
Optimal Stem Identification in Presence of

Suffix List

Vasudevan N and Pushpak Bhattacharyya

Computer Science and Engg Department
IIT Bombay, Mumbai

vasudevan@cse.iitb.ac.in, pb@cse.iitb.ac.in

Abstract Stemming is considered crucial in many NLP and IR applica-
tions. In the absence of any linguistic information, stemming is a challenging
task. Stemming of words using suffixes of a language as linguistic information
is in comparison an easier problem. In this work we considered stemming
as a process of obtaining minimum number of lexicon from an unannotated
corpus by using a suffix set. We proved that the exact lexicon reduction
problem is NP-hard and came up with a polynomial time approximation.
One probabilistic model that minimizes the stem distributional entropy is
also proposed for stemming. Performances of these models are analyzed us-
ing an unannotated corpus and a suffix set of Malayalam, a morphologically
rich language of India belonging to the Dravidian family.

1 Introduction

Stemming is a crucial component in most of the NLP applications. Since the
stemming identifies the same stem for all inflectional variants of a lexeme, it
will improve the performance of information retrieval systems. Inflectional suffix
in a word carries its morphosyntactic information and paradigm information.
For example, by stemming the word boys, we will get the suffix s from that
word. This suffix carries the information about its plurality. Such information is
essential for many NLP applications like machine translation. This indicates the
importance of building good stemmer for languages.

Building a morphology analyser or a stemmer is always a challenging task
for all languages. This is more challenging for inflectional, agglutinative and
isolated languages. Lot of linguistic expertise is needed for building such tools.
This is again difficult for those languages which have no linguistic tradition. The
linguistic expertise needed for stemming may not be available for such languages.
So they have to rely on word forms in a corpus and their processing. Therefore
building a low cost automatic stemmer from a corpus for such languages has a
great significance.

Building a stemmer using only an unannotated corpus is the most inexpensive
feasible approach. Since there is no availability of direct linguistic information
and supervision, such a system with good performance is very difficult to build.

Knowledge of inflectional suffixes in a language will reduce the level of difficulty.
I.e. the performance of stemming using only an unannotated corpus can be
improved by using a set of inflectional suffixes. Usually a language has a small
closed set of inflectional suffixes. Identification of this suffix set of a language is a
relatively easier job. So we consider a semi-supervised scenario where the suffix
list is given. In this work we are trying to build a stemmer using an unannotated
corpus with sufficiently large number of distinct words and a set of inflectional
suffixes. Sample sets of inflectional suffixes in English and Malayalam are shown
below (Example 1,2)

Example 1. English: { s, es, ed, ing, . . . }

Example 2. Malayalam: { I³ {kal} (Plural), Itj {kale} (Plural + Accusative),
IjqtS {kalude} (Plural + Genitive), an± {mar} (Plural), antc {mare} (Plural
+ Accusative), ancqtS {marude} (Plural + Genitive), qI {uka} (Present), �qI

{kkuka} (Present), o {i} (Past), qw {um} (Future), . . . }

Inputs of this stemming problem are an unannotated corpus (Corpus) and a
suffix set (Suffixset), and the output is the stem of each word. A small input
and its output is shown in Example 3.

Example 3. Input : Corpus= {mosses, moss, boys, boy}, Suffixset= {es, s,
φ}, where φ is the null suffix.

