Design and Analysis of Algorithms
CS218M

Greedy Algorithms

Paritosh Pandya
Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

The Greedy Paradigm

@ Build the solution by selecting elements (or making choices)
one by one.
@ A simple rule allows choice of element at each stage. Local
e . [—
optlmall_’_cl._
@ Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

@ The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.

P.K. Pandya Design and Analysis of Algorithms CS218M

KT cev-X

Problem

Given Set of requests 1,...,n with s(i), f(i) giving start and end
time (interval) of the request. To find maximal sized

A C{1,..., n} which is compatible.

A pair of intervals is compatible if they do not overlap. A is
compatible if every pair of distinct intervals in A is compatible.

P.K. Pandya Design and Analysis of Algorithms CS218M

Interval Scheduling

Given Set of requests 1,...,n with s(i), f(i) giving start and end
time (interval) of the request. To find maximal sized <

A C{1,..., n} which is compatible.

A pair of intervals is compatible if they do not overlap. A is
compatible if every pair of distinct intervals in A is compatible.

Choose sequence of intervals i1, ..., i, using a greedy rule. After
each choice remove incompatible intervals with the last choice.

P.K. Pandya Design and Analysis of Algorithms CS218M

Algorithm Template

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request i€ R that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

Let the sequence of intervals added to A be i, ..., i.

P.K. Pandya Design and Analysis of Algorithms CS218M

Some Examples

— — ——

(@)
P
(b)
m— A
— —
(0

P.K. Pandya Design and Analysis of Algorithms CS218M

Some Examples

\

(0

Some Greedy Rules

@ Earliest start time.
@ Shortest interval first

@ Interval which overlaps least number of intervals.

P.K. Pandya Design and Analysis of Algorithms CS218M

Correct Greedy rule Choose and add to A interval / from R with
smallest finishing time.

1 6I I 8I
1 3 5. 9.
| ‘2: : ‘4: | | I7:‘ |
[gy P —— =S e | 8
S I —
:——l————‘——l : ‘4: | | IT:"_'__'";

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1 <r <k: f(ir) <f(pr)

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1 <r <k: f(ir) <f(pr)

o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < ().

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1< r<k: f(ir) <f(r)
o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < f().
e (Induction) By hyp, (i;—1) < f(jr—1).
Also, f(jr—1) < s(jr) (why?). Hence, f(ir—1) < s(j)-

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1< r<k: f(ir) <f(r)
o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < f().
e (Induction) By hyp, (i;—1) < f(jr—1).
Also, f(jr—1) < s(jr) (why?). Hence, f(ir—1) < s(j)-
@ Hence, while selecting iy, interval j, € R.
Hence, (i;) < f(jr).

P.K. Pandya Design and Analysis of Algorithms CS218M

Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1< r<k: f(ir) <f(r)
o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < f().
e (Induction) By hyp, (i;—1) < f(jr—1).
Also, f(jr—1) < s(jr) (why?). Hence, f(ir—1) < s(j)-

@ Hence, while selecting iy, interval j, € R.
Hence, (i;) < f(jr).

If k < m then R(k + 1) # () and more intervals will be added to A.

P.K. Pandya Design and Analysis of Algorithms CS218M

Implementation and Complexity

We do not explicitely maintain R.

P.K. Pandya Design and Analysis of Algorithms CS218M

Implementation and Complexity

We do not explicitely maintain R.

@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).

P.K. Pandya Design and Analysis of Algorithms CS218M

Implementation and Complexity

We do not explicitely maintain R.

@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
e Construct S[1...n] s.t. S[i] = s(i) for all i. Time O(n).

P.K. Pandya Design and Analysis of Algorithms CS218M

Implementation and Complexity

We do not explicitely maintain R.
@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
e Construct S[1...n] s.t. S[i] = s(i) for all i. Time O(n).
@ Initialize: / = 1. Include i in A.

@ loop
Find first j > i s.t. S[j] > f(i).
If found then Include j in A
else exit loop.

