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ABSTRACT 
In this paper, we describe  a model for reasoning  using forward 
chaining for predicate logic rules and facts with  coarse-coded  
distributed representations for instantiated predicates in a 
connectionist frame work. Distributed representations are known 
to give advantages of good generalization, error correction and  
graceful degradation of performance under noise conditions. 
The system supports usage of complex rules  which involve 
multiple conjunctions. The system solves the variable binding 
problem using coarse-coded distributed representations   of 
instantiated predicates without the need to decode them into 
localist representations. The system has performed forward 
reasoning successfully on the given reasoning task. It’s 
performance with regard to generalization on unseen inputs and 
its ability to exhibit  fault tolerance under noise conditions is 
studied and has been found to give good results.   

General Terms 
 Design, Reliability, Experimentation and Verification. 

Keywords 
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1. INTRODUCTION 
Traditionally   reasoning systems using predicate logic have 
been implemented using symbolic methods of artificial 
intelligence.  Connectionist methods of implementation of 
reasoning systems describe an alternative paradigm. Among the 
connectionist systems they use two types of  representational 
schemes. They are 1) localist and 2) distributed representational 
schemes.    

        Localist  representational schemes represent each concept 

with an individual unit or neuron. In the distributed 
representational schemes [3] each unit or neuron is used in 
representation of multiple concepts and multiple units or 
neurons are used to represent a single concept.  In the literature, 
some localist methods for reasoning using connectionist 
networks have been described. The connectionist inference 
system SHRUTI  [1], [5] described a localist method where 
temporal synchrony was used to create bindings between 
variables and entities they represent. A variable x of the 
predicate give(x,y,z) is getting bound to an entity d if the nodes 
representing them fire during the same phase  of time p1 during 
the predicate p activation period T. The time period T is divided 
into three phases p1, p2 and p3 during which  synchronous 
firing of variable x, y and z  and entity nodes they bound  
respectively takes place. This method has used temporal 
synchrony as a mechanism to establish variable binding.   
CONSYDERR [2] described a localist method for variable 
binding and forward reasoning. It uses an assembly or a set of  
interconnected nodes  to represent each  predicate p(x1…..xk). 
Each assembly contains one C node for storing the confidence 
value of the predicate p  and k  X nodes to store the binding 
values for k variables of  the predicate p. A separate node is 
allocated for each variable of a predicate. Each such node stores 
a value representing a particular object being bound with that 
variable. Different objects being bound to a variable will be 
given separate values. Since, these systems use localist 
representations, advantages of distributed representations are not 
obtainable  by them and hence the motivation for a distributed 
representation based reasoning system. It is investigated here in 
this work as to what advantages are obtained by a distributed 
representation based reasoning system over their localist counter 
parts. Further we deal with the issue of how variable binding 
may be accomplished in such a connectionist environment 
which uses distributed representations of it’s instantiated 
predicates. 

2. RULE and FACT BASE 
Our system represents and reasons with predicate logic rules and 
facts. Following are rules and facts we use. 

1 give(x,y,z) —>  own(y,z); 
2 buy(x,y) —> own(x,y); 
3 own(y,z) —>  donate(y,z); 
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4 own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m)       
— > cansell(y,w,z); 

5 give(John,Mary,Book-17); 
6 buy(Chris,Book-1); 
7 wantstobuy(Walter,Book-1); 
8 hasrequiredmoney(Walter,Money-1); 
 

Our system uses the above rule base and makes inferences 
shown below. 

1. own(Mary,Book-17); 

2. donate(Mary,Book-17); 

3. own(Chris,Book-1);  

4.  cansell(Chris,Walter,Book-1); 

Our task is to start with the above knowledge base and obtain 
the results of inferencing correctly by our reasoning system. In 
this paper we see how to accomplish the forward reasoning for 
predicate calculus facts and rules using neural networks which 
operate on  coarse coded distributed representations. We start 
with a database consisting of predicate logic facts and rules.  
Each  fact of predicate pi is  represented  by a vector vij.The 
vector vij is a k dimensional vector which stores the coarse 
coded representation of predicate fact. The size of each k is 
chosen for a vij depending on the requirements of  predicate pi. 
The different instantiations of predicate pi are each  represented 
by separate vector  vij  where j varies from 1 to m . Thus the set 
of instantiated predicates  of pi are represented by subset of 
vector space Rk. The value of  i depends on the number of 
predicates in the rule  base. We then design suitable 
connectionist frame work for doing reasoning with forward 
chaining for the rule and fact base using these vectors.  

