Design and Analysis of Algorithms CS218M Greedy Algorithms (2)

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

→ ∃ → < ∃</p>

The Greedy Paradigm

- Build the solution by selecting elements (or making choices) one by one.
- A simple rule allows choice of element at each stage. Local optimality.
- Greedy choice property: The current selection cannot be removed (no backtracking/exploring alternative choices).
- The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum Spanning Tree.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Finite alphabet $S = \{a_1, \ldots, a_n\}$. Message $x_1 x_2 \ldots x_r$ is a finite sequence of symbols.
- Digital communication: Message encoded and communicated as a sequence of bits. It is decoded back on receipt.
- We encode each symbol x_i as bit sequence $\gamma(x_i)$.
- Fixed length encoding: $\lceil lg(n) \rceil$ bits are needed to encode a symbol from alphabet S of size n.
- E.g. ASCII characters into 7-bit encoding. Unicode characters into 16-bits.

何 ト イヨ ト イヨ ト

Variable Length Code

S={9,5, c} y= 9->0 5-21 Frequery of a denoted for. $F_{a}=0.8$ $F_{L}=0.1$ $F_{a}=0.1$ + 12×0.1×1+ 12×0.8×1 12× 6.1×2 9.6 ab

くロ と く 同 と く ヨ と 一

3

Prefix Property

For any $x, y \in S$, $x \neq y$ we have $\neg pref(\gamma(x), \gamma(y)) \land \neg pref(\gamma(y), \gamma(x))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Prefix Property

For any $x, y \in S$, $x \neq y$ we have $\neg pref(\gamma(x), \gamma(y)) \land \neg pref(\gamma(y), \gamma(x))$

Prefix property allows us to uniquely decode the encoded bit-string.

• • = • • = •

Prefix Code

 $S = \{a, b, c, d, e\}$. The encoding γ_1 specified by

 $\gamma_1(a) = 11$ $\gamma_1(b) = 01$ $\gamma_1(c) = 001$ $\gamma_1(d) = 10$ $\gamma_1(e) = 000$ 902 1100111

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Average Bits Per Letter

Let probability of letter x in message be ${\it f}_{\rm x}.$ Let γ be a prefix code. Then,

 $ABL(\gamma) = \sum_{x \in S} f_x \cdot |\gamma(x)|$

Prefix Code

 $S = \{a, b, c, d, e\}$. The encoding γ_1 specified by

 $\gamma_1(a) = 11$ $\gamma_1(b) = 01$ $\gamma_1(c) = 001$ $\gamma_1(d) = 10$ $\gamma_1(e) = 000$

Average Bits Per Letter

Let probability of letter x in message be ${\it f}_{\rm x}.$ Let γ be a prefix code. Then,

$$ABL(\gamma) = \sum_{x \in S} f_x \cdot |\gamma(x)|$$

$$f_a = .32, \quad f_b = .25, \quad f_c = .20, \quad f_d = .18, \quad f_e = .05.$$

$$.32 \cdot 2 + .25 \cdot 2 + .20 \cdot 3 + .18 \cdot 2 + .05 \cdot 3 = 2.25.$$

Optimal Prefix Code

$$\gamma_2(a) = 11$$

 $\gamma_2(b) = 10$
 $\gamma_2(c) = 01$
 $\gamma_2(d) = 001$
 $\gamma_2(e) = 000$

The average number of bits per letter using γ_2 is

 $.32 \cdot 2 + .25 \cdot 2 + .20 \cdot 2 + .18 \cdot 3 + .05 \cdot 3 = 2.23.$

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Optimal Prefix Code

 $\gamma_2(a) = 11$ $\gamma_2(b) = 10$ $\gamma_2(c) = 01$ $\gamma_2(d) = 001$ $\gamma_2(e) = 000$

The average number of bits per letter using γ_2 is

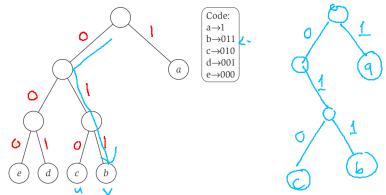
 $.32 \cdot 2 + .25 \cdot 2 + .20 \cdot 2 + .18 \cdot 3 + .05 \cdot 3 = 2.23.$

Optimal Prefix Code

For a given alphabet S and probability distribution f, a prefix code γ over S is optimal if for all prefix codes γ' over S we have $ABL(\gamma) \leq ABL(\gamma')$

< 同 > < 三 > < 三 > 、

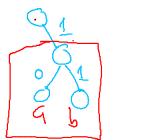
Labelled Binary Trees



- LBT is a binary tree where leaves are labelled with letters from *S*.
- There is bijection between LBTs and prefix codes. They *c* represent the same thing.
- Notation: Given LBT T and a leaf node u let $lb(u) \in S$ denote the label of u.

