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The Greedy Paradigm

@ Build the solution by selecting elements (or making choices)
one by one.

@ A simple rule allows choice of element at each stage. Local
optimality.

@ Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

@ The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.
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Codes and Data Compression

e Finite alphabet S = {a;,...,a,}. Message x1x2...x, is a
finite sequence of symbols.

o Digital communication: Message encoded and communicated
as a sequence of bits. It is decoded back on receipt.

e We encode each symbol x; as bit sequence v(x;).

e Fixed length encoding: [lg(n)] bits are needed to encode a
symbol from alphabet S of size n.

e E.g. ASCII characters into 7-bit encoding. Unicode characters
into 16-bits.
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Variable Length Code
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Variable Length Code

Prefix Property

For any x,y € S, x # y we have
- pref(y(x),7(y)) A = pref(y(y), 7(x))
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Variable Length Code

Prefix Property

For any x,y € S, x # y we have
- pref(y(x),7(y)) A = pref(y(y), 7(x))

Prefix property allows us to uniquely decode the encoded
bit-string.
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Prefix Code

S={a,b, c,d, e}. The encoding y, specified by C\ (SN

i@ =11 [\QO\H
n(b) =01
y1(0) = 001
yi(d) = 10
yi(e) = 000

Average Bits Per Letter

Let probability of letter x in message be f.. Let v be a prefix code.
Then,

ABL(y) = Yxes fi-[v(x)
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Prefix Code

S={a,b, c,d, e}. The encoding y, specified by

na=1 &
yb) =01 L
y1(c) = 001

yi(d) = 10

y1(e) = 000

Average Bits Per Letter

Let probability of letter x in message be f.. Let v be a prefix code.
Then,

ABL(y) = Yxes fi-[v(x)

fu=32, fy=25 f.=20, f;=.18, f.=.05 /[~

-

32-2+.25-2+4.20-3+.18-2+.05-3=2.25.

—_——
———
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Optimal Prefix Code

yy(@) =11
ys(b) = 10
ys(c) =01
yy(d) = 001
ya(e) =000

The average number of bits per letter using y, is

3224 .25-2+.20-2+.18-3+ .05-3=2.23.
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Optimal Prefix Code

yy(@) =11
ys(b) = 10
ys(c) =01
yy(d) = 001
ya(e) =000

The average number of bits per letter using y, is

3224 .25-2+.20-2+.18-3+ .05-3=2.23.

Optimal Prefix Code

For a given alphabet S and probability distribution 7, a prefix code
~ over S is optimal if for all prefix codes 7/ over S we have
ABL(v) < ABL(Y")
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Labelled Binary Trees

o LBT isa binarytree where leaves are labelled with letters
from S.

@ There is bijection between LBTs and prefix codes. They &
represent the same thing.

o Notation: Given LBT T and a leaf node u let Ib(u) € S
denote the label of u. T
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Properties of LBT

o Let ABL(T) = X es fx-depth(x)
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Properties of LBT

o Let ABL(T) = ZX,es f« - depth(x)
@ A LBT is called full if every interior node has exactly two
children.
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Properties of LBT

o Let ABL(T) = ZX,es f« - depth(x)
@ A LBT is called full if every interior node has exactly two
children.

/
@ Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full. -
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Properties of LBT

o Let ABL(T) = ZX,es f« - depth(x)
@ A LBT is called full if every interior node has exactly two
children.

@ Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

e In LBT T, if labels of leaves at same depth are permuted to
get T’ then ABL(T'") = ABL(T).
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Properties of LBT

o Let ABL(T) = ZX,es f« - depth(x)
@ A LBT is called full if every interior node has exactly two
children.

@ Every LBT can be tranformed to a more efficient full LBT.
Hence, every optimal LBT is full.

e In LBT T, if labels of leaves at same depth are permuted to
get T’ then ABL(T'") = ABL(T).