P.K. Pandya Design and Analysis of Algorithms CS218M

Implementation and Complexity

We do not explicitely maintain R.

@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
Construct S[1...n] s.t. S[i] = s(i) for all i. Time O(n).

Initialize: i = 1. Include j in A.

loop
Find first j > i s.t. S[j] > f(i).
If found then Include j in A
else exit loop.

@ Overall complexity O(n - Ig(n))

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Lateness Scheduling

Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Lateness Scheduling

Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.

— F(i) = S(i) + t; (i.e. non-preemptive scheduling)

— I(i) and I(j) are non-overlapping if i # j

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Lateness Scheduling

Problem
Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.
— F(i) = S(i) + t; (i.e. non-preemptive scheduling)
— I(i) and I(j) are non-overlapping if i # j
and the assignment has minimum lateness.

Lateness /; = if (F(i) > d;) then F(i)—d; else 0.
Let L = max; ;.

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Lateness Scheduling

Problem
Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.
— F(i) = S(i) + t; (i.e. non-preemptive scheduling)
— I(i) and I(j) are non-overlapping if i # j
and the assignment has minimum lateness.

Lateness /; = if (F(i) > d;) then F(i)—d; else 0.
Let L = max; ;.

There exists an optimal assignment with no idle time.

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Lateness Scheduling

Problem
Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.
— F(i) = S(i) + t; (i.e. non-preemptive scheduling)
— I(i) and I(j) are non-overlapping if i # j
and the assignment has minimum lateness.

Lateness /; = if (F(i) > d;) then F(i)—d; else 0.
Let L = max; ;.

There exists an optimal assignment with no idle time.

Hence, we only need to order the jobs. A schedule
A= (A(1),...,A(n)) is a permutation of jobs (1,...,n).

P.K. Pandya Design and Analysis of Algorithms CS218M

Length 1 Deadline 2
Y e
Length 2 Deadline 4
T — |
Length 3 Deadline 6
Job 3 | |
Solution: ‘ [|
Job 1: Job 2: Job 3:
done at done at done at
time 1 time 1+2=3 time 1 +2+3=6

P.K. Pandya Design and Analysis of Algorithms CS218M

Inversions by Example

Index i 1(2(3]4|5]|6]|7
deadlined; (1|6 |7(2|4|8|3

@ (2,5) is an inversion.
@ (3,4) is an immediate inversion.

@ If we exchange d3, ds of immediate inversion (3,4) the total
number of inversions decreases by 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

Inversions and Exchange argument

Given a schedule A, a pair (/,/) is an inversion if
(i <j)A(di > dj).
e Claim: If (i,j) is an inversion, there exists a k s.t. i < k <
and (k, k + 1) is an inversion. Call it immediate inversion.

e claim: In any schedule A, if (k, k + 1) is an immediate
inversion and we swap A(k), A(k + 1) by A(k + 1), A(k) to
get A, the total number of inversions decreases by 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality

§= 1t

If A is a schedule with lateness L and (i,j) is an immediate
inversion, then A" obtained by exchanging jobs A(i), A(j) has
lateness L' with L' < L

Before swapping:
[| Job i Job j

After swapping:
\ | Job j Job i

(b)

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality (2)

Before swapping: (/ . [/ *
\ [Job i [Job j [| 1L d

(@

After swapping:

\ .
[| Job j Job i \/l .) \/Jé

(b)

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality (2)

—_—S
Beiorle swapping: F
\ [Job i [Job j [|

o 1 @)

After swapping:
[| Job j [Job i [

.
¥ \

(b)

e Finishing time F(r) for r # i, is unchanged. Hence I/ = |I,.

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality (2)

Before swapping:

\ [Job i [Job j [|

(@

After swapping:
[| Job j Job i

(b)

e Finishing time F(r) for r # i, is unchanged. Hence I/ = |I,.
o Finishing time F(j) decreases. Hence /] < I;.