• Let $ABL(T) = \sum_{x \in S} f_x \cdot depth(x)$

- Let $ABL(T) = \sum_{x \in S} f_x \cdot depth(x)$
- A LBT is called full if every interior node has exactly two children.



- Let $ABL(T) = \sum_{x \in S} f_x \cdot depth(x)$
- A LBT is called full if every interior node has exactly two children.
- Every LBT can be tranformed to a more efficient full LBT. Hence, every optimal LBT is full.

- Let $ABL(T) = \sum_{x \in S} f_x \cdot depth(x)$
- A LBT is called full if every interior node has exactly two children.
- Every LBT can be tranformed to a more efficient full LBT. Hence, every optimal LBT is full.
- In LBT T, if labels of leaves at same depth are permuted to get T' then ABL(T') = ABL(T).

周 ト イ ヨ ト イ ヨ ト

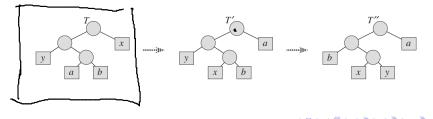
- Let $ABL(T) = \sum_{x \in S} f_x \cdot depth(x)$
- A LBT is called full if every interior node has exactly two children.
- Every LBT can be tranformed to a more efficient full LBT. Hence, every optimal LBT is full.
- In LBT T, if labels of leaves at same depth are permuted to get T' then ABL(T') = ABL(T).
- In LBT T if $f_u = f_v$ and T' is obtained by exchanging labels of u, v then ABL(T') = ABL(T).

伺 ト イ ヨ ト イ ヨ ト

Greedy Choice

Let $x, y \in S$ s.t. $\forall z \in S, z \neq x, y$ we have $(f_x \leq f_z \land f_y \leq f_z)$. Optime Such x, y are called least frequent pair. Then, there exists a LBT where x, y occur as siblings at maximum depth.

- Let a, b be sibling leaves occurring at maximum depth in T.
- Hence, $f_x \leq f_a$ and $depth(x) \leq depth(a)$.
- First exchange a and x to get T'. Next, exchange y and b.



Let
$$f_x \leq f_a$$
. Then,
 $ABL(T) - ABL(T')$
 $= (f_x \cdot depth(x) + f_a \cdot depth(a)) - (f_x \cdot depth(a) + f_a \cdot depth(x)) \Leftarrow$
 $= (f_x - f_a) \cdot (depth(x) - depth(a))$
 ≥ 0 (as both factors negative).

日本・モン・モン

æ

Let
$$f_x \leq f_a$$
. Then,
 $ABL(T) - ABL(T')$
 $= (f_x \cdot depth(x) + f_a \cdot depth(a)) - (f_x \cdot depth(a) + f_a \cdot depth(x)))$
 $= (f_x - f_a) \cdot (depth(x) - depth(a))$
 ≥ 0 (as both factors negative).

• If T is optimal, then so is T''.

æ

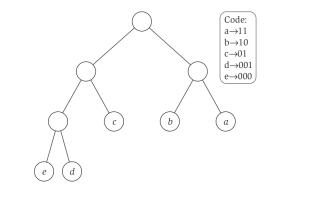
▶ ▲ 문 ▶ ▲ 문 ▶ ...

Let
$$f_x \leq f_a$$
. Then,
 $ABL(T) - ABL(T')$
 $= (f_x \cdot depth(x) + f_a \cdot depth(a)) - (f_x \cdot depth(a) + f_a \cdot depth(x))$
 $= (f_x - f_a) \cdot (depth(x) - depth(a))$
 ≥ 0 (as both factors negative).

• If T is optimal, then so is T''.

• In optimal LBT, as depth of leaves decreases the probability must increase or remain same.