3. FORWARD REASONING USING 
CONNECTIONIST SYSTEM 
3.1 Connectionist Reasoning Using Localist 
Representations 
We describe here how forward reasoning using localist 
representations [6],[7] are made using a connectionist system.     
Let us consider the rule 1:give(x,y,z)—>  own(y,z)  from the 
knowledge base. We define how localist representations be 
made for the values getting bound to the variables x, y and z and 
how the localist connectionst system makes inference from the 
rule. We  assign values to each variable on the left hand side of a 
rule. A value is allocated to a specific variable and it will 
represent a particular object getting bound to that variable. We 
assign binary string which is  the localist representation of  
object getting bound to that variable. Suppose, we have three 
different objects for possible binding to variable x. We encode 
them by the localist patterns  001, 010, 100 respectively. Other 
variables y and z  also get similar localist patterns for being 
assigned to them. We need a pattern code for distinguishing 
among predicates. We assign  an n bit binary code to distinguish 

among n predicates. If n = 4 say then our binary pattern will be 
0001 to designate the predicate under consideration give. Then 
we  choose pattern 0010 to represent predicate own. We also 
need a truth value allocated for a predicate. We assign a single 
bit which could be 1 or 0 denoting predicate fact being true or 
otherwise respectively. 

          Then the localist pattern for the LHS of our rule can be 
written as 

                                            0001 001  001 001  1 

 The first  4 bit  value denotes the predicate give, the next 3 bit 
value denotes an object getting bound to variable x and the next 
3 bit value denotes an object getting bound to variable y and so 
on. The last bit indicates the truth value of predicate give. 

We assigned  values  ‘001’, ’001’ and  ‘001’  to variables x, y 
and z respectively. These values represent objects which are 
getting bound to these variables, say, John, Mary and Book-17. 
We have instantiated thereby the variables x, y and z of the LHS 
of the rule 1. 

       This will activate rule 1 and make variables on the right 
hand side of the rule ‘y’ and ‘z’ be assigned the values ‘001’ and 
‘001’ representing the objects Mary and Book-1 respectively. 
This asserts the right hand side of the rule 1, which is  
own(Mary,Book-1).  

Because of the rule activation the localist pattern representation 
for RHS will be after the rule firing                 

                                           0010 001 001 1. 

When a number of such rules are cascaded we continue the 
process of forward chaining to do the forward  reasoning. When 
RHS of rule 1 is asserted it activates rule 3 and part of rule 4. 
Rule 3 gets activated and fires and own of rule 4 gets activated 
and provided other parts  wantstobuy and hasrequiredmoney  of  
rule 4 also get activated then rule 4 fires. 

3. own(y,z) —>  donate(y,z) and 

4. own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m) 

       —>cansell(y,w,z); 

 The binding information is similarly passed on in these rules for 
the variables. This way forward reasoning is accomplished using 
localist representations. In Table 1 and 2 below we show 
samples of localist vectors for some of the predicates in the rule 
base. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Shows the samples of localist tuples used by  give 

S.No. 

