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The Greedy Paradigm

@ Build the solution by selecting elements (or making choices)
one by one.
@ A simple rule allows choice of element at each stage. Local
e . [ —
optlmall_’_cl._
@ Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

@ The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.
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KT cev-X

Problem

Given Set of requests 1,...,n with s(i), f(i) giving start and end
time (interval) of the request. To find maximal sized

A C{1,..., n} which is compatible.

A pair of intervals is compatible if they do not overlap. A is
compatible if every pair of distinct intervals in A is compatible.
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Interval Scheduling

Given Set of requests 1,...,n with s(i), f(i) giving start and end
time (interval) of the request. To find maximal sized <

A C{1,..., n} which is compatible.

A pair of intervals is compatible if they do not overlap. A is
compatible if every pair of distinct intervals in A is compatible.

Choose sequence of intervals i1, ..., i, using a greedy rule. After
each choice remove incompatible intervals with the last choice.
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Algorithm Template

Initially let R be the set of all requests, and let A be empty
While R is not yet empty

Choose a request i€ R that has the smallest finishing time

Add request i to A

Delete all requests from R that are not compatible with request i
EndWhile
Return the set A as the set of accepted requests

Let the sequence of intervals added to A be i, ..., i.

P.K. Pandya Design and Analysis of Algorithms CS218M



Some Examples
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Some Examples

\
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Some Greedy Rules

@ Earliest start time.
@ Shortest interval first

@ Interval which overlaps least number of intervals.
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Correct Greedy rule Choose and add to A interval / from R with
smallest finishing time.
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Correctness

Claim: A is Compatible
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Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.
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Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1 <r <k: f(ir) <f(pr)
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Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1 <r <k: f(ir) <f(pr)

o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < ().
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Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1< r<k: f(ir) <f(r)
o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < f().
e (Induction) By hyp, (i;—1) < f(jr—1).
Also, f(jr—1) < s(jr) (why?). Hence, f(ir—1) < s(j)-
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Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1< r<k: f(ir) <f(r)
o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < f().
e (Induction) By hyp, (i;—1) < f(jr—1).
Also, f(jr—1) < s(jr) (why?). Hence, f(ir—1) < s(j)-
@ Hence, while selecting iy, interval j, € R.
Hence, (i;) < f(jr).
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Correctness

Claim: A is Compatible

Claim: A=/, ..., ik is optimal.

Let O = j1,...,jm be optimal. Then, k < m.
Claim: V1< r<k: f(ir) <f(r)
o (Base step) r = 1. We choose i1 with shortest f(i). Hence,
f(in) < f().
e (Induction) By hyp, (i;—1) < f(jr—1).
Also, f(jr—1) < s(jr) (why?). Hence, f(ir—1) < s(j)-

@ Hence, while selecting iy, interval j, € R.
Hence, (i;) < f(jr).

If k < m then R(k + 1) # () and more intervals will be added to A.
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Implementation and Complexity

We do not explicitely maintain R.
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Implementation and Complexity

We do not explicitely maintain R.

@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
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Implementation and Complexity

We do not explicitely maintain R.

@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
e Construct S[1...n] s.t. S[i] = s(i) for all i. Time O(n).
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Implementation and Complexity

We do not explicitely maintain R.
@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
e Construct S[1...n] s.t. S[i] = s(i) for all i. Time O(n).
@ Initialize: / = 1. Include i in A.

@ loop
Find first j > i s.t. S[j] > f(i).
If found then Include j in A
else exit loop.
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Implementation and Complexity

We do not explicitely maintain R.

@ Sort given intervals by 7(i) to give interval list indexed
1,2,...,n. Time O(n-Ig(n)).
Construct S[1...n] s.t. S[i] = s(i) for all i. Time O(n).

Initialize: i = 1. Include j in A.

loop
Find first j > i s.t. S[j] > f(i).
If found then Include j in A
else exit loop.

@ Overall complexity O(n - Ig(n))
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Minimum Lateness Scheduling

Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Lateness Scheduling

Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.

— F(i) = S(i) + t; (i.e. non-preemptive scheduling)

— I(i) and I(j) are non-overlapping if i # j
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Minimum Lateness Scheduling

Problem
Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.
— F(i) = S(i) + t; (i.e. non-preemptive scheduling)
— I(i) and I(j) are non-overlapping if i # j
and the assignment has minimum lateness.

Lateness /; = if (F(i) > d;) then F(i)—d; else 0.
Let L = max; ;.
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Minimum Lateness Scheduling

Problem
Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.
— F(i) = S(i) + t; (i.e. non-preemptive scheduling)
— I(i) and I(j) are non-overlapping if i # j
and the assignment has minimum lateness.

Lateness /; = if (F(i) > d;) then F(i)—d; else 0.
Let L = max; ;.

There exists an optimal assignment with no idle time.
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Minimum Lateness Scheduling

Problem
Given jobs 1,...,n where job i has load t; and deadline d;, assign
interval /(i) = [S(i), F(i)] to job i s.t.
— F(i) = S(i) + t; (i.e. non-preemptive scheduling)
— I(i) and I(j) are non-overlapping if i # j
and the assignment has minimum lateness.

