Design and Analysis of Algorithms CS218M Divide and Conquer Algorithms (2)

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

(Reference CLRS 4.1)

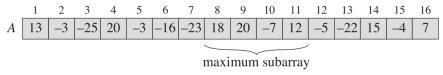
Problem: Find slice of array whose sum of elements is maximum amongst all slices.

E.g. FIND_MAXIMUM_SUBARRAY(A, 1, n) gives

(Reference CLRS 4.1)

Problem: Find slice of array whose sum of elements is maximum amongst all slices.

E.g. FIND_MAXIMUM_SUBARRAY(A, 1, n) gives



 $i, j, S = FIND_MAXIMUM_SUBARRAY(A, low, high)$

Let $sum(A, i, j) = \sum_{k=i}^{k=j} A[k]$

pre $1 \leq low \leq high \leq n$

$$\begin{array}{ll} \mathsf{post} \ \mathit{low} \leq i \leq j \leq \mathit{high} \land \mathit{S} = \mathit{sum}(i,j) \land \\ \forall (k,l) : \mathit{low} \leq k \leq l \leq \mathit{high}. \ \ \mathit{sum}(\mathit{A},k,l) \leq \mathit{S} \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Naive Solution

P.K. Pandya Design and Analysis of Algorithms CS218M

æ

御 と く き と く き と

٠

P.K. Pandya Design and Analysis of Algorithms CS218M

æ

▶ ∢ ⊒ ▶

• Split array slice (low, high) in two halves at mid

э

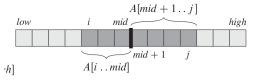
- Split array slice (low, high) in two halves at mid
- Recursively, find Maximum slices in left and right halves.

- Split array slice (low, high) in two halves at mid
- Recursively, find Maximum slices in left and right halves.
- Choose the maximum of the two.

- Split array slice (low, high) in two halves at mid
- Recursively, find Maximum slices in left and right halves.
- Find also the maximum slice (i, j) crossing the mid point,
 s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

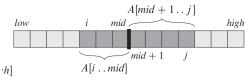
- Split array slice (low, high) in two halves at mid
- Recursively, find Maximum slices in left and right halves.
- Find also the maximum slice (i, j) crossing the mid point,
 s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

FIND_MAX_CROSSING_SUBARRAY(A, low, mid, high) gives



- Split array slice (low, high) in two halves at mid
- Recursively, find Maximum slices in left and right halves.
- Find also the maximum slice (i, j) crossing the mid point,
 s.t.low ≤ i ≤ mid and mid + 1 ≤ j ≤ high

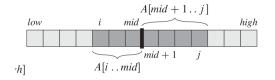
FIND_MAX_CROSSING_SUBARRAY(A, low, mid, high) gives



Choose tha maximum of the three slices.
 This gives the maximum subarray within (*low*, *high*). (Why?)

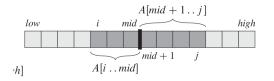
FIND-MAXIMUM-SUBARRAY (A, low, high)

if high == low2 // base case: only one element **return** (low, high, A[low]) davide 3 else $mid = \lfloor (low + high)/2 \rfloor$ 4 (left-low, left-high, left-sum) =Conquer b) Conquer FIND-MAXIMUM-SUBARRAY (A, low, mid) 5 (right-low, right-high, right-sum) =FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)6 (cross-low, cross-high, cross-sum) =FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high) 7 **if** *left-sum* > *right-sum* and *left-sum* > *cross-sum* 8 **return** (*left-low*, *left-high*, *left-sum*) 9 elseif right-sum \geq left-sum and right-sum \geq cross-sum 10 **return** (*right-low*, *right-high*, *right-sum*) 11 else return (cross-low, cross-high, cross-sum)



▲御▶ ▲ 陸▶ ▲ 陸▶ -

æ



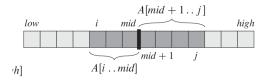
Strategy

We choose i independantly so that highest *leftsum* .