@ InLBT T if f, =1, and T' is obtained by exchanging labels
of u,v then ABL(T') = ABL(T).
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Key Property of Optimal LBT (2)

Greedy Choice

Let x,y € Ss.it. Vz€ S,z # x,y we have (f < f, AN f, < f,).
Such x, y are called least frequent pair. Then, there exists & LBT
where x, y occur as siblings at maximum depth. .

@ Let a, b be sibling leaves occurring at maximum depth in T.
@ Hence, . < f; and depth(x) < depth(a).
@ First exchange a and x to get T’. Next, exchange y and b.
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Proof (exchange argument)

Let . < f;. Then,
ABL(T) — ABL(T")

= (f - depth(x) + f, - depth(a)) — (£ - depth(a) + f, - depth(x)) &
(fx — f3) - (depth(x) — depth(a))

0 (as both factors negative).

AV
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Proof (exchange argument)

Let . < f;. Then,
ABL(T) — ABL(T")

= (fx - depth(x) + f, - depth(a)) — (f - depth(a) + f, - depth(x))
(fx — f3) - (depth(x) — depth(a))

0 (as both factors negative).

AV

o If T is optimal, then so is T”.
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Proof (exchange argument)

Let . < f;. Then,
ABL(T) — ABL(T")

= (fx - depth(x) + f, - depth(a)) — (f - depth(a) + f, - depth(x))
(fx — f3) - (depth(x) — depth(a))

0 (as both factors negative).

AV

o If T is optimal, then so is T”.

@ In optimal LBT, as depth of leaves decreases the probability
must increase or remain same.
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Example: Optimal LBT
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Huffman Algorithm
C = ﬂb \aH"&S

By repeated greedy choice of lowest-frequency pairs.

HUFFMAN(C)
1 n=|C|
2 0=¢C

3 fori =1ton—1
allocate a new node z
deft = x = EXTRACT-MIN(Q) <
.right = y = EXTRACT-MIN(Q) {—
z.freq = x.freq + y.freq
INSERT(Q, 2)
return EXTRACT-MIN (Q) // return the root of the tree

MM

4
5
6
7
3
9
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Huffman Algorithm: Example

\ﬁﬁs_{—ye*9| ‘C_LZLL_IBI (d:16] [a:45]
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Huffman Algorithm: Example

A

| £:5| [e9] [c:12] [b:13] [d:16] [a:45]

Huffman Code

Design and Analysis of Algorithms CS218M



Optimality of Huffman Code

Let LBT T of S have leaves labelled x,y as siblings. Let T' be be
LBT obtained by replacing parent of x,y by leaf node labelled z.
Also let f, = f, + f,. Then,

ABL(T) = ABL(T') + f + f,
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Optimality of Huffman Code

Let LBT T of S have leaves labelled x,y as siblings. Let T' be be
LBT obtained by replacing parent of x,y by leaf node labelled z.
Also let f, = f, + f,. Then,

ABL(T) = ABL(T') + f + f,

Huffman LBT H for alphabet S of size n is optimal. A
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Optimality of Huffman Code

Let LBT T of S have leaves labelled x,y as siblings. Let T' be be
LBT obtained by replacing parent of x,y by leaf node labelled z.
Also let f, = f, + f,. Then,

ABL(T) = ABL(T') + f + f,

Huffman LBT H for alphabet S of size n is optimal.

Proof by Induction on n.
Base case n = 2 is trivially true.
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Induction Step

@ By Ind. Hyp. suppose that optimality holds for alphabets of
size n — 1.
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Induction Step

@ By Ind. Hyp. suppose that optimality holds for alphabets of
size n — 1.

e For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.
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Induction Step

@ By Ind. Hyp. suppose that optimality holds for alphabets of
size n — 1.

e For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

@ Wilog, assume that least-frequent x, y occur as siblings in T
and H. (why?)
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Induction Step

@ By Ind. Hyp. suppose that optimality holds for alphabets of
size n — 1.

e For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

@ Wilog, assume that least-frequent x, y occur as siblings in T
and H. (why?)
@ Consider T’ and H’ obtained by replacing parent of x, y by z.
Then,
ABL(T') = ABL(T) — (i +f,
ABL(H) - (f.+f,) = A
This contradicts induction hypothesis.