Example: Optimal LBT



$$f_a = .32, \quad f_b = .25, \quad f_c = .20, \quad f_d = .18, \quad f_e = .05.$$

<回>< E> < E> < E> <

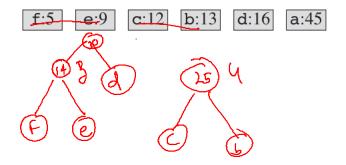
æ

Huffman Algorithm

By repeated greedy choice of lowest-frequency pairs.

HUFFMAN(C)1 n = |C|2 Q = C3 for i = 1 to n - 14 allocate a new node z 5 z.left = x = EXTRACT-MIN(Q)z.right = y = EXTRACT-MIN(Q)6 7 z. freq = x. freq + y. freq 8 INSERT(Q, z)9 **return** EXTRACT-MIN(Q) // return the root of the tree

Huffman Algorithm: Example



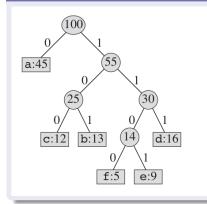
P.K. Pandya Design and Analysis of Algorithms CS218M

▲御▶ ▲ 臣▶ ▲ 臣▶ -

æ

Huffman Algorithm: Example

Huffman Code

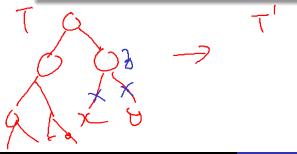


æ

∃ ► < ∃ ►</p>

Lemma

Let LBT T of S have leaves labelled x, y as siblings. Let T' be be LBT obtained by replacing parent of x, y by leaf node labelled z. Also let $f_z = f_x + f_y$. Then, $ABL(T) = ABL(T') + f_x + f_y$



Lemma

Let LBT T of S have leaves labelled x, y as siblings. Let T' be be LBT obtained by replacing parent of x, y by leaf node labelled z. Also let $f_z = f_x + f_y$. Then, $ABL(T) = ABL(T') + f_x + f_y$

Theorem

Huffman LBT H for alphabet S of size n is optimal.

• • = • • = •

Lemma

Let LBT T of S have leaves labelled x, y as siblings. Let T' be be LBT obtained by replacing parent of x, y by leaf node labelled z. Also let $f_z = f_x + f_y$. Then, $ABL(T) = ABL(T') + f_x + f_y$

Theorem

Huffman LBT H for alphabet S of size n is optimal.

Proof by Induction on n. Base case n = 2 is trivially true.

伺 ト イヨ ト イヨト

 By Ind. Hyp. suppose that optimality holds for alphabets of size n − 1.

伺 と く ヨ と く ヨ と

э

- By Ind. Hyp. suppose that optimality holds for alphabets of size *n* − 1.
- For alphabet S of size n assume that ABL(T) < ABL(H) where T is optimal.

伺 ト イ ヨ ト イ ヨ ト

- By Ind. Hyp. suppose that optimality holds for alphabets of size *n* − 1.
- For alphabet S of size n assume that ABL(T) < ABL(H) where T is optimal.
- Wlog, assume that least-frequent x, y occur as siblings in T and H. (why?)

伺 ト イヨ ト イヨ ト

- By Ind. Hyp. suppose that optimality holds for alphabets of size *n* − 1.
- For alphabet S of size n assume that ABL(T) < ABL(H) where T is optimal.
- Wlog, assume that least-frequent x, y occur as siblings in T and H. (why?)
- Consider T' and H' obtained by replacing parent of x, y by z. Then,

 $ABL(T') = ABL(T) - (f_x + f_y) < ABL(H) - (f_x + f_y) = ABL(H').$

This contradicts induction hypothesis.

伺 ト イ ヨ ト イ ヨ ト

- By Ind. Hyp. suppose that optimality holds for alphabets of size *n* − 1.
- For alphabet S of size n assume that ABL(T) < ABL(H) where T is optimal.
- Wlog, assume that least-frequent x, y occur as siblings in T and H. (why?)
- Consider T' and H' obtained by replacing parent of x, y by z. Then,

 $ABL(T') = ABL(T) - (f_x + f_y) < ABL(H) - (f_x + f_y) = ABL(H').$

This contradicts induction hypothesis.

Hence, H is optimal.

