
Connectionist Reasoning System using Coarse-coded
Distributed Representations

Sriram .G. Sanjeevi
Asst.Professor,

Dept. of Comp. Science & Engg.,
N.I.T. Warangal, Warangal 506004

91-0870-2430440

sgs@nitw.ernet.in

Dr. Pushpak Bhattacharya
Professor,

 Dept. of Comp. Science & Engg.,
 I.I.T. Bombay, Mumbai 400076

 91-22-5767718

pb@cse.iitb.ac.in

ABSTRACT
In this paper, we describe a model for reasoning using forward
chaining for predicate logic rules and facts with coarse-coded
distributed representations for instantiated predicates in a
connectionist frame work. Distributed representations are known
to give advantages of good generalization, error correction and
graceful degradation of performance under noise conditions.
The system supports usage of complex rules which involve
multiple conjunctions. The system solves the variable binding
problem using coarse-coded distributed representations of
instantiated predicates without the need to decode them into
localist representations. The system has performed forward
reasoning successfully on the given reasoning task. It’s
performance with regard to generalization on unseen inputs and
its ability to exhibit fault tolerance under noise conditions is
studied and has been found to give good results.

General Terms
 Design, Reliability, Experimentation and Verification.

Keywords
Coarse-coding, distributed representations, forward chaining,
predicates, connectionist frame work, fault tolerance.

1. INTRODUCTION
Traditionally reasoning systems using predicate logic have
been implemented using symbolic methods of artificial
intelligence. Connectionist methods of implementation of
reasoning systems describe an alternative paradigm. Among the
connectionist systems they use two types of representational
schemes. They are 1) localist and 2) distributed representational
schemes.

 Localist representational schemes represent each concept

with an individual unit or neuron. In the distributed
representational schemes [3] each unit or neuron is used in
representation of multiple concepts and multiple units or
neurons are used to represent a single concept. In the literature,
some localist methods for reasoning using connectionist
networks have been described. The connectionist inference
system SHRUTI [1], [5] described a localist method where
temporal synchrony was used to create bindings between
variables and entities they represent. A variable x of the
predicate give(x,y,z) is getting bound to an entity d if the nodes
representing them fire during the same phase of time p1 during
the predicate p activation period T. The time period T is divided
into three phases p1, p2 and p3 during which synchronous
firing of variable x, y and z and entity nodes they bound
respectively takes place. This method has used temporal
synchrony as a mechanism to establish variable binding.
CONSYDERR [2] described a localist method for variable
binding and forward reasoning. It uses an assembly or a set of
interconnected nodes to represent each predicate p(x1…..xk).
Each assembly contains one C node for storing the confidence
value of the predicate p and k X nodes to store the binding
values for k variables of the predicate p. A separate node is
allocated for each variable of a predicate. Each such node stores
a value representing a particular object being bound with that
variable. Different objects being bound to a variable will be
given separate values. Since, these systems use localist
representations, advantages of distributed representations are not
obtainable by them and hence the motivation for a distributed
representation based reasoning system. It is investigated here in
this work as to what advantages are obtained by a distributed
representation based reasoning system over their localist counter
parts. Further we deal with the issue of how variable binding
may be accomplished in such a connectionist environment
which uses distributed representations of it’s instantiated
predicates.

2. RULE and FACT BASE
Our system represents and reasons with predicate logic rules and
facts. Following are rules and facts we use.

1 give(x,y,z) —> own(y,z);
2 buy(x,y) —> own(x,y);
3 own(y,z) —> donate(y,z);

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

4 own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m)
— > cansell(y,w,z);

5 give(John,Mary,Book-17);
6 buy(Chris,Book-1);
7 wantstobuy(Walter,Book-1);
8 hasrequiredmoney(Walter,Money-1);

Our system uses the above rule base and makes inferences
shown below.