) <
BL(H').
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Induction Step

@ By Ind. Hyp. suppose that optimality holds for alphabets of
size n — 1.

o For alphabet S of size n assume that ABL(T) < ABL(H)
where T is optimal.

@ Wilog, assume that least-frequent x, y occur as siblings in T
and H. (why?)

e Consider T’ and H’ obtained by replacing parent of x, y by z.
Then,

ABL(T') = ABL(T) — (i +1,) <
ABL(H) — (f. + f,) = ABL(H').

This contradicts induction hypothesis.

Hence, H is optimal.
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Complexity Huffman Algorithm

Letters of S are stored in MIN-priority queue by their frequencies.
Let |S| = n.
HUFFMAN(C)
n=|C|
0=cC
fori = 1ton—1
allocate a new node z
Jdeft = x = EXTRACT-MIN(Q)
.right = y = EXTRACT-MIN(Q)
z.freq = x.freq + y.freq
INSERT(Q, z
return EXTRACT-MIN(Q)  // return the root of the tree

MM

1
2
3
4
5
6
7
8
9

e O(n) to initialize the priority queue (as a MIN-heap).
@ Loop is executed O(n) times. Each iteration extracts 2
minimum-priority elements using O(/g(n)) time. Hence

O(n - /g(n))
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.

@ Ais a tree spanning V.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.

@ Ais a tree spanning V.

o Let wt(A) = X.ca w(e). Then forall BC E, if Bis a
spanning tree then wt(B) > wt(A).
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.

@ Ais a tree spanning V.

o Let wt(A) = X.ca w(e). Then forall BC E, if Bis a
spanning tree then wt(B) > wt(A).
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Add lowest weight edge which does not form a cycle to current A.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Add lowest weight edge which does not form a cycle to current A.

Extend current set of edges A having vertices Us with a minimum
weight edge going out of Ua.
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Generic MST Algorithm

@ Grow A one edge at a time.
@ Invariant: Current set of edges A is a subset of some MST.

@ An edge which can be added to A maintaining the invariant is
called a safe edge.

GENERIC-MST(G, w)

1 A=90

2 while A does not form a spanning tree
3 find an edge (u, v) that is safe for A
4 A= AU{(u,v)}

5 return A
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define

e Pair (S,V —S)is a cut.
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define

e Pair (S,V —S)is a cut.

e Edge (u,v) crosses the cut (S,V —S)ifue Sandv ¢S or
vice verse.
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define

e Pair (S,V —S)is a cut.
e Edge (u,v) crosses the cut (S,V —S)ifue Sandv ¢S or
vice verse.

e Cut (S,V — S) respects A if no edge of A is a crossing edge.
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define
e Pair (S,V —S)is a cut.
e Edge (u,v) crosses the cut (S,V —S)ifue Sandv ¢S or
vice verse.
e Cut (S,V — S) respects A if no edge of A is a crossing edge.
@ An edge (u,v) is a light edge if it is of minimum weight
amongst all edges crossing the cut.
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Main Property

Let A subset of some MST. Let cut (S,V — S) respect A and let
(u,v) be a light edge. Then, (u,v) is a safe edge.
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Main Property

Let A subset of some MST. Let cut (S,V — S) respect A and let
(u,v) be a light edge. Then, (u,v) is a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Main Property

Let A subset of some MST. Let cut (S,V — S) respect A and let
(u,v) be a light edge. Then, (u,v) is a safe edge.
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

@ Let (x,y) € T be crossing edge. (Must exist).
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

@ Let (x,y) € T be crossing edge. (Must exist).
@ Hence w(u,v) < w(x,y). (why?)
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

o Let (x,

@ Hence w

€ T be crossing edge. (Must exist).
v) < w(x,y). (why?)

y)
(u,
olet 7' = T—{(x,y)} U {(u,v)}.
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

Let (x,y) € T be crossing edge. (Must exist).
Hence w(u,v) < w(x,y). (why?)

