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The Greedy Paradigm

Build the solution by selecting elements (or making choices)
one by one.

A simple rule allows choice of element at each stage. Local
optimality.

Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.
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Codes and Data Compression

Finite alphabet S = {a1, . . . , an}. Message x1x2 . . . xr is a
finite sequence of symbols.

Digital communication: Message encoded and communicated
as a sequence of bits. It is decoded back on receipt.

We encode each symbol xi as bit sequence γ(xi ).

Fixed length encoding: �lg(n)� bits are needed to encode a
symbol from alphabet S of size n.

E.g. ASCII characters into 7-bit encoding. Unicode characters
into 16-bits.
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Variable Length Code
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Variable Length Code

Prefix Property

For any x , y ∈ S , x �= y we have
¬ pref (γ(x), γ(y)) ∧ ¬ pref (γ(y), γ(x))
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Variable Length Code

Prefix Property

For any x , y ∈ S , x �= y we have
¬ pref (γ(x), γ(y)) ∧ ¬ pref (γ(y), γ(x))

Prefix property allows us to uniquely decode the encoded
bit-string.
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Prefix Code

Average Bits Per Letter

Let probability of letter x in message be fx . Let γ be a prefix code.
Then,

ABL(γ) = Σx∈S fx · |γ(x)|
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Prefix Code

Average Bits Per Letter

Let probability of letter x in message be fx . Let γ be a prefix code.
Then,

ABL(γ) = Σx∈S fx · |γ(x)|
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Optimal Prefix Code
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Optimal Prefix Code

Optimal Prefix Code

For a given alphabet S and probability distribution f , a prefix code
γ over S is optimal if for all prefix codes γ� over S we have

ABL(γ) ≤ ABL(γ�)
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Labelled Binary Trees

LBT is a binary tree where leaves are labelled with letters
from S .

There is bijection between LBTs and prefix codes. They
represent the same thing.

Notation: Given LBT T and a leaf node u let lb(u) ∈ S
denote the label of u.
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

P.K. Pandya Design and Analysis of Algorithms CS218M



Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

In LBT T , if labels of leaves at same depth are permuted to
get T � then ABL(T �) = ABL(T ).
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Properties of LBT

Let ABL(T ) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

In LBT T , if labels of leaves at same depth are permuted to
get T � then ABL(T �) = ABL(T ).

In LBT T if fu = fv and T � is obtained by exchanging labels
of u, v then ABL(T �) = ABL(T ).
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Key Property of Optimal LBT (2)

Greedy Choice

Let x , y ∈ S s.t. ∀z ∈ S , z �= x , y we have (fx ≤ fz ∧ fy ≤ fz).
Such x , y are called least frequent pair. Then, there exists a LBT
where x , y occur as siblings at maximum depth.

Let a, b be sibling leaves occurring at maximum depth in T .

Hence, fx ≤ fa and depth(x) ≤ depth(a).

First exchange a and x to get T �. Next, exchange y and b.
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Proof (exchange argument)

Let fx ≤ fa. Then,

ABL(T )− ABL(T �)
= (fx · depth(x) + fa · depth(a))− (fx · depth(a) + fa · depth(x))
= (fx − fa) · (depth(x)− depth(a))
≥ 0 (as both factors negative).
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Proof (exchange argument)

Let fx ≤ fa. Then,

ABL(T )− ABL(T �)
= (fx · depth(x) + fa · depth(a))− (fx · depth(a) + fa · depth(x))
= (fx − fa) · (depth(x)− depth(a))
≥ 0 (as both factors negative).

If T is optimal, then so is T ��.

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof (exchange argument)

Let fx ≤ fa. Then,

ABL(T )− ABL(T �)
= (fx · depth(x) + fa · depth(a))− (fx · depth(a) + fa · depth(x))
= (fx − fa) · (depth(x)− depth(a))
≥ 0 (as both factors negative).

If T is optimal, then so is T ��.