 

Predicate id code Localist Value of   x Localist Value of  y Localist Value of  z  Truth  Value of 
Predicate 

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1   0 0 0 0 1 

215 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0   0 0 0 0 1 

 

Table 2  Shows the sample of localist  tuples used by predicate Cansell 

S.No 

 

Predicate 

 id code 

Localist Value of  y Localist Value of  w Localist Value of  z Truth  Value of 
Predicate 

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

46 0 0 0 0 0 0 0 1 0 0 0  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

  

3.2 Obtaining  Coarse-coded Distributed 
Representations from Localist 
Representations 
Consider the following tuple from the localist representation 
table of predicate give(x,y,z) 

0 0 0 0 1 0 0 0 0 0 0    0 0 0 0 0 0 0 0 0 1   0 0 0 0 0 0 0 0 1 0   0 
0 0 0 0 0 0 0 1 0    0 0 0 0 1 

 The first binary string  of 11 bits denotes predicate code, the 
next 10 bits denotes the value being assigned to variable x, the 
next 10 bits the value for variable y, the next 10 bits the value 
for variable z and the last 5 bits indicate the truth value of 
predicate. These localist tuples need to be converted into coarse-
coded representations to be used by our reasoning system. We 
explain here the process of obtaining coarse-coded 
representation for the above localist vector. We view the above 
vector as being kept in overlapping coarse zones of length of 4 
consecutive bits. We encode the  zone as 1 if there is atleast one 
1 bit in that zone or else as 0. We then consider next coarse zone 
and encode it as 1 or 0 following above method. We do this 
process  left to right starting from the left most bit. That means 
first coarse zone will have first 4 bits in its coarse zone. The 
second coarse zone will have bits 2 to 5 in its coarse zone. We 
do this encoding process for above localist tuple to yield 
following coarse-coded tuple 

01111000000   0000001111  0000011110   0000011110   
01111. We can easily obtain the original localist pattern by   

replacing  the substring ‘1111’ with ‘0001’ in the coarse-coded 
pattern. Coarse-coding can be applied when the number of 1’s in 

the original string is sufficiently sparse. If the number of 1’s in 
the original string is not sufficiently sparse then coarse-coded 
string when decoded will not yield the original string. This is the 
reason we have chosen a 5 bit string to denote the truth value of 
predicate( in which first 4 bits were kept as zeros). 

            The reason the coarse-coding could be applied 
successfully to our reasoning problem is that localist 
representations of  instantiated predicates were sufficiently 
sparse with regard to distribution of 1’s.  

3.2.1 Advantages of coarse-coding 
Coarse-coding increases the information capacity by  increasing 
the number of units active at a time compared to localist codes 
which have sparsely populated 1’s. The amount of information 
[4] conveyed  by a unit that has a probability p of being ‘1’ is  

– plog (p) – (1 - p)log(1 - p).  

Because of higher information capacity it supports  features like 
generalization, fault tolerance and graceful degradation of 
performance under noise conditions. For this application of 
predicate calculus reasoning problem coarse-coding the 
predicate and argument representations is expected to give 
above advantages. In the following part of the work, we  observe 
and note the generalization, fault tolerance and error correction 
capabilities  obtained when coarse-coding is used in feed-
forward connectionist architectures in a forward chaining 
connectionist reasoning system. 

           In the previous section, we have shown the samples of 
localist representations of the tuples of some of the predicates. 
We show here the coarse-coded representations of the predicates 
in rule base.  

 

 

Table 3   Shows a sample of coarse-code  representation of  data tuples used by predicate Give 

S.No of  
Tuple 

Predicate ‘id’ code Localist Value of   
x 

Localist Value of   
y 

Localist Value of   z Truth  Value of Predic-
ate 

Tuple no. 
215 

0 1 1 1 1 0 0 0 0 0 
0 

0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0   0 1 1 1 1 

 

 



Table 4 Shows a sample of coarse-code  representation of  data tuples used by predicate Own 

S.No of  Tuple Predicate ‘id’ code Localist  Value of  x 

 

Localist  Value of  y  

 

 

Truth  Value of Predicate 

Tuple no. 35 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 

 

 

Table 5  Shows a sample of coarse-code  representation of  data tuples used by predicate Buy 

S.No of  Tuple Predicate ‘id’ code Localist  Value of  x Localist  Value of  y 

 

Truth  Value of Predicate 

Tuple no. 34 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

 

Table 6  Shows a sample of coarse-code  representation of  data tuples used by predicate wantstobuy 