Lateness /; = if (F(i) > d;) then F(i)—d; else 0.
Let L = max; ;.

There exists an optimal assignment with no idle time.

Hence, we only need to order the jobs. A schedule
A= (A(1),...,A(n)) is a permutation of jobs (1,...,n).
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Length 1 Deadline 2
Y e
Length 2 Deadline 4
T — |
Length 3 Deadline 6
Job 3 | |
Solution: ‘ [ |
Job 1: Job 2: Job 3:
done at done at done at
time 1 time 1+2=3 time 1 +2+3=6
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Inversions by Example

Index i 1(2(3]4|5]|6]|7
deadlined; (1|6 |7(2|4|8|3

@ (2,5) is an inversion.
@ (3,4) is an immediate inversion.

@ If we exchange d3, ds of immediate inversion (3,4) the total
number of inversions decreases by 1.
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Inversions and Exchange argument

Given a schedule A, a pair (/,/) is an inversion if
(i <j)A(di > dj).
e Claim: If (i,j) is an inversion, there exists a k s.t. i < k <
and (k, k + 1) is an inversion. Call it immediate inversion.

e claim: In any schedule A, if (k, k + 1) is an immediate
inversion and we swap A(k), A(k + 1) by A(k + 1), A(k) to
get A, the total number of inversions decreases by 1.
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Exchange preserves optimality

§= 1t

If A is a schedule with lateness L and (i,j) is an immediate
inversion, then A" obtained by exchanging jobs A(i), A(j) has
lateness L' with L' < L

Before swapping:
[ | Job i Job j

After swapping:
\ | Job j Job i

(b)
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Exchange preserves optimality (2)

Before swapping: (/ . [/ *
\ [ Job i [ Job j [ | 1L d

(@

After swapping:

\ .
[ | Job j Job i \/l . ) \/Jé

(b)
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Exchange preserves optimality (2)

—_—S
Beiorle swapping: F
\ [ Job i [ Job j [ |

o 1 @)

After swapping:
[ | Job j [ Job i [

.
¥ \

(b)

e Finishing time F(r) for r # i, is unchanged. Hence I/ = |I,.
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Exchange preserves optimality (2)

Before swapping:

\ [ Job i [ Job j [ |

(@

After swapping:
[ | Job j Job i

(b)

e Finishing time F(r) for r # i, is unchanged. Hence I/ = |I,.
o Finishing time F(j) decreases. Hence /] < I;.
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Exchange preserves optimality (2)

Before swapping:

\ [ Job i [ Job j [ |

(@

After swapping:
[ | Job j Job i

d

i

(b)

(]

Finishing time F(r) for r # i,j is unchanged. Hence I/ = /.
Finishing time F(j) decreases. Hence I/ < /.

Finishing time of F(i) increases. Lateness /! inereases.
However, F'(i) = F(j).

e o
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Exchange preserves optimality (2)

Before swapping:

\ [ Job i [ Job j [ |

(@

After swapping:
[ | Job j Job i

d

i

(b)

(]

Finishing time F(r) for r # i,j is unchanged. Hence I/ = /.
Finishing time F(j) decreases. Hence I/ < /.

Finishing time of F(/) increases. Lateness /] increases.
However, F'(i) = F(j).

e We show that // < /;.

e o
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Exchange preserves optimality (2)

Before swapping:

\ [ Job i [ Job j [ |
(.
4 d
—_—— (a)

After swapping:

[ | Job j Job i
(.
4

®)

e Finishing time F(r) for r # i, is unchanged. Hence I/ = |I,.

Finishing time F(j) decreases. Hence I/ < /.
Finishing time of F(/) increases. Lateness /] increases.
However, F'(i) = F(j).
e We show that // < /;.
= F() — dj = (di — )+ (F(j) — di)

> (F() = d))

=(F(i) —d) =1

(]

~



Earliest Deadline First Schedule
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Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

@ Let A be an arbitrary optimal schedule.

@ Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves

optimality.

@ In the end we obtain optimal inversion free schedule.
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Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

@ Let A be an arbitrary optimal schedule.

@ Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves

optimality.

@ In the end we obtain optimal inversion free schedule.

Claim: All inversion-free schedules have same lateness

Proof: Homework!
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Earliest Deadline First Schedule

Claim: There exists an inversion-free optimal schedule

@ Let A be an arbitrary optimal schedule.

@ Repeatedly remove one inversion at a time by exchanging any
immediate inversion pair.
This does not increase lateness. Hence, exchange preserves
optimality.

@ In the end we obtain optimal inversion free schedule.

Claim: All inversion-free schedules have same lateness

Proof: Homework!

EDF Schedulig Algorithm

Given a set of jobs, schedule them in the order of deadlines with
earliest deadline first.
If two jobs have the same deadline, order them arbitrarily.