1. own(Mary,Book-17);

2. donate(Mary,Book-17);

3. own(Chris,Book-1);

4. cansell(Chris,Walter,Book-1);

Our task is to start with the above knowledge base and obtain
the results of inferencing correctly by our reasoning system. In
this paper we see how to accomplish the forward reasoning for
predicate calculus facts and rules using neural networks which
operate on coarse coded distributed representations. We start
with a database consisting of predicate logic facts and rules.
Each fact of predicate pi is represented by a vector vij.The
vector vij is a k dimensional vector which stores the coarse
coded representation of predicate fact. The size of each k is
chosen for a vij depending on the requirements of predicate pi.
The different instantiations of predicate pi are each represented
by separate vector vij where j varies from 1 to m . Thus the set
of instantiated predicates of pi are represented by subset of
vector space Rk. The value of i depends on the number of
predicates in the rule base. We then design suitable
connectionist frame work for doing reasoning with forward
chaining for the rule and fact base using these vectors.

3. FORWARD REASONING USING
CONNECTIONIST SYSTEM
3.1 Connectionist Reasoning Using Localist
Representations
We describe here how forward reasoning using localist
representations [6],[7] are made using a connectionist system.
Let us consider the rule 1:give(x,y,z)—> own(y,z) from the
knowledge base. We define how localist representations be
made for the values getting bound to the variables x, y and z and
how the localist connectionst system makes inference from the
rule. We assign values to each variable on the left hand side of a
rule. A value is allocated to a specific variable and it will
represent a particular object getting bound to that variable. We
assign binary string which is the localist representation of
object getting bound to that variable. Suppose, we have three
different objects for possible binding to variable x. We encode
them by the localist patterns 001, 010, 100 respectively. Other
variables y and z also get similar localist patterns for being
assigned to them. We need a pattern code for distinguishing
among predicates. We assign an n bit binary code to distinguish

among n predicates. If n = 4 say then our binary pattern will be
0001 to designate the predicate under consideration give. Then
we choose pattern 0010 to represent predicate own. We also
need a truth value allocated for a predicate. We assign a single
bit which could be 1 or 0 denoting predicate fact being true or
otherwise respectively.

 Then the localist pattern for the LHS of our rule can be
written as

 0001 001 001 001 1

 The first 4 bit value denotes the predicate give, the next 3 bit
value denotes an object getting bound to variable x and the next
3 bit value denotes an object getting bound to variable y and so
on. The last bit indicates the truth value of predicate give.

We assigned values ‘001’, ’001’ and ‘001’ to variables x, y
and z respectively. These values represent objects which are
getting bound to these variables, say, John, Mary and Book-17.
We have instantiated thereby the variables x, y and z of the LHS
of the rule 1.

 This will activate rule 1 and make variables on the right
hand side of the rule ‘y’ and ‘z’ be assigned the values ‘001’ and
‘001’ representing the objects Mary and Book-1 respectively.
This asserts the right hand side of the rule 1, which is
own(Mary,Book-1).

Because of the rule activation the localist pattern representation
for RHS will be after the rule firing

 0010 001 001 1.

When a number of such rules are cascaded we continue the
process of forward chaining to do the forward reasoning. When
RHS of rule 1 is asserted it activates rule 3 and part of rule 4.
Rule 3 gets activated and fires and own of rule 4 gets activated
and provided other parts wantstobuy and hasrequiredmoney of
rule 4 also get activated then rule 4 fires.

3. own(y,z) —> donate(y,z) and

4. own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m)

 —>cansell(y,w,z);

 The binding information is similarly passed on in these rules for
the variables. This way forward reasoning is accomplished using
localist representations. In Table 1 and 2 below we show
samples of localist vectors for some of the predicates in the rule
base.

Table 1. Shows the samples of localist tuples used by give

S.No.