Output : {moss (mosses), moss (moss), boy (boys), boy (boy)}

We make an assumption that Suffixset includes all orthographic variations
of all valid suffixes in the language. I³ {kal}, �³ {kkal} and º³ {ngngal} are
the variants of Malayalam1 plural marker I³ {kal}. So a Malayalam Suffixset

contains all these variants. Some languages have only one possible suffix in
a word, while others have more. In such languages a word has the structure
stem.suffix1.suffix2 . . . suffixx. For example, a Malayalam word Iq½oIjqtS

{kuttikalude} (child+Plural+Genitive) contains the stem Iq½o {kutti} (child), a
plural marker I³ {kal} and a genitive case marker qtS {ude}. Concatenated se-
quence of suffixes, suffix1.suffix2 . . . suffixx is considered as a suffix in such
words. So Suffixset of such a language contains some concatenations of suffixes
also. In the previous example of Malayalam word Iq½oIjqtS {kuttikalude}, Ijq-

tS {kalude} is actually a concatenation of suffixes I³ {kal} and qtS {ude}. But
we consider this as a single suffix. We take another assumption that the Corpus

contains sufficiently large number of words.

To define the stemming problem with suffix set, let us introduce a term
possible stem set. possible stem set of a word w be the set of all prefixes of w

such that w can be expressed as the concatenation of that prefix and a suffix
from Suffixset.

possible stem set(w) = {st : ∃x ∈ Suffixset such that w = st.x }

Consider the input shown in Example 3. possible stem set of each word in
the Corpus is shown in the Table 1. Now formally we can say, stemming is the

Table 1: possible stem set and their Correct Stem

word possible stem set correct stem

mosses {mosses, mosse, moss} moss
moss {moss, mos} moss
boys {boy, boys} boy
boy {boy} boy

process of identifying stem(w) optimally for all word w, where stem(w) is an
element of possible stem set(w).

The stemming process is the selection of correct entry from possible stem set
of each word in Corpus. In the previous example, the stemmer needs to select the
stems moss from possible stem set(mosses), moss from possible stem set(moss),
boy from possible stem set(boys) and boy from possible stem set(boy).

The roadmap of the paper is as follows. Related work of the stemming prob-
lem is briefly summarized in section 2. We propose two models for stemming
problem in this work. In section 3, we propose a deterministic model that re-
duces the number of distinct stems. In section 4, we propose a probabilistic model
that learns the distribution by reducing the entropy. A case study of these mod-
els in one of the morphologically rich language Malayalam is included in section
5. Performances of these models are measured in this section by using a wordlist
and a suffix set.

2 Related work

Morphology learning is one of the widely attempted problem in the literature.
A recent survey paper by Harald Hammarstrom [1] gives an overall view on
unsupervised morphology learning. There are lots of probabilistic approaches
for morphology learning. Linguistica model [2], maximum a posteriori model
[3], stochastic transducer based model [4] and generative probabilistic model [5]
are the relevant probabilistic models for stemming that we found in the current
literature. A Markov Random Field by Dreyer [6] is also a useful work related
to unsupervised morphology.

Graph based model [7], lazy learning based model [8], clustering based same
stem identification model [9, 10] ParaMor system for paradigm learning [11] are
also relevant works in the same area. Full morpheme segmentation and automatic
induction of orthographic rules by Sajib Dasgupta [12, 13] is also a relevant work.

We never found any model which use the information from suffix list. To
the best of our knowledge, this is the first attempt for stemming in presence of
suffix list. We found that Linguistica model is the closely related approach to
ours. Frequency of stem and suffix candidates plays a crucial role in Linguistica
model. Linguistica model is an optimal stem identification model by reducing