Let 7" = T —{(x,y)} U {(u.v)}.
wt(T") = wt(T) — w(x,y) + w(u,v).
Hence, wt(T') < wt(T).
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

Let (x,y) € T be crossing edge. (Must exist).
Hence w(u,v) < w(x,y). (why?)

Let 7/ = T—{(x,y)} U {(u,v)}.
wt(T") = wt(T) — w(x,y) + w(u,v).
Hence, wt(T') < wt(T).

@ Hence, T’ is MST containing (u, v).
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Kruskal Algorithm and Correctness

At each iteration.

@ A gives rise to a set of disjoint trees.
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Kruskal Algorithm and Correctness

At each iteration.
@ A gives rise to a set of disjoint trees.

e Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T; and T, (and merges these).
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Kruskal Algorithm and Correctness

At each iteration.
@ A gives rise to a set of disjoint trees.

e Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T; and T, (and merges these).

o Choose cut respecting A as (T1,S — T1). Clearly, (u,v) is
safe edge. Theorem applies.
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Kruskal Algorithm and Correctness

At each iteration.
@ A gives rise to a set of disjoint trees.

o Kruskal iteration extends A by minimum weight edge (u, v)
connecting two trees T; and T, (and merges these).

o Choose cut respecting A as (T1,S — T1). Clearly, (u,v) is
safe edge. Theorem applies.

@ Adding it using UNION gives A as set of trees represented as
disjoint sets.
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Kruskal Algorithm: Example
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u)
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u)
e FINDSET(u)
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u)
e FINDSET(u)
e UNION(u,v)
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u
e FINDSET(u)
e UNION(u,v)
@ Implemeted using union by rank and path compression (CLRS

21.3, 21.4). For m operations over n element set, O(m - a(n))
where a(n) is very slowly growing (almost constant!).
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Kruskal Algorithm for MST

MST-KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FIND-SET (1) # FIND-SET(v)
A= AU{(u,v)}
UNION(u, v)
return A

O 00N N B~ W~
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Kruskal Algorithm for MST

MST-KRUSKAL(G, w)

1 A=90

2 for each vertex v € G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight
6 if FIND-SET (1) # FIND-SET(v)

7 A= AU{(u,v)}

8 UNION(u, v)

9 return A

Running Time

E - Ig(E) for sorting edges. Also, O(V) of MAKE-SET and O(E)
of FIND-SET+UNION operations. Hence,
E-lg(E) + (E+ V)a(V). Simplifies to O(E - Ig(E)).
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Kruskal Algorithm: Example
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.

@ For each vertex v € Q, priority v.key is weight of minimum
weight edge between (any vertex in) T and v. If no such edge
key = oo.
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.

@ For each vertex v € Q, priority v.key is weight of minimum
weight edge between (any vertex in) T and v. If no such edge
key = oo.

@ Maintain @ as a priority queue using the heap data structure.
Choose v as EXTRACT_MIN(Q).
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.

@ For each vertex v € Q, priority v.key is weight of minimum
weight edge between (any vertex in) T and v. If no such edge
key = oo.

@ Maintain @ as a priority queue using the heap data structure.
Choose v as EXTRACT_MIN(Q).

o After adding v, update key of all vertices adjecent to v which
are in Q.
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Prim Algorithm
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Prim Algorithm

MST-PRIM(G, w, 1)
1 foreachu € G.V

2 u.key = oo

3 u.mw = NIL

4 rkey =0

5 0=GV

6 while O # 0

7 u = EXTRACT-MIN(Q)

8 for each v € G.Adj[u]

9 if ve Qand w(u,v) < v.key
0 VT = U

1 v.key = w(u,v)
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Prim Algorithm
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