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The Greedy Paradigm

Build the solution by selecting elements (or making choices)
one by one.

A simple rule allows choice of element at each stage. Local
optimality.

Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.
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Interval Scheduling

Problem

Given Set of requests 1, . . . , n with s(i), f (i) giving start and end
time (interval) of the request. To find maximal sized
A ⊆ {1, . . . , n} which is compatible.
A pair of intervals is compatible if they do not overlap. A is
compatible if every pair of distinct intervals in A is compatible.
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Interval Scheduling

Problem

Given Set of requests 1, . . . , n with s(i), f (i) giving start and end
time (interval) of the request. To find maximal sized
A ⊆ {1, . . . , n} which is compatible.
A pair of intervals is compatible if they do not overlap. A is
compatible if every pair of distinct intervals in A is compatible.

Strategy

Choose sequence of intervals i1, . . . , ik using a greedy rule. After
each choice remove incompatible intervals with the last choice.
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Algorithm Template

Let the sequence of intervals added to A be i1, . . . , ik .
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Some Examples
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Some Examples

Some Greedy Rules

Earliest start time.

Shortest interval first

Interval which overlaps least number of intervals.
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Solution

Correct Greedy rule Choose and add to A interval i from R with
smallest finishing time.
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Correctness

Claim: A is Compatible
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Correctness

Claim: A is Compatible

Claim: A = i1, . . . , ik is optimal.
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Correctness

Claim: A is Compatible

Claim: A = i1, . . . , ik is optimal.

Let O = j1, . . . , jm be optimal. Then, k ≤ m.
Claim: ∀1 ≤ r ≤ k : f (ir ) ≤ f (jr )
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Correctness

Claim: A is Compatible

Claim: A = i1, . . . , ik is optimal.

Let O = j1, . . . , jm be optimal. Then, k ≤ m.
Claim: ∀1 ≤ r ≤ k : f (ir ) ≤ f (jr )

(Base step) r = 1. We choose i1 with shortest f (i). Hence,
f (i1) ≤ f (j1).
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Correctness

Claim: A is Compatible

Claim: A = i1, . . . , ik is optimal.

Let O = j1, . . . , jm be optimal. Then, k ≤ m.
Claim: ∀1 ≤ r ≤ k : f (ir ) ≤ f (jr )

(Base step) r = 1. We choose i1 with shortest f (i). Hence,
f (i1) ≤ f (j1).

(Induction) By hyp, f (ir−1) ≤ f (jr−1).
Also, f (jr−1) ≤ s(jr ) (why?). Hence, f (ir−1) ≤ s(jr ).
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Correctness

Claim: A is Compatible

Claim: A = i1, . . . , ik is optimal.

Let O = j1, . . . , jm be optimal. Then, k ≤ m.
Claim: ∀1 ≤ r ≤ k : f (ir ) ≤ f (jr )

(Base step) r = 1. We choose i1 with shortest f (i). Hence,
f (i1) ≤ f (j1).

(Induction) By hyp, f (ir−1) ≤ f (jr−1).
Also, f (jr−1) ≤ s(jr ) (why?). Hence, f (ir−1) ≤ s(jr ).

Hence, while selecting ir , interval jr ∈ R .
Hence, f (ir ) ≤ f (jr ).
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Correctness

Claim: A is Compatible

Claim: A = i1, . . . , ik is optimal.

Let O = j1, . . . , jm be optimal. Then, k ≤ m.
Claim: ∀1 ≤ r ≤ k : f (ir ) ≤ f (jr )

(Base step) r = 1. We choose i1 with shortest f (i). Hence,
f (i1) ≤ f (j1).

(Induction) By hyp, f (ir−1) ≤ f (jr−1).
Also, f (jr−1) ≤ s(jr ) (why?). Hence, f (ir−1) ≤ s(jr ).

Hence, while selecting ir , interval jr ∈ R .
Hence, f (ir ) ≤ f (jr ).