P.K. Pandya Design and Analysis of Algorithms CS218M

э

• • = • • = •



Strategy

We choose i independantly so that highest *leftsum* .

$$1 \quad left-sum = -\infty$$

$$2 \quad sum = 0$$

$$3 \quad for \ i = mid \ downto \ low$$

$$4 \quad sum = sum + A[i]$$

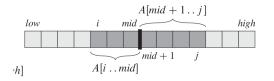
$$5 \quad if \ sum > left-sum$$

$$6 \quad left-sum = sum$$

$$7 \quad max-left = i$$

э

• • = • • = •



Strategy

We choose i independantly so that highest *leftsum* .

$$1 \quad left-sum = -\infty$$

$$2 \quad sum = 0$$

$$3 \quad for \ i = mid \ downto \ low$$

$$4 \quad sum = sum + A[i]$$

$$5 \quad if \ sum > left-sum$$

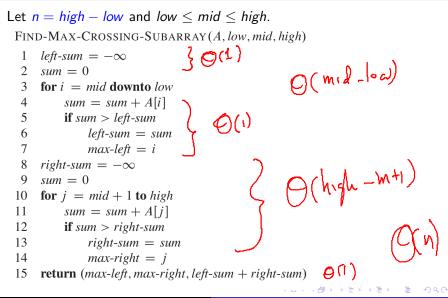
$$6 \quad left-sum = sum$$

$$7 \quad max-left = i$$

post: $leftsum = sum(A, i, mid) \land$ $\forall k : low \le k \le mid.sum(A, j, mid) \le leftsum$ FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

1 left-sum = $-\infty$ 2 sum = 03 for i = mid downto low 4 sum = sum + A[i]5 if sum > left-sum 6 left-sum = sum7 max-left = i8 right-sum $= -\infty$ 9 sum = 010 for j = mid + 1 to high 11 sum = sum + A[j]12 if sum > right-sum 13 right-sum = sum 14 max-right = j15 **return** (max-left, max-right, left-sum + right-sum)

Complexity of FIND_MAX_CROSSING_SUBARRAY(A, low, mid, high)



Complexity of FIND_MAXIMUM_SUBARRAY(A, low, high) Let n = high - lowFIND-MAXIMUM-SUBARRAY (A, low, high) $\Theta(1)$ if high == low// base case: only one element **return** (low, high, A[low]) 2 else $mid = \lfloor (low + high)/2 \rfloor$ 3 4 (left-low, left-high, left-sum) =T(n/2) FIND-MAXIMUM-SUBARRAY (A, low, mid) 5 (right-low, right-high, right-sum) =FIND-MAXIMUM-SUBARRAY (A, mid + 1, high) \top (h_{L}) 6 (cross-low, cross-high, cross-sum) =FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)7 if left-sum \geq right-sum and left-sum \geq cross-sum 8 **return** (*left-low*, *left-high*, *left-sum*) 9 elseif *right-sum* \geq *left-sum* and *right-sum* \geq *cross-sum* 10 **return** (*right-low*, *right-high*, *right-sum*) 11 else return (cross-low, cross-high, cross-sum)

Recurrence

$$\begin{array}{rcl} T(1) & = & c_1 \\ T(n) & = & 2 * T(n/2) \ + \ c_2 * n & \text{for } n > 1 \end{array}$$

Solution,

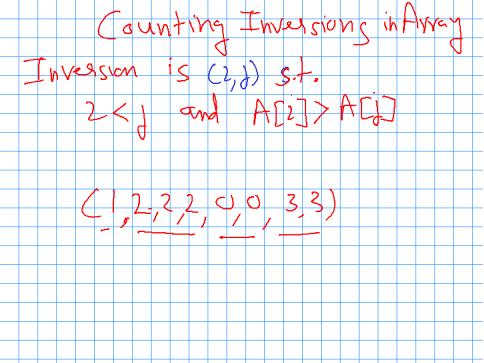
$$\frac{n}{n} = n = n$$

$$\frac{1 \log^{(2)}}{1 = n} = n$$

 $N^{\log_{6}q} \times \log_{6}n = N \log(n)$

・ロト ・回ト ・ヨト ・ヨト

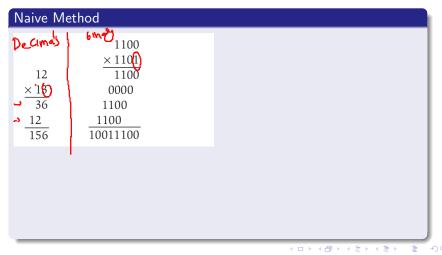
æ



(Reference: KT 5.5) Problem: Given *n*-bit binary unsigned numbers x, y find $z = a + b^2$ where z has 2n bits.