Complexity Huffman Algorithm

Letters of S are stored in MIN-priority queue by their frequencies. Let |S| = n. HUFFMAN(C)1 n = |C| $2 \quad O = C$ 3 for i = 1 to n - 14 allocate a new node z z.left = x = EXTRACT-MIN(Q)5 z.right = y = EXTRACT-MIN(Q)6 7 z. freq = x. freq + y. freq 8 INSERT(Q, z)9 **return** EXTRACT-MIN(Q) // return the root of the tree

• O(n) to initialize the priority queue (as a MIN-heap).

P.K. Pandva

Loop is executed O(n) times. Each iteration extracts 2 minimum-priority elements using O(lg(n)) time. Hence O(n · lg(n)).

Design and Analysis of Algorithms CS218M

Given connected and weighted undirected graph G = (V, E, w)with nodes V, Edges $E \subseteq V \times V$ and $w : E \to \Re$, find $A \subseteq E$ s.t.

Given connected and weighted undirected graph G = (V, E, w) with nodes V, Edges $E \subseteq V \times V$ and $w : E \to \Re$, find $A \subseteq E$ s.t.

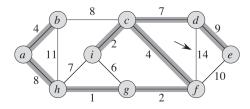
• A is a tree spanning V.

Given connected and weighted undirected graph G = (V, E, w)with nodes V, Edges $E \subseteq V \times V$ and $w : E \to \Re$, find $A \subseteq E$ s.t.

- A is a tree spanning V.
- Let wt(A) = Σ_{e∈A} w(e). Then for all B ⊆ E, if B is a spanning tree then wt(B) ≥ wt(A).

Given connected and weighted undirected graph G = (V, E, w)with nodes V, Edges $E \subseteq V \times V$ and $w : E \to \Re$, find $A \subseteq E$ s.t.

- A is a tree spanning V.
- Let wt(A) = Σ_{e∈A} w(e). Then for all B ⊆ E, if B is a spanning tree then wt(B) ≥ wt(A).



Grow A adding one edge at a time.

▶ < Ξ ▶</p>

э

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

글 🖌 🖌 글 🕨 👘

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

Prim

Extend current set of edges A having vertices U_A with a minimum weight edge going out of U_A .

- Grow A one edge at a time.
- Invariant: Current set of edges A is a subset of some MST.
- An edge which can be added to A maintaining the invariant is called a safe edge.

GENERIC-MST(G, w)

$$1 \quad A = \emptyset$$

- 2 while *A* does not form a spanning tree
- 3 find an edge (u, v) that is safe for A

4
$$A = A \cup \{(u, v)\}$$

5 return A

• Pair (S, V - S) is a cut.

伺 ト イヨ ト イヨ ト

э

- Pair (S, V S) is a cut.
- Edge (u, v) crosses the cut (S, V − S) if u ∈ S and v ∉ S or vice verse.

伺 ト イヨ ト イヨ ト

э

- Pair (S, V S) is a cut.
- Edge (u, v) crosses the cut (S, V − S) if u ∈ S and v ∉ S or vice verse.
- Cut (S, V S) respects A if no edge of A is a crossing edge.

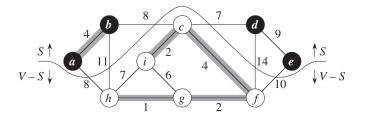
・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- Pair (S, V S) is a cut.
- Edge (u, v) crosses the cut (S, V − S) if u ∈ S and v ∉ S or vice verse.
- Cut (S, V S) respects A if no edge of A is a crossing edge.
- An edge (u, v) is a light edge if it is of minimum weight amongst all edges crossing the cut.

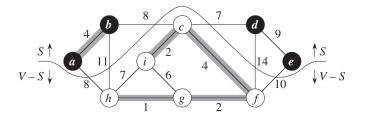
Theorem

Let A subset of some MST. Let cut (S, V - S) respect A and let (u, v) be a light edge. Then, (u, v) is a safe edge.



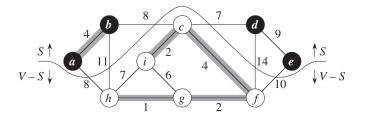
Theorem

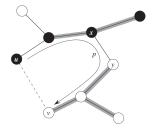
Let A subset of some MST. Let cut (S, V - S) respect A and let (u, v) be a light edge. Then, (u, v) is a safe edge.