1 A morphologically rich language of India belonging to the Dravidian family.

Table 2: Examples of valid mapping

valid mapping (f:word → stem) range(f) |range(f)|

{(mosses → mosses), (moss → moss), (boys → boys), (boy → boy)} {mosses, moss, boys, boy} 4
{(mosses → mosses), (moss → moss), (boys → boy), (boy → boy)} {mosses, moss, boy} 3
{(mosses → mosses), (moss → mos), (boys → boys), (boy → boy)} {mosses, mos, boys, boy} 4
{(mosses → mosses), (moss → mos), (boys → boy), (boy → boy)} {mosses, mos, boy} 3
{(mosses → mosse), (moss → moss), (boys → boys), (boy → boy)} {mosse, moss, boys, boy} 4
{(mosses → mosse), (moss → moss), (boys → boy), (boy → boy)} {mosse, moss, boy} 3
{(mosses → mosse), (moss → mos), (boys → boys), (boy → boy)} {mosse, mos, boys, boy} 4
{(mosses → mosse), (moss → mos), (boys → boy), (boy → boy)} {mosse, mos, boy} 3
{(mosses → moss), (moss → moss), (boys → boys), (boy → boy)} {moss, boys, boy} 3
{(mosses → moss), (moss → moss), (boys → boy), (boy → boy)} {moss, boy} 2
{(mosses → moss), (moss → mos), (boys → boys), (boy → boy)} {moss, mos, boys, boy} 4
{(mosses → moss), (moss → mos), (boys → boy), (boy → boy)} {moss, mos, boy} 3

the description length. In this work, we minimizes the number of distinct stems
and entropy of stem distribution.

3 Minimum Stem Range (MSR) model

Given the suffix set, stemming can be viewed as a process of reduction of lexicon
entry. Minimum Stem Range (MSR) model is a direct and intuitive translation of
this aspect of stemming problem to a well-defined computational model. MSR
model finds out a mapping from each word to one of the string in its possi-
ble stem set. If suffix set is complete then actual stem of each word should be in
possible stem set of that word. So, if possible stem set of a word contains exactly
one entry then any mapping identifies the actual stem of that word. In the Ta-
ble 1, possible stem set of boy contains only one element boy. So any mapping
to possible stem set choose the correct stem boy from possible stem set(boy).
Otherwise the actual stem needs to be identified by using the information from
other words.

3.1 Model

MSR model is a computational model for the stemming problem. This model
finds a mapping from each word in input corpus to its stem (a starting substring
of the word). A mapping function f from each word in input corpus to its stem
(a starting substring of the word) is called as a valid mapping if and only if each
word in input corpus is gets mapped to one of the stems in its possible stem set.
All valid mappings from Example 3 are shown in Table 2 (possible stem sets of
this sample corpus is shown in Table 1). A mapping (mosse, mos, boys, boy)
means, first word mosses is gets mapped to mosse, second word moss is gets
mapped to mos, boys is gets mapped to boys and boy is gets mapped to boy.

MSR model will find out a valid mapping with minimum range. Lets define
the MSR model formally.

Input: Corpus (a sufficiently large list of plain words) and Suffixset (set of
all suffixes)

Output: A valid mapping, f∗ with minimum cardinality of range,

f∗ = argmin
f∈valid mapping

{

|range(f)|

}

Out of these 12 valid mappings shown in Table 2, (moss, moss, boy, boy) have
the minimum range. So the MSR model will identify this mapping.

Theorem 1. If a language does not have any morphological ambiguity and MSR
model identifies a valid stem for at least one word from all group of words with
same stem then MSR model will identify the correct stem from all words.

Proof. Lets assume there is no morphological ambiguity. So there will be exactly
one split that generates a valid stem and a valid suffix. If one of the valid stem
is in possible stem set of a word then that will be the correct stem of that word.
Otherwise there will be more than one way to split that word and that will be a
morphological ambiguity. So if MSR problem identifies a valid stem from a word
then that will be the correct stem of that word.

Suppose there are m groups of words with the same stem. There exist a
valid mapping with range of size exactly m by correctly identifying all correct
stems. So the range of output of MSR model will be less than or equal to m.

Let f be the output of MSR model that identifies correct stem from at
least one word from all m groups. So, all valid stems from all words in input
corpus will be in the range of f . Since there exist exactly one valid stem in each
possible stem set, any incorrect valid mapping produces an invalid stem. So if
there is any incorrect mapping, then the range of f will be greater than m. If
there is any incorrect mapping in f then f will not be the output of MSR model.
Therefore the MSR model will identify the correct stem from all words.