• • • • • • • •

(Reference: KT 5.5) **Problem**: Given *n*-bit binary unsigned numbers x, y find z = a * bwhere *z* has 2n bits.



(Reference: KT 5.5) **Problem**: Given *n*-bit binary unsigned numbers x, y find z = a * bwhere z has 2n bits.

$ 1100 \\ \times 1101 \\ 1100 $
12 1100
12 1100
×13 0000
36 1100
$\frac{12}{156}$ $\frac{1100}{10011100}$
156 10011100

• n-1 additions of *n*-bit numbers after shifting by *i* bits, $0 \le i < n-1$.

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

э

(Reference: KT 5.5) **Problem**: Given *n*-bit binary unsigned numbers x, y find z = a * bwhere z has 2n bits.

Naive Me	Naive Method						
	1100						
	× 1101						
12	1100						
$\times 13$	0000						
36	1100						
12	1100						
156	10011100						

- n-1 additions of *n*-bit numbers after shifting by *i* bits, $0 \le i < n-1$.
- Each addition take O(n) time.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

(Reference: KT 5.5) **Problem**: Given *n*-bit binary unsigned numbers x, y find z = a * bwhere *z* has 2n bits.

Naive Me	ethod	
	1100	
	$\times 1101$	
12	1100	
$\times 13$	0000	
36	1100	
12	1100	
156	10011100	

- n-1 additions of *n*-bit numbers after shifting by *i* bits, $0 \le i < n-1$.
- Each addition take O(n) time.
- Overall complexity $O(n^2)$.

・ 「 ト ・ ヨ ト ・ ヨ ト

P.K. Pandya Design and Analysis of Algorithms CS218M

æ

-> -< ≣ >

• Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.

• • • • • • • •

э

.

- Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.
- $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.

•
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

• Hence,

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0.$

• E > < E > ...

э

• Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.

•
$$x = x_1 \cdot 2^{n/2} + x_0$$
 and $y = y_1 \cdot 2^{n/2} + y_0$.

Hence,

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0.$

• Complexity: T(n)

 $T(1) = \Theta(1)$ $T(n) = 4 \times T(n_2) + \Theta(n)$

伺 ト イ ヨ ト イ ヨ ト

- Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.
- $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.
- Hence,

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0.$

- Complexity: *T*(*n*)
 - 4 multiplications of n/2-bit numbers. 4 * T(n/2)
 - 3 additions (with shifting) of n/2-bit numbers. O(n).

- Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.
- $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.
- Hence,

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

- Complexity: *T*(*n*)
 - 4 multiplications of n/2-bit numbers. 4 * T(n/2)
 - 3 additions (with shifting) of n/2-bit numbers. O(n).
- Recurrence:

$$\begin{array}{rcl} T(1) & = & c_1 \\ T(n) & = & 4 * T(n/2) \ + \ c_2 * n & \quad \text{for } n > 1 \end{array}$$

log(h) 2 - N

- Split *n*-bit number x into two n/2-bit numbers x₁, x₂ in the middle.
- $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$.
- Hence,

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$

= $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0.$

- Complexity: T(n)
 - 4 multiplications of n/2-bit numbers. 4 * T(n/2)3 additions (with shifting) of n/2-bit numbers. O(n).
- Recurrence:

$$\begin{array}{rcl} T(1) & = & c_1 \\ T(n) & = & 4 * T(n/2) \ + \ c_2 * n & \quad \text{for } n > 1 \end{array}$$

• $T(n) = O(n^2)$. How?