Theorem

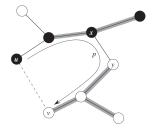
Let A subset of some MST. Let cut (S, V - S) respect A and let (u, v) be a light edge. Then, (u, v) is a safe edge.



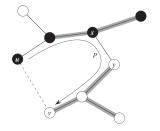


æ

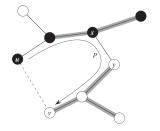
伺 ト イヨ ト イヨ ト



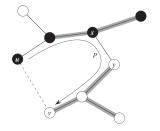
• Let $(x, y) \in T$ be crossing edge. (Must exist).



- Let $(x, y) \in T$ be crossing edge. (Must exist).
- Hence $w(u, v) \le w(x, y)$. (why?)

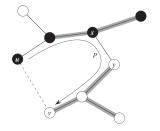


- Let $(x, y) \in T$ be crossing edge. (Must exist).
- Hence $w(u, v) \le w(x, y)$. (why?)
- Let $T' = T \{(x, y)\} \cup \{(u, v)\}$.



- Let $(x, y) \in T$ be crossing edge. (Must exist).
- Hence $w(u, v) \le w(x, y)$. (why?)
- Let $T' = T \{(x, y)\} \cup \{(u, v)\}$.

•
$$wt(T') = wt(T) - w(x, y) + w(u, v)$$
.
Hence, $wt(T') \le wt(T)$.



- Let $(x, y) \in T$ be crossing edge. (Must exist).
- Hence $w(u, v) \le w(x, y)$. (why?)
- Let $T' = T \{(x, y)\} \cup \{(u, v)\}$.
- wt(T') = wt(T) w(x, y) + w(u, v). Hence, $wt(T') \le wt(T)$.
- Hence, T' is MST containing (u, v).

• A gives rise to a set of disjoint trees.

∃ ► < ∃ ►</p>

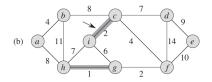
- A gives rise to a set of disjoint trees.
- Kruskal iteration extends A by minimum weight edge (u, v) connecting two trees T_1 and T_2 (and merges these).

- A gives rise to a set of disjoint trees.
- Kruskal iteration extends A by minimum weight edge (u, v) connecting two trees T₁ and T₂ (and merges these).
- Choose cut respecting A as $(T_1, S T_1)$. Clearly, (u, v) is safe edge. Theorem applies.

- A gives rise to a set of disjoint trees.
- Kruskal iteration extends A by minimum weight edge (u, v) connecting two trees T_1 and T_2 (and merges these).
- Choose cut respecting A as $(T_1, S T_1)$. Clearly, (u, v) is safe edge. Theorem applies.
- Adding it using UNION gives A as set of trees represented as disjoint sets.

Kruskal Algorithm: Example





P.K. Pandya Design and Analysis of Algorithms CS218M

포 🛌 포

Maintain $S = (S_1, \ldots, S_k)$ with $u_i \in S_i$ as unique representative.

P.K. Pandya Design and Analysis of Algorithms CS218M

• • = • • = •

э

Maintain $S = (S_1, ..., S_k)$ with $u_i \in S_i$ as unique representative. • MAKESET(u)

• • • • • • • •

Maintain $S = (S_1, ..., S_k)$ with $u_i \in S_i$ as unique representative. • MAKESET(u)

• FINDSET(u)

• • • • • • • •

э

Maintain $\mathcal{S} = (S_1, \ldots, S_k)$ with $u_i \in S_i$ as unique representative.

- MAKESET(u)
- FINDSET(u)
- UNION(u,v)

Maintain $S = (S_1, \ldots, S_k)$ with $u_i \in S_i$ as unique representative.