Theorem 2. Problem of computing MSR model (MSR problem) is NP-Hard

Proof. To prove the MSR problem is NP-hard, we want to find a polynomial
time reduction from an existing NP-hard problem to MSR problem. Let us take
minimum vertex cover problem, a known NP-hard problem for the reduction.
Input of minimum vertex cover problem is an undirected graph G = (V, E) and
output is a set of vertices (vertex cover) V C with minimum cardinality, where
V C ⊆ V and for every edge eij in E, either vi ∈ V C or vj ∈ V C. Given an
instance of vertex cover problem (G = (V, E)), we construct an instance to MSR
problem (Corpus, Suffixset) as follows.

Suppose G = (V, E), V = {vi}, E = {eij} 1 ≤ i, j ≤ n be the input of vertex
cover problem. For every edge eij , without loosing generality we can say i ≤ j.
For each edge eij add a word c1.c2. . . . cj .mij in to the Corpus. Here c1, c2, . . . cj

and mij can be any distinct characters. For each edge eij add ci+1 . . . cj .mij and
mij in to the Suffixset (if i = j then add only mij in to the Suffixset).

Consider a small graph shown below. Corresponds to four edges (e12,e13,e23,e34)
add four words to the Corpus. Similarly corresponds to four edges add eight suf-
fixes to the Suffixset. These words and suffixes are shown in the second and third
columns of Table 3.

v1

v2

v3 v4e12
e13

e23

e34

Figure 1: Example Graph to Elucidate Re-
duction Procedure

Table 3: Reduction Example of the Graph

word list suffix list possible stem set f VC

e12 c1c2m12 c2m12, m12 {c1, c1c2} c1 v1

e13 c1c2c3m13 c2c3m13, m13 {c1,c1c2c3} c1 v1

e23 c1c2c3m23 c3m23, m23 { c1c2, c1c2c3} c1c2c3 v3

e34 c1c2c3c4m34 c4m34, m34 { c1c2c3, c1c2c3c4} c1c2c3 v3

Let f be the output of MSR problem and R is the range of f . Since all ci

and mij are distinct, possible stem set(c1 . . . cj .mij) will be {c1 . . . cj , c1 . . . ci}.
See the possible stem set of each word in the previous example shown in Table
3. So each string in R will be in the form of c1 . . . ck for some k. For each such
string, add the vertex vk in to V C. Here the cardinality of R and V C will be
same. In the example the corresponding vertex cover (VC) of f function is a
minimal vertex cover ({v1, v3}).

To prove the correctness of reduction we want to show the solution of MSR
problem will be same as the solution of minimum vertex cover problem.

Let say f∗ is the solution of MSR problem and V C∗ is the corresponding
output instance of minimum vertex cover problem. For each word c1 . . . cj .mij

either c1 . . . cj or c1 . . . ci will be in the range of any valid mapping. Therefore
V C∗ will be a valid vertex cover and that can be the solution of minimum
vertex cover problem. Suppose V C∗ is not the solution of minimum vertex cover
problem, then there exist another valid vertex cover V C′, such that |V C′| <

|V C∗|. Then for V C′ we can define a valid mapping, f ′,

f ′(c1c2 . . . cjmij) =

{

c1c2 . . . ci if vi is in V C′

c1c2 . . . cj otherwise

Here we can see |range(f ′)| ≤ |V C′|

⇒ |range(f ′)| < |V C∗|

⇒ |range(f ′)| < |range(f∗)|

By the definition of f∗ this is a contradiction. Therefore V C∗ always will be
the solution of minimum vertex cover problem.

Let V C∗ is the solution of minimum vertex cover problem. Now we can define
a corresponding valid mapping f∗ for V C∗,

f∗(c1c2 . . . cjmij) =

{

c1c2 . . . ci if vi is in V C∗

c1c2 . . . cj otherwise

Here |V C∗| ≥ |range(f∗)|. If |V C∗| > |range(f∗)| then there exist another
vertex cover with less cardinality. But V C∗ is the minimum vertex cover. So
|range(f∗)| will be same as |V C∗|.