S.No of  Tuple Predicate ‘id’ code Localist  Value of  x 

 

Localist  Value of  y 

 

Truth  Value of Predicate 

Tuple no. 33 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 

 

Table 7   Shows a sample of coarse-code  representation of  data tuples used by predicate hasrequiredmoney 

S.No of  Tuple Predicate ‘id’ code Localist Value of   x Localist Value of   y Truth  Value of Predicate 

Tuple no. 31 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 

 

Table 8 Shows a sample of coarse-code  representation of  data tuples used by predicate Cansell 

S.No of  
Tuple 

Predicate ‘id’ 
code 

Localist Value of   
y 

Localist Value of   
w 

Localist Value of   z Truth  Value of 
Predicate 

Tuple no. 46 0 0 0 0 1 1 1 1 0 
0 0  

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

 

3.3 Organization of Neural Networks in the 
Connectionist Reasoning System  
                The neural networks shown in the following diagrams  
accomplish the forward reasoning using above coarse-coded 
tuples. They generate inferences by firing rules from  the rule 
base. Consider the  neural networks shown in figure 1. When 
impressed on its inputs with one of the vectors  vi  from the 
predicate table give the network 1 generates on its outputs a 
vector vo  from the predicate table own. This in turn  impresses on 
the inputs of network 2  to generate a vector vd  on its outputs. 
These vectors are in coarse-coded form and denote a predicate 
fact. Hence impressing a vector vi denoting a predicate fact  on the 
inputs of network 1 has generated a vector vo on its outputs 
denoting another predicate fact from the predicate table own. This 
way the rule give(x,y,z) —> own(y,z) was processed. The 
impression of vo on the inputs of network 2  generated  a vector vd  
on its outputs denoting a predicate fact from the predicate table 
donate. This processes the rule own(y,z) —> donate (y,z).  So here 
we see the rules 1 and 3 are getting activated in a forward 
chaining fashion . This is said to accomplish forward reasoning .   

 
Figure 1. Neural Networks for processing rules 1 and 3 

 

 

 



 
Figure 2. Neural Networks for processing rules 2 and 3 

 
      Similarly impressing a vector vb on the inputs of  network 3 
generates  vector vo on its outputs and this in turn  gets impressed 
on inputs of network 4  generating on its outputs vector  v dv from 
the predicate table donate. This way the rules  buy (y,z) —> own 
(y,z)  and own (y,z) —>donate (y,z)  get processed in a forward 
chaining fashion generating new inferences . The networks 3 and 
4 are shown in figure 2 accomplishing this activity. 

3.4 Variable Binding during Processing of the 
Complex Rule  
 Consider the  complex rule which involves multiple conjunctions.  

 own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m) —> 

  cansell(y,w,z). 

 This rule is processed by the connectionst architecture shown in 
figure 3. We use the  vectors vo,vw and vh from the predicate 
tables own, wantstobuy and hasrequiredmoney respectively. 
Though these are coarse-coded tuples their  structure has the 
format of predicate code p, value of variable 1, variable 2 and 
predicate truth value T / F. These constituents are distinguishable  
and hence they can be used directly. These constituents are in 
coarse coded form. We use these constituents to implement the 
complex rule under consideration. Component z is taken from 
both vo and vw   and given to network 5. This network generates 
truth value T or F depending on whether the values of variable z 
given to it are same or different. Similarly component 
w is taken both from vectors, vw and vh and given to network 6. 
This network generates truth value of T or F depending upon 
whether the values of variable w given to it are same or different. 
These truth values from network 5 and network 6 outputs are 
given to network 7 which  outputs T  if both of the truth values on  

its inputs are true else outputs F. The predicate code components 
of the vectors are given to another neural network 8 which outputs 
predicate code p for cansell. The values of y, w and z  are passed 
on to the output lines  as shown in figure 3 from the vectors vo,vw 
and vh respectively. If network 7 output is ‘T’ the values of  y,w 
and z  are accepted as belonging to vector  vc    of  the predicate 
table of cansell. Using this method the variable binding problem 
has been solved while processing the above complex rule which is 
involving multiple conjunctions. Our task was to check whether 
the variable w belonging to both wantstobuy and 
hasrequiredmoney are binding to same value. Similarly, we had to 
check whether variable z belonging to own and  wantstobuy are  

Figure 3. Neural Networks for processing rule 4 

 

 

bound to same value. We had accomplished these with networks 6 
and 5 respectively. 