If k < m then R(k + 1) �= ∅ and more intervals will be added to A.
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Implementation and Complexity

We do not explicitely maintain R .
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Implementation and Complexity

We do not explicitely maintain R .

Sort given intervals by f (i) to give interval list indexed
1, 2, . . . , n. Time O(n · lg(n)).
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Implementation and Complexity

We do not explicitely maintain R .

Sort given intervals by f (i) to give interval list indexed
1, 2, . . . , n. Time O(n · lg(n)).
Construct S [1 . . . n] s.t. S [i ] = s(i) for all i . Time O(n).
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Implementation and Complexity

We do not explicitely maintain R .

Sort given intervals by f (i) to give interval list indexed
1, 2, . . . , n. Time O(n · lg(n)).
Construct S [1 . . . n] s.t. S [i ] = s(i) for all i . Time O(n).

Initialize: i = 1. Include i in A.

loop
Find first j > i s.t. S [j ] ≥ f (i).
If found then Include j in A
else exit loop.
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Implementation and Complexity

We do not explicitely maintain R .

Sort given intervals by f (i) to give interval list indexed
1, 2, . . . , n. Time O(n · lg(n)).
Construct S [1 . . . n] s.t. S [i ] = s(i) for all i . Time O(n).

Initialize: i = 1. Include i in A.

loop
Find first j > i s.t. S [j ] ≥ f (i).
If found then Include j in A
else exit loop.

Overall complexity O(n · lg(n))
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Minimum Lateness Scheduling

Problem

Given jobs 1, . . . , n where job i has load ti and deadline di , assign
interval I (i) = [S(i),F (i)] to job i s.t.
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Minimum Lateness Scheduling

Problem

Given jobs 1, . . . , n where job i has load ti and deadline di , assign
interval I (i) = [S(i),F (i)] to job i s.t.

– F (i) = S(i) + ti (i.e. non-preemptive scheduling)
– I (i) and I (j) are non-overlapping if i �= j
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Minimum Lateness Scheduling

Problem

Given jobs 1, . . . , n where job i has load ti and deadline di , assign
interval I (i) = [S(i),F (i)] to job i s.t.

– F (i) = S(i) + ti (i.e. non-preemptive scheduling)
– I (i) and I (j) are non-overlapping if i �= j

and the assignment has minimum lateness.

Lateness li = if (F (i) > di ) then F (i)− di else 0.
Let L = maxi li .

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Lateness Scheduling

Problem

Given jobs 1, . . . , n where job i has load ti and deadline di , assign
interval I (i) = [S(i),F (i)] to job i s.t.

– F (i) = S(i) + ti (i.e. non-preemptive scheduling)
– I (i) and I (j) are non-overlapping if i �= j

and the assignment has minimum lateness.

Lateness li = if (F (i) > di ) then F (i)− di else 0.
Let L = maxi li .

Claim

There exists an optimal assignment with no idle time.
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Minimum Lateness Scheduling

Problem

Given jobs 1, . . . , n where job i has load ti and deadline di , assign
interval I (i) = [S(i),F (i)] to job i s.t.

– F (i) = S(i) + ti (i.e. non-preemptive scheduling)
– I (i) and I (j) are non-overlapping if i �= j

and the assignment has minimum lateness.

Lateness li = if (F (i) > di ) then F (i)− di else 0.
Let L = maxi li .

Claim

There exists an optimal assignment with no idle time.

Hence, we only need to order the jobs. A schedule
A = (A(1), . . . ,A(n)) is a permutation of jobs (1, . . . , n).
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Example
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Inversions by Example

Index i 1 2 3 4 5 6 7

deadline di 1 6 7 2 4 8 3

(2, 5) is an inversion.

(3, 4) is an immediate inversion.

If we exchange d3, d4 of immediate inversion (3, 4) the total
number of inversions decreases by 1.
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Inversions and Exchange argument

Given a schedule A, a pair (i , j) is an inversion if
(i < j) ∧ (di > dj).