• $xy = x_1y_1 \cdot 2^n + (x_0y_1 + x_1y_0) \cdot 2^{n/2} + x_0y_0$.

- $xy = x_1y_1 \cdot 2^n + (x_0y_1 + x_1y_0) \cdot 2^{n/2} + x_0y_0$.
- Terms x₁y₁, x₁y₀, x₀y₁, x₀y₀ are not independant.

何 ト イヨ ト イヨ ト

э

•
$$xy = x_1y_1 \cdot 2^n + (x_0y_1 + x_1y_0) \cdot 2^{n/2} + x_0y_0.$$

- Terms x₁y₁, x₁y₀, x₀y₁, x₀y₀ are not independent.
- $(x_1 + x_0)(y_1 + y_0) = (x_1y_1) + x_1y_0 + x_0y_1 + (x_0y_0)$

- $xy = x_1y_1 \cdot 2^n + (x_0y_1 + x_1y_0) \cdot 2^{n/2} + x_0y_0$.
- Terms x_1y_1 , x_1y_0 , x_0y_1 , x_0y_0 are not independent.
- $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$
- Compute x_1y_1 and x_0y_0 and $p = (x_1 + x_0)(y_1 + y_0)$.

- $xy = x_1y_1 \cdot 2^n + (x_0y_1 + x_1y_0) \cdot 2^{n/2} + x_0y_0$.
- Terms x_1y_1 , x_1y_0 , x_0y_1 , x_0y_0 are not independent.
- $(x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$
- Compute x_1y_1 and x_0y_0 and $p = (x_1 + x_0)(y_1 + y_0)$.
- Compute $(x_0y_1 + x_1y_0)$ as $p (x_1y_1 + x_0y_0)$.

Karatsuba Algorithm

Recursive-Multiply(x,y): Write $x = x_1 \cdot 2^{n/2} + x_0$ $y = y_1 \cdot 2^{n/2} + y_0$ Compute $x_1 + x_0$ and $y_1 + y_0$ p = Recursive-Multiply($x_1 + x_0$, $y_1 + y_0$) x_1y_1 = Recursive-Multiply(x_1 , y_1) x_0y_0 = Recursive-Multiply(x_0 , y_0) Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$ T(W₂)

< 同 > < 三 > < 三 > 、

Karatsuba Algorithm

Recursive-Multiply(x,y): Write $x = x_1 \cdot 2^{n/2} + x_0$ $y = y_1 \cdot 2^{n/2} + y_0$ Compute $x_1 + x_0$ and $y_1 + y_0$ p = Recursive-Multiply($x_1 + x_0$, $y_1 + y_0$) x_1y_1 = Recursive-Multiply(x_1 , y_1) x_0y_0 = Recursive-Multiply(x_0 , y_0) Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$

Complexity

$$T(1) = c_1$$

$$T(n) = 3 * T(n/2) + c_2 * n \quad \text{for } n > 1$$

$$I(n) = \sqrt{\log_2(3)} \approx \sqrt{1.59} \quad [(n) = C_2 : n]$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Karatsuba Algorithm

Recursive-Multiply(x,y):
Write
$$x = x_1 \cdot 2^{n/2} + x_0$$

 $y = y_1 \cdot 2^{n/2} + y_0$
Compute $x_1 + x_0$ and $y_1 + y_0$
 p = Recursive-Multiply($x_1 + x_0$, $y_1 + y_0$)
 x_1y_1 = Recursive-Multiply(x_1 , y_1)
 x_0y_0 = Recursive-Multiply(x_0 , y_0)
Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$

Complexity

$$\begin{array}{rcl} T(1) & = & c_1 \\ T(n) & = & 3 * T(n/2) \ + \ c_2 * n & \quad \text{for } n > 1 \end{array}$$

Hence, $T(n) = O(n^{lg(3)}) = n^{1.59}$ (Why?)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

- Strassen Matrix Multiplication. (ref: CLRS 4.2)
- Fast Fourier Transform. (ref: KT 5.6)
- Finding Closest pair of points in 2-D plane. (ref: KT 5.4)