Claim: The resulting EDF schedule is optimal.
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Codes and Data Compression

e Finite alphabet S = {a;,...,a,}. Message x1x2...x, is a
finite sequence of symbols.

o Digital communication: Message encoded and communicated
as a sequence of bits. It is decoded back on receipt.

e We encode each symbol x; as bit sequence v(x;).

e Fixed length encoding: [lg(n)] bits are needed to encode a
symbol from alphabet S of size n.

e E.g. ASCII characters into 7-bit encoding. Unicode characters
into 16-bits.
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Variable Length Code
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Variable Length Code

Prefix Property

For any x,y € S, x # y we have
- pref(y(x),7(y)) A = pref(y(y), 7(x))
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Variable Length Code

Prefix Property

For any x,y € S, x # y we have
- pref(y(x),7(y)) A = pref(y(y), 7(x))

Prefix property allows us to uniquely decode the encoded
bit-string.
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Prefix Code

S={a,b, c,d, e}. The encoding y, specified by

i@ =11
yi(b) =01
y1(c) = 001
yi(d) = 10
y1(e) = 000

Average Bits Per Letter

Let probability of letter x in message be f.. Let v be a prefix code.
Then,

ABL(y) = Yxes fi-[v(x)
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Prefix Code

S={a,b, c,d, e}. The encoding y, specified by

i@ =11
yi(b) =01
y1(c) = 001
yi(d) = 10
y1(e) = 000

Average Bits Per Letter

Let probability of letter x in message be f.. Let v be a prefix code.
Then,

ABL(y) = Yxes fi-[v(x)

f,=232, f,=25 f.=.20, f;=.18, f,=.05.

32-2+.25-2+4.20-3+.18-2+.05-3=2.25.
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Optimal Prefix Code

yy(@) =11
ys(b) = 10
ys(c) =01
yy(d) = 001
ya(e) =000

The average number of bits per letter using y, is

3224 .25-2+.20-2+.18-3+ .05-3=2.23.
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Optimal Prefix Code

yy(@) =11
ys(b) = 10
ys(c) =01
yy(d) = 001
ya(e) =000

The average number of bits per letter using y, is

3224 .25-2+.20-2+.18-3+ .05-3=2.23.

Optimal Prefix Code

For a given alphabet S and probability distribution 7, a prefix code
~ over S is optimal if for all prefix codes 7/ over S we have
ABL(v) < ABL(Y")
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Labelled Binary Trees

@ LBT is a binary tree where leaves are labelled with letters
from S.

@ There is bijection between LBTs and prefix codes. They
represent the same thing.

o Notation: Given LBT T and a leaf node u let Ib(u) € S
denote the label of u.
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Properties of LBT

o Let ABL(T) = X,es f«-depth(x)
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Properties of LBT

o Let ABL(T) = X,es f«-depth(x)
@ A LBT is called full if every interior node has exactly two
children.
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Properties of LBT

o Let ABL(T) = X,es f«-depth(x)
@ A LBT is called full if every interior node has exactly two
children.

@ Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.

P.K. Pandya Design and Analysis of Algorithms CS218M



Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
e ABL(T)—-ABL(T)

(f, - depth(u) + f, - depth(v)) —

(. - depth(u) + f, - depth(v))
= (f, — f;) - (depth(u) — depth(v))
>0 (as both factors are negative)
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
e ABL(T)—-ABL(T)
= (f, - depth(u) + f, - depth(v)) —
(f; - depth(u) + f, - depth(v))
= (f — fz) - (depth(u) — depth(v))
>0 (as both factors are negative)

@ Hence T is not optimal.
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Property of Optimal LBT (1)

Let T be an LBT. Let u, v be its leaf nodes with /b(u) = y and
Ib(v) = z and depth(u) < depth(v). If T is optimal then f, > f,. J

Proof (Exchange argument) We prove contrapositive.
o Let f, < f,. Let T' be T with /b(u) and /b(v) exchanged.
e ABL(T)—-ABL(T)
= (f, - depth(u) + f, - depth(v)) —
(f; - depth(u) + f, - depth(v))
= (f — fz) - (depth(u) — depth(v))
>0 (as both factors are negative)
@ Hence T is not optimal.

Hence, in optimal LBT, as depth of leaves decreases the
probability must increase or remain same.
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Example: Optimal LBT
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Property of Optimal LBT (2)

Greedy Choice

Let x,y € Ssit. Vz€ S.(f, < ik Af, <f,). Such x,y are called
least frequent pair. Then, there exists a LBT where x, y occur as
siblings at maximum depth.
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Huffman Algorithm for Optimal LBT (Huffman Code)

Given S and probability distribution f, constructl LBT H in
bottom up fashion as follows.

© Let x,y be a least frequent pair. Make a subtree with parent
U(x,y) and two children labelled x and y.

@ Remove x,y from S and add new letter (x,y). Let
f(xry) = fX + f.—y

© Repeat (1) if more than 1 letter. Replace leaf labelled (x, y)
with subtree u(, ).

Q Call the resulting LBT as H.
Claim: The LBT H constructed as above is optimal.
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