In optimal LBT, as depth of leaves decreases the probability
must increase or remain same.
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Example: Optimal LBT
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Huffman Algorithm

By repeated greedy choice of lowest-frequency pairs.
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Huffman Algorithm: Example
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Huffman Algorithm: Example

Huffman Code
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Optimality of Huffman Code

Lemma

Let LBT T of S have leaves labelled x , y as siblings. Let T � be be
LBT obtained by replacing parent of x , y by leaf node labelled z.
Also let fz = fx + fy . Then,

ABL(T ) = ABL(T �) + fx + fy
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Optimality of Huffman Code

Lemma

Let LBT T of S have leaves labelled x , y as siblings. Let T � be be
LBT obtained by replacing parent of x , y by leaf node labelled z.
Also let fz = fx + fy . Then,

ABL(T ) = ABL(T �) + fx + fy

Theorem

Huffman LBT H for alphabet S of size n is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimality of Huffman Code

Lemma

Let LBT T of S have leaves labelled x , y as siblings. Let T � be be
LBT obtained by replacing parent of x , y by leaf node labelled z.
Also let fz = fx + fy . Then,

ABL(T ) = ABL(T �) + fx + fy

Theorem

Huffman LBT H for alphabet S of size n is optimal.

Proof by Induction on n.
Base case n = 2 is trivially true.
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Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.
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Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T ) < ABL(H)
where T is optimal.
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Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T ) < ABL(H)
where T is optimal.

Wlog, assume that least-frequent x , y occur as siblings in T
and H. (why?)
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Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T ) < ABL(H)
where T is optimal.

Wlog, assume that least-frequent x , y occur as siblings in T
and H. (why?)

Consider T � and H � obtained by replacing parent of x , y by z .
Then,

ABL(T �) = ABL(T )− (fx + fy ) <
ABL(H)− (fx + fy ) = ABL(H �).

This contradicts induction hypothesis.
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Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T ) < ABL(H)
where T is optimal.

Wlog, assume that least-frequent x , y occur as siblings in T
and H. (why?)

Consider T � and H � obtained by replacing parent of x , y by z .
Then,

ABL(T �) = ABL(T )− (fx + fy ) <
ABL(H)− (fx + fy ) = ABL(H �).

This contradicts induction hypothesis.

Hence, H is optimal.
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Complexity Huffman Algorithm

Letters of S are stored in MIN-priority queue by their frequencies.
Let |S | = n.

O(n) to initialize the priority queue (as a MIN-heap).
Loop is executed O(n) times. Each iteration extracts 2
minimum-priority elements using O(lg(n)) time. Hence
O(n · lg(n)).
Total time O(n · lg(n)). Can be improved to O(n · lg(lg(n)))
using b data structures!

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

Prim

Extend current set of edges A having vertices UA with a minimum
weight edge going out of UA.
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Generic MST Algorithm

Grow A one edge at a time.

Invariant: Current set of edges A is a subset of some MST.

An edge which can be added to A maintaining the invariant is
called a safe edge.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.

An edge (u, v) is a light edge if it is of minimum weight
amongst all edges crossing the cut.
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Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.
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Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.
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Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

.
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}.
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}.
wt(T �) = wt(T )− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T ).
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}.
wt(T �) = wt(T )− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T ).

Hence, T � is MST containing (u, v).
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Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.
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Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T1 and T2 (and merges these).
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Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T1 and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.
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Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T1 and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.

Adding it using UNION gives A as set of trees represented as
disjoint sets.
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Kruskal Algorithm: Example
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)

Implemeted using union by rank and path compression (CLRS
21.3, 21.4). For m operations over n element set, O(m · α(n))
where α(n) is very slowly growing (almost constant!).
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Kruskal Algorithm for MST
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Kruskal Algorithm for MST

Running Time

E · lg(E ) for sorting edges. Also, O(V ) of MAKE-SET and O(E )
of FIND-SET+UNION operations. Hence,
E · lg(E ) + (E + V )α(V ). Simplifies to O(E · lg(E )).
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Kruskal Algorithm: Example
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) T and v . If no such edge
key = ∞.
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) T and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v as EXTRACT MIN(Q).

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) T and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v as EXTRACT MIN(Q).

After adding v , update key of all vertices adjecent to v which
are in Q.
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Prim Algorithm
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Prim Algorithm
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Prim Algorithm
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