
Design and Analysis of Algorithms
CS218M

Greedy Algorithms (2)

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

The Greedy Paradigm

Build the solution by selecting elements (or making choices)
one by one.

A simple rule allows choice of element at each stage. Local
optimality.

Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.

P.K. Pandya Design and Analysis of Algorithms CS218M

Codes and Data Compression

Finite alphabet S = {a1, . . . , an}. Message x1x2 . . . xr is a
finite sequence of symbols.

Digital communication: Message encoded and communicated
as a sequence of bits. It is decoded back on receipt.

We encode each symbol xi as bit sequence γ(xi).

Fixed length encoding: �lg(n)� bits are needed to encode a
symbol from alphabet S of size n.

E.g. ASCII characters into 7-bit encoding. Unicode characters
into 16-bits.

P.K. Pandya Design and Analysis of Algorithms CS218M

Variable Length Code

P.K. Pandya Design and Analysis of Algorithms CS218M

Variable Length Code

Prefix Property

For any x , y ∈ S , x �= y we have
¬ pref (γ(x), γ(y)) ∧ ¬ pref (γ(y), γ(x))

P.K. Pandya Design and Analysis of Algorithms CS218M

Variable Length Code

Prefix Property

For any x , y ∈ S , x �= y we have
¬ pref (γ(x), γ(y)) ∧ ¬ pref (γ(y), γ(x))

Prefix property allows us to uniquely decode the encoded
bit-string.

P.K. Pandya Design and Analysis of Algorithms CS218M

Prefix Code

Average Bits Per Letter

Let probability of letter x in message be fx . Let γ be a prefix code.
Then,

ABL(γ) = Σx∈S fx · |γ(x)|

P.K. Pandya Design and Analysis of Algorithms CS218M

Prefix Code

Average Bits Per Letter

Let probability of letter x in message be fx . Let γ be a prefix code.
Then,

ABL(γ) = Σx∈S fx · |γ(x)|

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Prefix Code

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Prefix Code

Optimal Prefix Code

For a given alphabet S and probability distribution f , a prefix code
γ over S is optimal if for all prefix codes γ� over S we have

ABL(γ) ≤ ABL(γ�)

P.K. Pandya Design and Analysis of Algorithms CS218M

Labelled Binary Trees

LBT is a binary tree where leaves are labelled with letters
from S .

There is bijection between LBTs and prefix codes. They
represent the same thing.

Notation: Given LBT T and a leaf node u let lb(u) ∈ S
denote the label of u.

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

Let ABL(T) = Σx∈S fx · depth(x)

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

Let ABL(T) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

Let ABL(T) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

Let ABL(T) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

In LBT T , if labels of leaves at same depth are permuted to
get T � then ABL(T �) = ABL(T).

P.K. Pandya Design and Analysis of Algorithms CS218M

Properties of LBT

Let ABL(T) = Σx∈S fx · depth(x)
A LBT is called full if every interior node has exactly two
children.

Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

In LBT T , if labels of leaves at same depth are permuted to
get T � then ABL(T �) = ABL(T).

In LBT T if fu = fv and T � is obtained by exchanging labels
of u, v then ABL(T �) = ABL(T).

P.K. Pandya Design and Analysis of Algorithms CS218M

Key Property of Optimal LBT (2)

Greedy Choice

Let x , y ∈ S s.t. ∀z ∈ S , z �= x , y we have (fx ≤ fz ∧ fy ≤ fz).
Such x , y are called least frequent pair. Then, there exists a LBT
where x , y occur as siblings at maximum depth.

Let a, b be sibling leaves occurring at maximum depth in T .

Hence, fx ≤ fa and depth(x) ≤ depth(a).

First exchange a and x to get T �. Next, exchange y and b.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof (exchange argument)

Let fx ≤ fa. Then,

ABL(T)− ABL(T �)
= (fx · depth(x) + fa · depth(a))− (fx · depth(a) + fa · depth(x))
= (fx − fa) · (depth(x)− depth(a))
≥ 0 (as both factors negative).

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof (exchange argument)

Let fx ≤ fa. Then,

ABL(T)− ABL(T �)
= (fx · depth(x) + fa · depth(a))− (fx · depth(a) + fa · depth(x))
= (fx − fa) · (depth(x)− depth(a))
≥ 0 (as both factors negative).

If T is optimal, then so is T ��.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof (exchange argument)

Let fx ≤ fa. Then,

ABL(T)− ABL(T �)
= (fx · depth(x) + fa · depth(a))− (fx · depth(a) + fa · depth(x))
= (fx − fa) · (depth(x)− depth(a))
≥ 0 (as both factors negative).

If T is optimal, then so is T ��.

In optimal LBT, as depth of leaves decreases the probability
must increase or remain same.

P.K. Pandya Design and Analysis of Algorithms CS218M

Example: Optimal LBT

P.K. Pandya Design and Analysis of Algorithms CS218M

Huffman Algorithm

By repeated greedy choice of lowest-frequency pairs.