      We have accomplished the variable binding  task here using a 
divide and conquer strategy  and distributed the total task to a set 
of neural networks which together accomplished the same. This 
approach can be similarly extended to handle even more complex 
rules which involve more number of  conjunctions. 

4. TESTING 
Following are the details of neural networks used to do above 
mentioned work.  

Table 9 Shows the details of neural networks used 

Network No. of input 
units 

No. of hidden 
units 

No. of output 
units 

1 46 40 36 

2 36 25 36 

3 36 25 36 

4 36 25 36 

5 20 10 5 

6 20 10 5 

7 15 10 5 

8 33 25 11 

9 66 56 52 

 

The  neural networks in table 9 are feed forward neural networks 
using back-propagation algorithm. The reasoning task was 
successfully accomplished to give the expected results. Secondly, 
the performance of the above coarse-coded reasoning system was 
compared  for error tolerance under noise conditions with a 
localist representation based reasoning system (which was having 
identical number of input, hidden and output units for its neural 
networks). Tests were performed using the SNNS simulator. In 



the test 1, neural network 1 was trained with 216 patterns. A 
subset 108 of them were made test patterns after introducing 1 bit 
error at a random location in each pattern. 

Table 10 Shows the details of  test 1 

Test 1 No. of 
training 
patterns 

No.of test 
patterns 

No.of 
patterns 
corrected 

No.of 
patterns 
not 
corrected 

Localist 
reasoning 
system 

216 108 60 48 

Coarse-
coded 
reasoning 
system 

216 108 89 19 

 

In the test 2,  neural network 9 with 66 input units, 56 hidden 
units and 52 output units  was trained with 750 patterns. The 
performance of the above for coarse-coded patterns was compared  
for error tolerance under noise conditions with another network 
(which was having identical number of input, hidden and output 
units ) but which used localist patterns. A subset 300 of  the 
training patterns were made test patterns after introducing 1 bit 
error at a random location in each pattern. 

Table 11 Shows the details of test 2 

Test 2 No. of 
training 
patterns 

No.of test 
patterns 

No.of 
patterns 
corrected 

No.of 
patterns 
not 
corrected 

Localist 
reasoning 
system 

750 300 207 93 

Coarse-
coded 
reasoning 
system 

750 300 274 26 

 

In tests 3 and 4, Neural network 9 was tested with coarse-coded 
patterns for generalization on unseen test patterns after 
completing the training with a training set. 

Table 12 Shows the details of test 3 

Test 3 No. of 
training 
patterns 

No.of 
unseen 
test 
patterns 

No.of 
patterns 
correctly 
generalized 

No.of 
patterns 
not 
correctly 
generalized 

Coarse-
coded 
reasoning 
system 

650 350 342 8 

 

Table 13 Shows the details of test 4 

Test 4 No. of 
training 
patterns 

No.of 
unseen 
test 
patterns 

No.of 
patterns 
correctly 
generalized 

No.of 
patterns 
not 
correctly 
generalized 

Coarse-
coded 
reasoning 
system 

700 300 300 0 

 

5. CONCLUSIONS 
We have tested a connectionist forward chaining reasoning system 
using distributed coarse-coded representations  on a given 
reasoning task. The system has successfully performed the given 
reasoning task. The system has displayed good generalization 
ability on unseen test patterns. The coarse-coded reasoning system 
was found to be much more fault tolerant to errors compared to 
localist reasoning system as was indicated by tests performed. 
These artificially introduced errors were simulating  noise 
conditions. We have also solved the variable binding problem 
faced while implementing multiple conjunctions(in a complex 
rule) using coarse-coded representations without the need to 
decode them into localist representation.  
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