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality (2)

Before swapping:

\ [Job i [Job j [|

(@

After swapping:
[| Job j Job i

d

i

(b)

(]

Finishing time F(r) for r # i,j is unchanged. Hence I/ = /.
Finishing time F(j) decreases. Hence I/ < /.

Finishing time of F(i) increases. Lateness /! inereases.
However, F'(i) = F(j).

e o

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality (2)

Before swapping:

\ [Job i [Job j [|

(@

After swapping:
[| Job j Job i

d

i

(b)

(]

Finishing time F(r) for r # i,j is unchanged. Hence I/ = /.
Finishing time F(j) decreases. Hence I/ < /.

Finishing time of F(/) increases. Lateness /] increases.
However, F'(i) = F(j).

e We show that // < /;.

e o

P.K. Pandya Design and Analysis of Algorithms CS218M

Exchange preserves optimality (2)

Before swapping:

\ [Job i [Job j [|
(.
4 d
—_—— (a)

After swapping:

[| Job j Job i
(.
4

®)

e Finishing time F(r) for r # i, is unchanged. Hence I/ = |I,.

Finishing time F(j) decreases. Hence I/ < /.
Finishing time of F(/) increases. Lateness /] increases.
However, F'(i) = F(j).
e We show that // < /;.
= F() — dj = (di —)+ (F(j) — di)

> (F() = d))

=(F(i) —d) =1

(]

~

Earliest Deadline First Schedule

P.K. Pandya Design and Analysis of Algorithms CS218M

Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

@ Let A be an arbitrary optimal schedule.

@ Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves

optimality.

@ In the end we obtain optimal inversion free schedule.

P.K. Pandya Design and Analysis of Algorithms CS218M

Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

@ Let A be an arbitrary optimal schedule.

@ Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves

optimality.

@ In the end we obtain optimal inversion free schedule.

Claim: All inversion-free schedules have same lateness

Proof: Homework!

P.K. Pandya Design and Analysis of Algorithms CS218M

Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

@ Let A be an arbitrary optimal schedule.

@ Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves
optimality.

@ In the end we obtain optimal inversion free schedule.

Claim: All inversion-free schedules have same lateness

Proof: Homework!

EDF Schedulig Algorithm

Given a set of jobs, schedule them in the order of deadlines with
earliest deadline first.
If two jobs have the same deadline, order them arbitrarily.

Claim: The resulting EDF schedule is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

Codes and Data Compression

e Finite alphabet S = {a;,...,a,}. Message x1x2...x, is a
finite sequence of symbols.

o Digital communication: Message encoded and communicated
as a sequence of bits. It is decoded back on receipt.

e We encode each symbol x; as bit sequence v(x;).

e Fixed length encoding: [lg(n)] bits are needed to encode a
symbol from alphabet S of size n.

e E.g. ASCII characters into 7-bit encoding. Unicode characters
into 16-bits.

P.K. Pandya Design and Analysis of Algorithms CS218M

Variable Length Code

P.K. Pandya Design and Analysis of Algorithms CS218M

Variable Length Code

Prefix Property

For any x,y € S, x # y we have
- pref(y(x),7(y)) A = pref(y(y), 7(x))

P.K. Pandya Design and Analysis of Algorithms CS218M

Variable Length Code

Prefix Property

For any x,y € S, x # y we have
- pref(y(x),7(y)) A = pref(y(y), 7(x))

Prefix property allows us to uniquely decode the encoded
bit-string.

P.K. Pandya Design and Analysis of Algorithms CS218M

Prefix Code

S={a,b, c,d, e}. The encoding y, specified by

i@ =11
yi(b) =01
y1(c) = 001
yi(d) = 10
y1(e) = 000

Average Bits Per Letter

Let probability of letter x in message be f.. Let v be a prefix code.
Then,

ABL(y) = Yxes fi-[v(x)

P.K. Pandya Design and Analysis of Algorithms CS218M

Prefix Code

S={a,b, c,d, e}. The encoding y, specified by

i@ =11
yi(b) =01
y1(c) = 001
yi(d) = 10
y1(e) = 000

Average Bits Per Letter

Let probability of letter x in message be f.. Let v be a prefix code.
Then,

ABL(y) = Yxes fi-[v(x)

f,=232, f,=25 f.=.20, f;=.18, f,=.05.