Predicate id code Localist Value of x Localist Value of y Localist Value of z Truth Value of
Predicate

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

215 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Table 2 Shows the sample of localist tuples used by predicate Cansell

S.No

Predicate

 id code

Localist Value of y Localist Value of w Localist Value of z Truth Value of
Predicate

5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

46 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

3.2 Obtaining Coarse-coded Distributed
Representations from Localist
Representations
Consider the following tuple from the localist representation
table of predicate give(x,y,z)

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1

 The first binary string of 11 bits denotes predicate code, the
next 10 bits denotes the value being assigned to variable x, the
next 10 bits the value for variable y, the next 10 bits the value
for variable z and the last 5 bits indicate the truth value of
predicate. These localist tuples need to be converted into coarse-
coded representations to be used by our reasoning system. We
explain here the process of obtaining coarse-coded
representation for the above localist vector. We view the above
vector as being kept in overlapping coarse zones of length of 4
consecutive bits. We encode the zone as 1 if there is atleast one
1 bit in that zone or else as 0. We then consider next coarse zone
and encode it as 1 or 0 following above method. We do this
process left to right starting from the left most bit. That means
first coarse zone will have first 4 bits in its coarse zone. The
second coarse zone will have bits 2 to 5 in its coarse zone. We
do this encoding process for above localist tuple to yield
following coarse-coded tuple

01111000000 0000001111 0000011110 0000011110
01111. We can easily obtain the original localist pattern by

replacing the substring ‘1111’ with ‘0001’ in the coarse-coded
pattern. Coarse-coding can be applied when the number of 1’s in

the original string is sufficiently sparse. If the number of 1’s in
the original string is not sufficiently sparse then coarse-coded
string when decoded will not yield the original string. This is the
reason we have chosen a 5 bit string to denote the truth value of
predicate(in which first 4 bits were kept as zeros).

 The reason the coarse-coding could be applied
successfully to our reasoning problem is that localist
representations of instantiated predicates were sufficiently
sparse with regard to distribution of 1’s.

3.2.1 Advantages of coarse-coding
Coarse-coding increases the information capacity by increasing
the number of units active at a time compared to localist codes
which have sparsely populated 1’s. The amount of information
[4] conveyed by a unit that has a probability p of being ‘1’ is

– plog (p) – (1 - p)log(1 - p).

Because of higher information capacity it supports features like
generalization, fault tolerance and graceful degradation of
performance under noise conditions. For this application of
predicate calculus reasoning problem coarse-coding the
predicate and argument representations is expected to give
above advantages. In the following part of the work, we observe
and note the generalization, fault tolerance and error correction
capabilities obtained when coarse-coding is used in feed-
forward connectionist architectures in a forward chaining
connectionist reasoning system.

 In the previous section, we have shown the samples of
localist representations of the tuples of some of the predicates.
We show here the coarse-coded representations of the predicates
in rule base.

Table 3 Shows a sample of coarse-code representation of data tuples used by predicate Give

S.No of
Tuple

Predicate ‘id’ code Localist Value of
x

Localist Value of
y

Localist Value of z Truth Value of Predic-
ate

Tuple no.
215

0 1 1 1 1 0 0 0 0 0
0

0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1

Table 4 Shows a sample of coarse-code representation of data tuples used by predicate Own

S.No of Tuple Predicate ‘id’ code Localist Value of x

Localist Value of y

Truth Value of Predicate

Tuple no. 35 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1

Table 5 Shows a sample of coarse-code representation of data tuples used by predicate Buy

S.No of Tuple Predicate ‘id’ code Localist Value of x Localist Value of y

Truth Value of Predicate

Tuple no. 34 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Table 6 Shows a sample of coarse-code representation of data tuples used by predicate wantstobuy

S.No of Tuple Predicate ‘id’ code Localist Value of x

Localist Value of y

Truth Value of Predicate

Tuple no. 33 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1

Table 7 Shows a sample of coarse-code representation of data tuples used by predicate hasrequiredmoney

S.No of Tuple Predicate ‘id’ code Localist Value of x Localist Value of y Truth Value of Predicate

Tuple no. 31 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1

Table 8 Shows a sample of coarse-code representation of data tuples used by predicate Cansell