- MAKESET(u)
- FINDSET(u)
- UNION(u,v)
- Implemeted using union by rank and path compression (CLRS 21.3, 21.4). For *m* operations over *n* element set, $O(m \cdot \alpha(n))$ where $\alpha(n)$ is very slowly growing (almost constant!).

```
MST-KRUSKAL(G, w)
```

```
1 \quad A = \emptyset
```

- 2 for each vertex $\nu \in G.V$
- 3 Make-Set(ν)
- 4 sort the edges of G.E into nondecreasing order by weight w
- 5 for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight
- 6 **if** FIND-SET $(u) \neq$ FIND-SET(v)
 - $A = A \cup \{(u, v)\}$
- 8 UNION(u, v)
- 9 return A

7

伺 ト イヨト イヨト

```
MST-KRUSKAL(G, w)
```

```
1 \quad A = \emptyset
```

2 for each vertex $\nu \in G.V$

```
3 Make-Set(\nu)
```

- 4 sort the edges of G.E into nondecreasing order by weight w
- 5 for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight
- 6 **if** FIND-SET $(u) \neq$ FIND-SET(v)
 - $A = A \cup \{(u, v)\}$
- 8 UNION(u, v)
- 9 return A

7

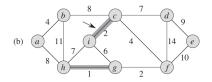
Running Time

 $E \cdot lg(E)$ for sorting edges. Also, O(V) of MAKE-SET and O(E) of FIND-SET+UNION operations. Hence, $E \cdot lg(E) + (E + V)\alpha(V)$. Simplifies to $O(E \cdot lg(E))$.

- 4 同 ト 4 回 ト -

Kruskal Algorithm: Example





P.K. Pandya Design and Analysis of Algorithms CS218M

포 🛌 포

• Maintain A as a single tree with set of vertices U_A . Let $Q = S - U_A$.

э

- Maintain A as a single tree with set of vertices U_A . Let $Q = S U_A$.
- In each iteration, we choose edge e with minimum weight amongst {(u, v) | u ∈ U_A ∧ v ∉ U_A}. Clearly, this is safe edge.

何 ト イヨ ト イヨ ト

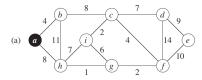
- Maintain A as a single tree with set of vertices U_A . Let $Q = S U_A$.
- In each iteration, we choose edge e with minimum weight amongst {(u, v) | u ∈ U_A ∧ v ∉ U_A}. Clearly, this is safe edge.
- For each vertex v ∈ Q, priority v.key is weight of minimum weight edge between (any vertex in) T and v. If no such edge key = ∞.

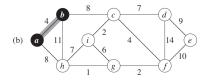
- Maintain A as a single tree with set of vertices U_A . Let $Q = S U_A$.
- In each iteration, we choose edge e with minimum weight amongst {(u, v) | u ∈ U_A ∧ v ∉ U_A}. Clearly, this is safe edge.
- For each vertex v ∈ Q, priority v.key is weight of minimum weight edge between (any vertex in) T and v. If no such edge key = ∞.
- Maintain Q as a priority queue using the heap data structure. Choose v as EXTRACT_MIN(Q).

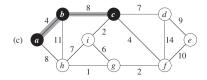
- Maintain A as a single tree with set of vertices U_A . Let $Q = S U_A$.
- In each iteration, we choose edge e with minimum weight amongst {(u, v) | u ∈ U_A ∧ v ∉ U_A}. Clearly, this is safe edge.
- For each vertex v ∈ Q, priority v.key is weight of minimum weight edge between (any vertex in) T and v. If no such edge key = ∞.
- Maintain Q as a priority queue using the heap data structure. Choose v as EXTRACT_MIN(Q).
- After adding v, update key of all vertices adjecent to v which are in Q.

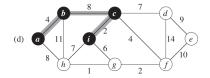
・ 同 ト ・ ヨ ト ・ ヨ ト …

Prim Algorithm









< ∃⇒

-

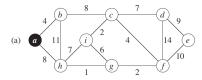
æ

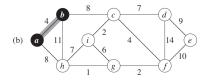
```
MST-PRIM(G, w, r)
    for each u \in G.V
 1
2
         u.key = \infty
3
         u.\pi = \text{NIL}
4
    r.key = 0
 5
    Q = G.V
6
    while Q \neq \emptyset
7
         u = \text{EXTRACT-MIN}(Q)
8
         for each v \in G.Adj[u]
9
              if v \in Q and w(u, v) < v.key
10
                  v.\pi = u
11
                  v.key = w(u, v)
```

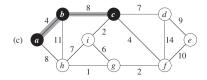
(日)

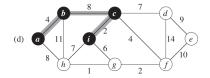
э

Prim Algorithm









< ∃⇒

-

æ