Suppose f∗ is not the solution of MSR problem, then there will be another
valid mapping f ′ such that |range(f ′)| < |range(f∗)|. Then there will be a valid
vertex cover V C′ corresponds to f ′, s.t. |range(f ′)| = |V C′|

⇒ |V C′| < |range(f∗)|

⇒ |V C′| < |V C∗|

But V C∗ is the minimum vertex cover. So such a valid vertex cover does not
exist. Therefore f∗ will be a solution of MSR problem.

3.2 Approximation

Since the MSR problem is NP-hard, it is difficult to find stems from a large data.
In order to solve the stemming problem computationally, an approximation of
the above model is required. Similarity of this model to set cover problem can
be utilized to find an approximation algorithm. MSR problem can be reduced
to set cover problem. Input of set cover problem is a set U and a set of subsets
(S) of U such that,

⋃

s∈S s = U . Output of set cover problem is a subset of S,
say C, such that

⋃

s∈C s = U .

Let St be the set of all possible stems, i.e. St =
⋃

w∈Corpus possible stem set(w).
Let W (st) is the set of words in Corpus where st is an element of its possi-
ble stem set, i.e. W (st) = {w : st ∈ possible stem set(w)}. Take the sample
input corpus {mosses, moss, boys, boy} and input suffix set {es, s, φ}. Set of
all possible stems and its corresponding W (st) are shown in the Table 4. Now
consider the Corpus as U and the set {W (st)} as S of set cover problem. Here
⋃

st∈St W (st) = Corpus. The output of this set cover problem is a set of stems
St′ such that, for any word in Corpus, there exist at least one possible stem of
that word in St′. By choosing any one possible stem of each word from St′, we
can find a solution of MSR problem.

Table 4: Possible Stems and their W() Set

Stem mosses mosse moss mos boys boy

W(stem) (S) {mosses} {mosses, moss} {moss} {moss} {boys} {boys, boy}

Any approximation algorithm of set cover problem can be directly used for
this stemming problem. Best-known approximation of set cover problem is the
greedy algorithm. The greedy algorithm choose subsets one by one from S that
have maximum number of uncovered elements in U , and cover those uncovered
elements. The complexity of approximation algorithm is O(NM) and approxi-
mation factor is log(N), where N is the number of words in corpus and M is
the number of suffixes in suffix set.

4 Minimum Stem Entropy (MSE) model

The MSR model and its approximation are deterministic approaches for the
stemming problem. Greedy approximation of the above model may not find op-
timum mapping. Here we propose a new model, Minimum Stem Entropy (MSE)
model, which is a probabilistic approach for the stemming problem.

4.1 Model

The probabilistic model assumes an uncertainty to choose the correct stem from
possible stem set of each word. Input of MSE model is same as that of MSR
model. Output of this model is a conditional probability distribution of stem
given word (Pr(st|w)). Pr(st|w) is the probability that string st (from possible
stem set of w, PSS(w)) is the stem of word w. From the Pr(st|w) we can select
the maximum probable stem candidate as the correct stem of that word, i.e.
stem of a word w, Stem(w) = argmaxst{Pr(st|w)}. Two basic conditions for
Pr(st|w) are,

Pr(st|w) ≥ 0 for all st in possible stem set of w
∑

st∈PSS(w)

{Pr(st|w)} = 1

Many such probability distributions are possible. Most suitable distribution
based on input corpus needs to be learned. The MSE model selects the distribu-
tion that minimizes the entropy of stem distribution. A stem distribution Pr(st)
is the probability of st is to be identified as correct stem of a randomly chosen
word. We can write the stem distribution in terms of Pr(st|w) as,

Pr(st) =
∑

w∈corpus

{Pr(w) × Pr(st|w)}

The MSE problem can be written as an optimization problem. I.e.