S.No of
Tuple

Predicate ‘id’
code

Localist Value of
y

Localist Value of
w

Localist Value of z Truth Value of
Predicate

Tuple no. 46 0 0 0 0 1 1 1 1 0
0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3.3 Organization of Neural Networks in the
Connectionist Reasoning System
 The neural networks shown in the following diagrams
accomplish the forward reasoning using above coarse-coded
tuples. They generate inferences by firing rules from the rule
base. Consider the neural networks shown in figure 1. When
impressed on its inputs with one of the vectors vi from the
predicate table give the network 1 generates on its outputs a
vector vo from the predicate table own. This in turn impresses on
the inputs of network 2 to generate a vector vd on its outputs.
These vectors are in coarse-coded form and denote a predicate
fact. Hence impressing a vector vi denoting a predicate fact on the
inputs of network 1 has generated a vector vo on its outputs
denoting another predicate fact from the predicate table own. This
way the rule give(x,y,z) —> own(y,z) was processed. The
impression of vo on the inputs of network 2 generated a vector vd
on its outputs denoting a predicate fact from the predicate table
donate. This processes the rule own(y,z) —> donate (y,z). So here
we see the rules 1 and 3 are getting activated in a forward
chaining fashion . This is said to accomplish forward reasoning .

Figure 1. Neural Networks for processing rules 1 and 3

Figure 2. Neural Networks for processing rules 2 and 3

 Similarly impressing a vector vb on the inputs of network 3
generates vector vo on its outputs and this in turn gets impressed
on inputs of network 4 generating on its outputs vector v dv from
the predicate table donate. This way the rules buy (y,z) —> own
(y,z) and own (y,z) —>donate (y,z) get processed in a forward
chaining fashion generating new inferences . The networks 3 and
4 are shown in figure 2 accomplishing this activity.

3.4 Variable Binding during Processing of the
Complex Rule
 Consider the complex rule which involves multiple conjunctions.

 own(y,z) ^ wantstobuy(w,z) ^ hasrequiredmoney(w,m) —>

 cansell(y,w,z).

 This rule is processed by the connectionst architecture shown in
figure 3. We use the vectors vo,vw and vh from the predicate
tables own, wantstobuy and hasrequiredmoney respectively.
Though these are coarse-coded tuples their structure has the
format of predicate code p, value of variable 1, variable 2 and
predicate truth value T / F. These constituents are distinguishable
and hence they can be used directly. These constituents are in
coarse coded form. We use these constituents to implement the
complex rule under consideration. Component z is taken from
both vo and vw and given to network 5. This network generates
truth value T or F depending on whether the values of variable z
given to it are same or different. Similarly component
w is taken both from vectors, vw and vh and given to network 6.
This network generates truth value of T or F depending upon
whether the values of variable w given to it are same or different.
These truth values from network 5 and network 6 outputs are
given to network 7 which outputs T if both of the truth values on

its inputs are true else outputs F. The predicate code components
of the vectors are given to another neural network 8 which outputs
predicate code p for cansell. The values of y, w and z are passed
on to the output lines as shown in figure 3 from the vectors vo,vw
and vh respectively. If network 7 output is ‘T’ the values of y,w
and z are accepted as belonging to vector vc of the predicate
table of cansell. Using this method the variable binding problem
has been solved while processing the above complex rule which is
involving multiple conjunctions. Our task was to check whether
the variable w belonging to both wantstobuy and
hasrequiredmoney are binding to same value. Similarly, we had to
check whether variable z belonging to own and wantstobuy are

Figure 3. Neural Networks for processing rule 4

bound to same value. We had accomplished these with networks 6
and 5 respectively.

 We have accomplished the variable binding task here using a
divide and conquer strategy and distributed the total task to a set
of neural networks which together accomplished the same. This
approach can be similarly extended to handle even more complex
rules which involve more number of conjunctions.

4. TESTING
Following are the details of neural networks used to do above
mentioned work.

Table 9 Shows the details of neural networks used

Network No. of input
units

No. of hidden
units

No. of output
units

1 46 40 36

2 36 25 36

3 36 25 36

4 36 25 36

5 20 10 5

6 20 10 5

7 15 10 5

8 33 25 11

9 66 56 52

The neural networks in table 9 are feed forward neural networks
using back-propagation algorithm. The reasoning task was
successfully accomplished to give the expected results. Secondly,
the performance of the above coarse-coded reasoning system was
compared for error tolerance under noise conditions with a
localist representation based reasoning system (which was having
identical number of input, hidden and output units for its neural
networks). Tests were performed using the SNNS simulator. In

the test 1, neural network 1 was trained with 216 patterns. A
subset 108 of them were made test patterns after introducing 1 bit
error at a random location in each pattern.

