence:
T (1) = c1
T (n) = 4 ∗ T (n/2) + c2 ∗ n for n > 1

T (n) = O(n2). How?

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

(x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

(x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

Compute x1y1 and x0y0 and p = (x1 + x0)(y1 + y0).

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

xy = x1y1 · 2n + (x0y1 + x1y0) · 2n/2 + x0y0.

Terms x1y1, x1y0, x0y1, x0y0 are not independant.

(x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0

Compute x1y1 and x0y0 and p = (x1 + x0)(y1 + y0).

Compute (x0y1 + x1y0) as p − (x1y1 + x0y0).

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

Complexity

T (1) = c1
T (n) = 3 ∗ T (n/2) + c2 ∗ n for n > 1

P.K. Pandya Design and Analysis of Algorithms CS218M



Karatsuba Algorithm

Complexity

T (1) = c1
T (n) = 3 ∗ T (n/2) + c2 ∗ n for n > 1

Hence, T (n) = O(nlg(3)) = n1.59 (Why?)

P.K. Pandya Design and Analysis of Algorithms CS218M



Some Advanced Divide and Conquer Algorithms

Strassen Matrix Multiplication. (ref: CLRS 4.2)

Fast Fourier Transform. (ref: KT 5.6)

Finding Closest pair of points in 2-D plane. (ref: KT 5.4)

P.K. Pandya Design and Analysis of Algorithms CS218M