32-2+.25-2+4.20-3+.18-2+.05-3=2.25.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Prefix Code

yy(@) =11
ys(b) = 10
ys(c) =01
yy(d) = 001
ya(e) =000

The average number of bits per letter using y, is

3224 .25-2+.20-2+.18-3+ .05-3=2.23.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Prefix Code

yy(@) =11
ys(b) = 10
ys(c) =01
yy(d) = 001
ya(e) =000

The average number of bits per letter using y, is

3224 .25-2+.20-2+.18-3+ .05-3=2.23.

Optimal Prefix Code

For a given alphabet S and probability distribution 7, a prefix code
~ over S is optimal if for all prefix codes 7/ over S we have
ABL(v) < ABL(Y")

P.K. Pandya Design and Analysis of Algorithms CS218M

Labelled Binary Trees

@ LBT is a binary tree where leaves are labelled with letters
from S.

@ There is bijection between LBTs and prefix codes. They
represent the same thing.

o Notation: Given LBT T and a leaf node u let Ib(u) € S
denote the label of u.

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

o Let ABL(T) = X,es f«-depth(x)

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

o Let ABL(T) = X,es f«-depth(x)
@ A LBT is called full if every interior node has exactly two
children.

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

o Let ABL(T) = X,es f«-depth(x)
@ A LBT is called full if every interior node has exactly two
children.

@ Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

P.K. Pandya Design and Analysis of Algorithms CS218M

Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.

P.K. Pandya Design and Analysis of Algorithms CS218M

Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.

P.K. Pandya Design and Analysis of Algorithms CS218M

Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
e ABL(T)—-ABL(T)

(f, - depth(u) + f, - depth(v)) —

(. - depth(u) + f, - depth(v))
= (f, — f;) - (depth(u) — depth(v))
>0 (as both factors are negative)

P.K. Pandya Design and Analysis of Algorithms CS218M

Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
e ABL(T)—-ABL(T)
= (f, - depth(u) + f, - depth(v)) —
(f; - depth(u) + f, - depth(v))
= (f — fz) - (depth(u) — depth(v))
>0 (as both factors are negative)

@ Hence T is not optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
e ABL(T)—-ABL(T)
= (f, - depth(u) + f, - depth(v)) —
(f; - depth(u) + f, - depth(v))
= (f — fz) - (depth(u) — depth(v))
>0 (as both factors are negative)
@ Hence T is not optimal.

Hence, in optimal LBT, as depth of leaves decreases the
probability must increase or remain same.

P.K. Pandya Design and Analysis of Algorithms CS218M

Example: Optimal LBT

P.K. Pandya Design and Analysis of Algorithms CS218M

Property of Optimal LBT (2)

Greedy Choice

Let x,y € Ssit. Vz€ S.(f, < ik Af, <f,). Such x,y are called
least frequent pair. Then, there exists a LBT where x, y occur as
siblings at maximum depth.

P.K. Pandya Design and Analysis of Algorithms CS218M

Huffman Algorithm for Optimal LBT (Huffman Code)

Given S and probability distribution f, constructl LBT H in
bottom up fashion as follows.

© Let x,y be a least frequent pair. Make a subtree with parent
U(x,y) and two children labelled x and y.

@ Remove x,y from S and add new letter (x,y). Let
f(xry) = fX + f.—y

© Repeat (1) if more than 1 letter. Replace leaf labelled (x, y)
with subtree u(,).

Q Call the resulting LBT as H.
Claim: The LBT H constructed as above is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

P.K. Pandya Design and Analysis of Algorithms CS218M

P.K. Pandya Design and Analysis of Algorithms CS218M

P.K. Pandya Design and Analysis of Algorithms CS218M