Table 10 Shows the details of test 1

Test 1 No. of
training
patterns

No.of test
patterns

No.of
patterns
corrected

No.of
patterns
not
corrected

Localist
reasoning
system

216 108 60 48

Coarse-
coded
reasoning
system

216 108 89 19

In the test 2, neural network 9 with 66 input units, 56 hidden
units and 52 output units was trained with 750 patterns. The
performance of the above for coarse-coded patterns was compared
for error tolerance under noise conditions with another network
(which was having identical number of input, hidden and output
units) but which used localist patterns. A subset 300 of the
training patterns were made test patterns after introducing 1 bit
error at a random location in each pattern.

Table 11 Shows the details of test 2

Test 2 No. of
training
patterns

No.of test
patterns

No.of
patterns
corrected

No.of
patterns
not
corrected

Localist
reasoning
system

750 300 207 93

Coarse-
coded
reasoning
system

750 300 274 26

In tests 3 and 4, Neural network 9 was tested with coarse-coded
patterns for generalization on unseen test patterns after
completing the training with a training set.

Table 12 Shows the details of test 3

Test 3 No. of
training
patterns

No.of
unseen
test
patterns

No.of
patterns
correctly
generalized

No.of
patterns
not
correctly
generalized

Coarse-
coded
reasoning
system

650 350 342 8

Table 13 Shows the details of test 4

Test 4 No. of
training
patterns

No.of
unseen
test
patterns

No.of
patterns
correctly
generalized

No.of
patterns
not
correctly
generalized

Coarse-
coded
reasoning
system

700 300 300 0

5. CONCLUSIONS
We have tested a connectionist forward chaining reasoning system
using distributed coarse-coded representations on a given
reasoning task. The system has successfully performed the given
reasoning task. The system has displayed good generalization
ability on unseen test patterns. The coarse-coded reasoning system
was found to be much more fault tolerant to errors compared to
localist reasoning system as was indicated by tests performed.
These artificially introduced errors were simulating noise
conditions. We have also solved the variable binding problem
faced while implementing multiple conjunctions(in a complex
rule) using coarse-coded representations without the need to
decode them into localist representation.

6. REFERENCES
[1] Shastri, L. (1999). Advances in SHRUTI: a neurally

motivated model of relational knowledge representation and
rapid inferencing using temporal synchrony Applied
Intelligence, 11 (1), 79-108 .

[2] Sun,R. (1992) On variable binding in connectionist
networks.Connection Science, 4, 93-124.

[3] T.J. Van Gelder, Defining ‘ distributed representation’,
Connection Science 4 (3 and 4) (1992) 175-192.

[4] Hinton,G.E., J.L. McClelland and D.E.Rumelhart.
(1986).Distributed representations. In D.E.Rumelhart and
J.L.McClelland, editors, Parallel Distributed Processing,
Vol.1. Cambridge,MA. MIT Press.

[5] Shastri, L. and V. Ajjanagadde. (1993) From simple
associations to systematic reasoning: A connectionist
representation of rules, variables and dynamic bindings.
Behavioral and Brain Sciences, 16(3), 417-494.

[6] Browne, A., & Sun, R. (1999). Connectionist variable
binding . Expert systems: The International Journal of
Knowledge Engineering and Neural Networks, 16(3), 189-
207.

[7] A. Browne, R.Sun. Connectionist inference models, Neural
Networks 14 (2001) 1331-1355

[8] Russel, S & Norvig, P . Artificial Intelligence a Modern
Approach, Second Edition, Delhi: Pearson Education, 2003

[9] Haykins, S . Neural Networks, a comprehensive foundation,
Second edition, New Jersey: Prentice hall,1999.