Claim: If (i , j) is an inversion, there exists a k s.t. i ≤ k < j
and (k , k + 1) is an inversion. Call it immediate inversion.

claim: In any schedule A, if (k , k + 1) is an immediate
inversion and we swap A(k),A(k + 1) by A(k + 1),A(k) to
get A�, the total number of inversions decreases by 1.
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Exchange preserves optimality

Theorem

If A is a schedule with lateness L and (i , j) is an immediate
inversion, then A� obtained by exchanging jobs A(i),A(j) has
lateness L� with L� ≤ L
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Exchange preserves optimality (2)
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Exchange preserves optimality (2)

Finishing time F (r) for r �= i , j is unchanged. Hence l �r = lr .
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Exchange preserves optimality (2)

Finishing time F (r) for r �= i , j is unchanged. Hence l �r = lr .

Finishing time F (j) decreases. Hence l �j ≤ lj .
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Exchange preserves optimality (2)

Finishing time F (r) for r �= i , j is unchanged. Hence l �r = lr .

Finishing time F (j) decreases. Hence l �j ≤ lj .

Finishing time of F (i) increases. Lateness l �i increases.
However, F �(i) = F (j).
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Exchange preserves optimality (2)

Finishing time F (r) for r �= i , j is unchanged. Hence l �r = lr .

Finishing time F (j) decreases. Hence l �j ≤ lj .

Finishing time of F (i) increases. Lateness l �i increases.
However, F �(i) = F (j).

We show that l �i ≤ lj .
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Exchange preserves optimality (2)

Finishing time F (r) for r �= i , j is unchanged. Hence l �r = lr .

Finishing time F (j) decreases. Hence l �j ≤ lj .

Finishing time of F (i) increases. Lateness l �i increases.
However, F �(i) = F (j).

We show that l �i ≤ lj .
lj = F (j)− dj = (di − dj) + (F (j)− di )
≥ (F (j)− di )
= (F �(i)− di ) = l �i

P.K. Pandya Design and Analysis of Algorithms CS218M



Earliest Deadline First Schedule
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Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

Let A be an arbitrary optimal schedule.

Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves
optimality.

In the end we obtain optimal inversion free schedule.
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Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

Let A be an arbitrary optimal schedule.

Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves
optimality.

In the end we obtain optimal inversion free schedule.

Claim: All inversion-free schedules have same lateness

Proof: Homework!
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Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

Let A be an arbitrary optimal schedule.

Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves
optimality.

In the end we obtain optimal inversion free schedule.

Claim: All inversion-free schedules have same lateness

Proof: Homework!

EDF Schedulig Algorithm

Given a set of jobs, schedule them in the order of deadlines with
earliest deadline first.
If two jobs have the same deadline, order them arbitrarily.

Claim: The resulting EDF schedule is optimal.
P.K. Pandya Design and Analysis of Algorithms CS218M



Codes and Data Compression

Finite alphabet S = {a1, . . . , an}. Message x1x2 . . . xr is a
finite sequence of symbols.

Digital communication: Message encoded and communicated
as a sequence of bits. It is decoded back on receipt.

We encode each symbol xi as bit sequence γ(xi ).

Fixed length encoding: �lg(n)� bits are needed to encode a
symbol from alphabet S of size n.

E.g. ASCII characters into 7-bit encoding. Unicode characters
into 16-bits.
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Variable Length Code
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Variable Length Code

Prefix Property

For any x , y ∈ S , x �= y we have
¬ pref (γ(x), γ(y)) ∧ ¬ pref (γ(y), γ(x))
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Variable Length Code

Prefix Property

For any x , y ∈ S , x �= y we have
¬ pref (γ(x), γ(y)) ∧ ¬ pref (γ(y), γ(x))

Prefix property allows us to uniquely decode the encoded
bit-string.
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Prefix Code