Pr(st|w) = argmin
Pr(st|w)

{

Entropy(Pr(st))

}

= argmin
Pr(st|w)

{

Entropy
(

∑

w∈corpus

{Pr(w) × Pr(st|w)}
)

}

= argmin
Pr(st|w)

{

−
∑

st

{

∑

w

{Pr(st|w)×Pr(w)}×log
(

∑

w

{Pr(st|w)×Pr(w)}
)}

}

MSE learns the probability of possible stem of each word that minimize the
entropy of complete stem distribution. A stem distribution with low entropy has
a tendency for a small stem set. So this model has a similarity with MSR model.
With minimum stem distributional entropy, probability of a string is to be a
correct stem in a randomly chosen word is either low or high. I.e. a string can
easily classify in to a valid stem class or invalid stem class. So the process tries

to learn the information about stems. The learning process identify the stem
distribution such that, maximum information about stem is available from the
input corpus. The formal definition of this model is shown below.

Input: Corpus (a sufficiently large list of plain words) and Suffixset (set of
all suffixes)

Output: Pr(st|w) for all w in Corpus and st in possible stem set(w)

Consider a small corpus {mosses, moss} and a suffix set {es, s, φ}, where
φ is the null suffix. The possible stem set of mosses is {mosses, mosse, moss}
and possible stem set of moss is {moss, mos}. Here the word probability can
be taken as uniform distribution. So,

Pr(mosses) = 1
2 × Pr(mosses|mosses)

Pr(mosse) = 1
2 × Pr(mosse|mosses)

Pr(moss) = 1
2 × (Pr(moss|mosses) + Pr(moss|moss))

Pr(mos) = 1
2 × Pr(mos|moss)

In this case, for Pr(moss|mosses) = 1 and Pr(moss|moss) = 1, will get a
zero stem distributional entropy. So the MSE will converge to this distribution,
and the string moss will be selected as the stem of both mosses and moss.

4.2 Methodology

To learn the model from a corpus and a suffix set, an optimization problem
needs to be solved. Since the objective function is not convex, an iterative hill
climbing like approach is used. We used the Frank-Wolfe algorithm [14] to solve
the optimization.

In each iteration of Frank-Wolfe algorithm, we solved a linear program. By
converging to local optima, the algorithm will find out the best probability dis-
tribution given the input corpus and suffix set. Most probable stem from each
word in corpus is then identified.

5 Case study - Malayalam

Malayalam is a Dravidian language spoken by 32 million people primarily in Ker-
ala, a state in southern India [15]. Malayalam is highly agglutinative and inflec-
tionally rich with a free word order. This language has a strong postpositional in-
flection. A Malayalam noun can be inflected for case, number, person and gender,
e.g. ued�ncîncqtS {velakkaaranmaarude} (worker+Masculine+Plural+Genitive).
Verb can be inflected by suffix for mood, aspect and tense, e.g.]l¼q {paranju}
(told),]lbnw {parayam} (may tell),]l¼oco�qw {paranjirikkum} (will tell).

Approximated MSR model and MSE model are evaluated on Malayalam. We
used a Malayalam unannotated corpus of size around 20000 words and a suffix

set of around 200 Malayalam suffixes. We are extracted these words from the
web. Malayalam is used by less than 0.1% of all the websites. Our assumption
is that, the wordlist is sufficiently large so that it contains all morphological
variants of words. In practical case this assumption may not hold. To reduce the
gap between the ideal case and the real case, we make sure that, the training
wordlist contains at least one more inflectional variant for each word. So we
manually added such inflectional variants to wordlist if necessary.