P.K. Pandya Design and Analysis of Algorithms CS218M

Huffman Algorithm: Example

P.K. Pandya Design and Analysis of Algorithms CS218M

Huffman Algorithm: Example

Huffman Code

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimality of Huffman Code

Lemma

Let LBT T of S have leaves labelled x , y as siblings. Let T � be be
LBT obtained by replacing parent of x , y by leaf node labelled z.
Also let fz = fx + fy . Then,

ABL(T) = ABL(T �) + fx + fy

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimality of Huffman Code

Lemma

Let LBT T of S have leaves labelled x , y as siblings. Let T � be be
LBT obtained by replacing parent of x , y by leaf node labelled z.
Also let fz = fx + fy . Then,

ABL(T) = ABL(T �) + fx + fy

Theorem

Huffman LBT H for alphabet S of size n is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimality of Huffman Code

Lemma

Let LBT T of S have leaves labelled x , y as siblings. Let T � be be
LBT obtained by replacing parent of x , y by leaf node labelled z.
Also let fz = fx + fy . Then,

ABL(T) = ABL(T �) + fx + fy

Theorem

Huffman LBT H for alphabet S of size n is optimal.

Proof by Induction on n.
Base case n = 2 is trivially true.

P.K. Pandya Design and Analysis of Algorithms CS218M

Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

Wlog, assume that least-frequent x , y occur as siblings in T
and H. (why?)

P.K. Pandya Design and Analysis of Algorithms CS218M

Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

Wlog, assume that least-frequent x , y occur as siblings in T
and H. (why?)

Consider T � and H � obtained by replacing parent of x , y by z .
Then,

ABL(T �) = ABL(T)− (fx + fy) <
ABL(H)− (fx + fy) = ABL(H �).

This contradicts induction hypothesis.

P.K. Pandya Design and Analysis of Algorithms CS218M

Induction Step

By Ind. Hyp. suppose that optimality holds for alphabets of
size n − 1.

For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

Wlog, assume that least-frequent x , y occur as siblings in T
and H. (why?)

Consider T � and H � obtained by replacing parent of x , y by z .
Then,

ABL(T �) = ABL(T)− (fx + fy) <
ABL(H)− (fx + fy) = ABL(H �).

This contradicts induction hypothesis.

Hence, H is optimal.

P.K. Pandya Design and Analysis of Algorithms CS218M

Complexity Huffman Algorithm

Letters of S are stored in MIN-priority queue by their frequencies.
Let |S | = n.

O(n) to initialize the priority queue (as a MIN-heap).
Loop is executed O(n) times. Each iteration extracts 2
minimum-priority elements using O(lg(n)) time. Hence
O(n · lg(n)).
Total time O(n · lg(n)). Can be improved to O(n · lg(lg(n)))
using b data structures!

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).

P.K. Pandya Design and Analysis of Algorithms CS218M

Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).

P.K. Pandya Design and Analysis of Algorithms CS218M

Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

P.K. Pandya Design and Analysis of Algorithms CS218M

Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

P.K. Pandya Design and Analysis of Algorithms CS218M

Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

Prim

Extend current set of edges A having vertices UA with a minimum
weight edge going out of UA.

P.K. Pandya Design and Analysis of Algorithms CS218M

Generic MST Algorithm

Grow A one edge at a time.

Invariant: Current set of edges A is a subset of some MST.

An edge which can be added to A maintaining the invariant is
called a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

P.K. Pandya Design and Analysis of Algorithms CS218M

Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

P.K. Pandya Design and Analysis of Algorithms CS218M

Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.

An edge (u, v) is a light edge if it is of minimum weight
amongst all edges crossing the cut.

P.K. Pandya Design and Analysis of Algorithms CS218M

Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}.
wt(T �) = wt(T)− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T).

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}.
wt(T �) = wt(T)− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T).

Hence, T � is MST containing (u, v).

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T1 and T2 (and merges these).

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T1 and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm and Correctness

At each iteration.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T1 and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.

Adding it using UNION gives A as set of trees represented as
disjoint sets.

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm: Example

P.K. Pandya Design and Analysis of Algorithms CS218M

Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

P.K. Pandya Design and Analysis of Algorithms CS218M

Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

P.K. Pandya Design and Analysis of Algorithms CS218M

Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

P.K. Pandya Design and Analysis of Algorithms CS218M

Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)

P.K. Pandya Design and Analysis of Algorithms CS218M

Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)

Implemeted using union by rank and path compression (CLRS
21.3, 21.4). For m operations over n element set, O(m · α(n))
where α(n) is very slowly growing (almost constant!).

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm for MST

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm for MST

Running Time

E · lg(E) for sorting edges. Also, O(V) of MAKE-SET and O(E)
of FIND-SET+UNION operations. Hence,
E · lg(E) + (E + V)α(V). Simplifies to O(E · lg(E)).

P.K. Pandya Design and Analysis of Algorithms CS218M

Kruskal Algorithm: Example

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) T and v . If no such edge
key = ∞.

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) T and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v as EXTRACT MIN(Q).

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) T and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v as EXTRACT MIN(Q).

After adding v , update key of all vertices adjecent to v which
are in Q.

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M

Prim Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M