Average Bits Per Letter

Let probability of letter x in message be fx . Let γ be a prefix code.
Then,

ABL(γ) = Σx∈S fx · |γ(x)|
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Prefix Code

Average Bits Per Letter

Let probability of letter x in message be fx . Let γ be a prefix code.
Then,

ABL(γ) = Σx∈S fx · |γ(x)|
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Optimal Prefix Code
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Optimal Prefix Code

Optimal Prefix Code

For a given alphabet S and probability distribution f , a prefix code
γ over S is optimal if for all prefix codes γ� over S we have

ABL(γ) ≤ ABL(γ�)

P.K. Pandya Design and Analysis of Algorithms CS218M



Labelled Binary Trees

LBT is a binary tree where leaves are labelled with letters
from S .

There is bijection between LBTs and prefix codes. They
represent the same thing.

Notation: Given LBT T and a leaf node u let lb(u) ∈ S
denote the label of u.
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

P.K. Pandya Design and Analysis of Algorithms CS218M



Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with lb(u) = y and
lb(v) = z and depth(u) < depth(v). If T is optimal then fy ≥ fz .

Proof (Exchange argument) We prove contrapositive.
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with lb(u) = y and
lb(v) = z and depth(u) < depth(v). If T is optimal then fy ≥ fz .

Proof (Exchange argument) We prove contrapositive.

Let fy < fz . Let T
� be T with lb(u) and lb(v) exchanged.
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with lb(u) = y and
lb(v) = z and depth(u) < depth(v). If T is optimal then fy ≥ fz .

Proof (Exchange argument) We prove contrapositive.

Let fy < fz . Let T
� be T with lb(u) and lb(v) exchanged.

ABL(T )− ABL(T �)
= (fy · depth(u) + fz · depth(v))−
(fz · depth(u) + fy · depth(v))
= (fy − fz) · (depth(u)− depth(v))
> 0 (as both factors are negative)
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with lb(u) = y and
lb(v) = z and depth(u) < depth(v). If T is optimal then fy ≥ fz .

Proof (Exchange argument) We prove contrapositive.

Let fy < fz . Let T
� be T with lb(u) and lb(v) exchanged.

ABL(T )− ABL(T �)
= (fy · depth(u) + fz · depth(v))−
(fz · depth(u) + fy · depth(v))
= (fy − fz) · (depth(u)− depth(v))
> 0 (as both factors are negative)

Hence T is not optimal.
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with lb(u) = y and
lb(v) = z and depth(u) < depth(v). If T is optimal then fy ≥ fz .

Proof (Exchange argument) We prove contrapositive.

Let fy < fz . Let T
� be T with lb(u) and lb(v) exchanged.

ABL(T )− ABL(T �)
= (fy · depth(u) + fz · depth(v))−
(fz · depth(u) + fy · depth(v))
= (fy − fz) · (depth(u)− depth(v))
> 0 (as both factors are negative)

Hence T is not optimal.

Hence, in optimal LBT, as depth of leaves decreases the
probability must increase or remain same.
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Example: Optimal LBT
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Property of Optimal LBT (2)

Greedy Choice

Let x , y ∈ S s.t. ∀z ∈ S ..(fz ≤ fx ∧ fz ≤ fy ). Such x , y are called
least frequent pair. Then, there exists a LBT where x , y occur as
siblings at maximum depth.
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Huffman Algorithm for Optimal LBT (Huffman Code)

Given S and probability distribution f , constructl LBT H in
bottom up fashion as follows.

1 Let x , y be a least frequent pair. Make a subtree with parent
u(x ,y) and two children labelled x and y .

2 Remove x , y from S and add new letter (x , y). Let
f(x ,y) = fx + fy .

3 Repeat (1) if more than 1 letter. Replace leaf labelled (x , y)
with subtree u(x ,y).

4 Call the resulting LBT as H.

Claim: The LBT H constructed as above is optimal.
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Example
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Example
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Example

.
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