We used the Morfessor [3] system to get a ballpark accuracy. We trained the
Morfessor 1.0 model using their script downloaded from www.cis.hut.fi/projects/
morpho/morfessor1.0.perl with default arguments. The Morfessor score is around
17% only. Since Morfessor is not using any information from suffix set, a direct
comparison between the Morfessor score and our scores is meaningless. Since we
are unable to find any other comparable approaches for this problem from the
literature, we want to constructed baseline models to check the significance of
these proposed models.

The problem is about selecting correct entry from possible stem set of each
word. We considered different trivial strategies to select the stem from possi-
ble stem set. One basic information is that a stem is a prefix of the word by
stripping some valid suffix. One trivial approach that uses only this basic in-
formation is a random selection from possible stem set. We considered this as
one of the baselines. Length of the suffix (or stem) is another easily available
information that can use for stemming. Based on this information we can build
two simple strategies, smallest stem or largest stem. We want to choose one of
these approaches. Since we are doing experimentation on data, we decided to
consider both approaches for experimentation and decide based on the scores. So
we considered these two approaches as second and third baselines. Performances
of two new proposed models and these three baseline models are evaluated using
around 1500 Malayalam Unicode words from wordlist. The accuracies are shown
in the Table 5.

Table 5: Stemming Accuracies and Comparison with Baseline;

Model Baseline-1 (Min
Stem length)

Baseline-2 (Max
Stem length)

Baseline-3 (Ran-
dom selection)

Approx. MSR MSE

Accuracies (20K words) 84.58 % 20.09 % 44.20 % 91.32 % 93.91 %

The results shown in the above table indicates the correctness and signifi-
cance of proposed models for Malayalam. It also shows that MSE model slightly
outperforms the Approx-MSR model. From the scores it is clear that, choosing
the stem with minimum length is more suitable for Malayalam. If a word in a
morphologically rich language ends with a valid suffix, most likely that will be
its suffix. In agglutinative languages, more than one suffix can attach to a stem.
So a word may ends with more number of valid suffixes. In this case the actual
stem is the prefix by stripping largest suffix from the word. Since Malayalam is
a morphologically rich and agglutinative language, the high accuracy of smallest

stem baseline compared to largest stem baseline is very intuitive. Also note that,
this may not be true for morphologically poor languages.

To get more insight about the shortcomings of these experimentations and
models, we did an error analysis of two newly proposed systems. Each and every
wrong splits are analyzed. Errors in both models are common and it follows same
distribution. The errors in the models are mainly three types. These errors are
as follows.

1. Because of the incomplete suffix set, the models may unable to split any
other inflections of some words. So the possible stem set of such words will
be totally independent from possible stem set of other words. Then our stem-
ming models choose one stem from possible stem set of such words randomly
and that may leads to wrong stemming.

2. Some orthographically similar words with different stem affect the stemming
process. For example, \ou�ntj {nikkole} and \ou�nj {nikkola} are two
different proper nouns, but it looks very similar. By removing one of the
accusative case markers {e} from \ou�ntj {nikkole} we will get \ou�n-

j {nikkola}, but \ou�nj+Accusative {nikkola+Accusative} is \ou�njtb

{nikkolaye}. In this case our stemming models wrongly selects the word
\ou�nj {nikkola} as the stem of \ou�ntj {nikkole}.

3. There may exist multiple solutions that minimize the number of distinct
stems or stem distributional entropy. In such cases, our models randomly
choose one of the solutions. That solution may have some wrong stems.

Some wrong stems identified by our models and its error type (3 types mentioned
above) are shown in the Table 6.

Table 6: Erroneous Stems Samples Found During Error Analysis

Word Stem (Identified) Stem (Correct) Error Type

tN\nlo° {chenaarin} (Chenar(Proper noun)+Gen) tN\nlo° {chenaarin} tN\n {chenaa} 1
tXn²�nÃobcqw {tholkkappiyarum} (Tholkkappi-
yar(Proper noun)+Conj)

tXn²�nÃobcq

{tholkkappiyaru}
tXn²�nÃobc

{tholkkappiyara}
1

ue¾o {vendi} (for that) ue¾ {venda} ue¾o {vendi} 1
\ou�ntj {nikkole} (Nikkole(Proper noun)) \ou�nj {nikkola} \ou�ntj {nikkole} 2
aoÈ° {millan} (Millan(Proper noun)) aoÈ {milla} aoÈ\ {millana} 3
AadqIjqtS {amalukalude} (Amal(Proper
noun)+Pl+Gen)

AadqIj {amalukala} Aad {amala} 1

One of the reason for the remaining errors are the incomplete suffix set. If
the suffix set is not complete then stems of some words in the input corpus will
not be identified. Stem information from such words may useful in the process
of stem identification of other words.

Consider the word ue¾o {vendi} in the Table 6. Since obqw {iyum} and oubn

{iyo} are not in the suffix set, the system cannot split ue¾oubn {vendiyo} and
ue¾obqw {vendiyum} (other inflectional variants of ue¾o {vendi}). In this case,
effectively there is no other word in the corpus for the splitting of the word ue¾o

{vendi}. So a string from possible stem set of ue¾o {vendi} selects randomly.

Majority of remaining errors are because of this problem. So completion of the
suffix set is considered for further improvement.

6 Conclusion and Future Work

To solve the stemming problem by using an unannotated corpus and a suffix
set, two models are proposed. Problem of computing first model that directly
reduces the number of lexicon entries is NP-hard. A greedy approximation for
this model is also proposed. Second model is a probabilistic model and it reduces
the entropy of stem distribution. Approximated version of first model and second
model are evaluated on Malayalam corpus. We got the best accuracy of 93% by
using the MSE model. Improvement in suffix set is proposed for future work.
Analysing the performances of these proposed models in other languages is also
considered for future work.

References

1. Hammarström, H., Borin, L.: Unsupervised learning of morphology. CL (2011)
309–350

2. Goldsmith, J.A.: Unsupervised learning of the morphology of a natural language.
CL (2001) 153–198

3. Creutz, M., Lagus, K.: Unsupervised models for morpheme segmentation and
morphology learning. TSLP 4 (2007)

4. Clark, A.: Partially supervised learning of morphology with stochastic transducers.
In: NLPRS. (2001) 341–348

5. Snover, M.G., Jarosz, G.E., Brent, M.R.: Unsupervised learning of morphology
using a novel directed search algorithm: taking the first step. In: Proc. of ACL-
WMPL-02. (2002) 11–20

6. Dreyer, M., Eisner, J.: Graphical models over multiple strings. In: Proc. of
EMNLP-09. (2009) 101–110

7. Johnson, H., Martin, J.: Unsupervised learning of morphology for english and
inuktitut. In: Proc. of NAACL-HLT-03. (2003) 43–45

8. van den Bosch, A., Daelemans, W.: Memory-based morphological analysis. In:
Proc. of ACL-99. (1999)

9. Hammarström, H.: A naive theory of affixation and an algorithm for extraction.
In: Proc. of HLT-NAACL-06. (2006) 79–88

10. Hammarström, H.: Poor man’s stemming: Unsupervised recognition of same-stem
words. In: AIRS. (2006) 323–337

11. Monson, C., Carbonell, J.G., Lavie, A., Levin, L.S.: Paramor and morpho challenge
2008. In: CLEF. (2008) 967–974

12. Dasgupta, S., Ng, V.: High-performance, language-independent morphological seg-
mentation. In: HLT-NAACL. (2007) 155–163

13. Dasgupta, S., Ng, V.: Unsupervised morphological parsing of bengali. Language
Resources and Evaluation (2006) 311–330

14. Lawphongpanich, S.: Frank-wolfe algorithm. In: Encyclopedia of Optimization.
(2009) 1094–1097

15. David, S.M.I.P.S.: A morphological processor for malayalam language. Technical
report, South Asia Research (2007)

