
Robust Sense-Based Sentiment Classification
Balamurali A R1 Aditya Joshi2 Pushpak Bhattacharyya2

1 IITB-Monash Research Academy, IIT Bombay
2Dept. of Computer Science and Engineering, IIT Bombay

Mumbai, India - 400076
{balamurali,adityaj,pb}@cse.iitb.ac.in

Abstract

The new trend in sentiment classification is
to use semantic features for representation
of documents. We propose a semantic space
based on WordNet senses for a supervised
document-level sentiment classifier. Not only
does this show a better performance for sen-
timent classification, it also opens opportuni-
ties for building a robust sentiment classifier.
We examine the possibility of using similar-
ity metrics defined on WordNet to address the
problem of not finding a sense in the training
corpus. Using three popular similarity met-
rics, we replace unknown synsets in the test
set with a similar synset from the training set.
An improvement of 6.2% is seen with respect
to baseline using this approach.

1 Introduction

Sentiment classification is a task under Sentiment
Analysis (SA) that deals with automatically tagging
text as positive, negative or neutral from the perspec-
tive of the speaker/writer with respect to a topic.
Thus, a sentiment classifier tags the sentence ‘The
movie is entertaining and totally worth your money!’
in a movie review as positive with respect to the
movie. On the other hand, a sentence ‘The movie is
so boring that I was dozing away through the second
half.’ is labeled as negative. Finally, ‘The movie is
directed by Nolan’ is labeled as neutral. For the pur-
pose of this work, we follow the definition of Pang
et al. (2002) & Turney (2002) and consider a binary
classification task for output labels as positive and
negative.

Lexeme-based (bag-of-words) features are com-
monly used for supervised sentiment classifica-
tion (Pang and Lee, 2008). In addition to this, there
also has been work that identifies the roles of dif-
ferent parts-of-speech (POS) like adjectives in sen-
timent classification (Pang et al., 2002; Whitelaw et

al., 2005). Complex features based on parse trees
have been explored for modeling high-accuracy po-
larity classifiers (Matsumoto et al., 2005). Text
parsers have also been found to be helpful in mod-
eling valence shifters as features for classifica-
tion (Kennedy and Inkpen, 2006). In general, the
work in the context of supervised SA has focused on
(but not limited to) different combinations of bag-
of-words-based and syntax-based models.

The focus of this work is to represent a document
as a set of sense-based features. We ask the follow-
ing questions in this context:

1. Are WordNet senses better features as com-
pared to words?

2. Can a sentiment classifier be made robust with
respect to features unseen in the training cor-
pus using similarity metrics defined for con-
cepts in WordNet?

We modify the corpus by Ye et al. (2009) for the
purpose of our experiments related to sense-based
sentiment classification. To address the first ques-
tion, we show that the approach that uses senses (ei-
ther manually annotated or obtained through auto-
matic WSD techniques) as features performs better
than the one that uses words as features.

Using senses as features allows us to achieve ro-
bustness for sentiment classification by exploiting
the definition of concepts (sense) and hierarchical
structure of WordNet. Hence to address the second
question, we replace a synset not present in the test
set with a similar synset from the training set us-
ing similarity metrics defined on WordNet. Our re-
sults show that replacement of this nature provides a
boost to the classification performance.

The road map for the rest of the paper is as fol-
lows: Section 2 describes the sense-based features
that we use for this work. We explain the similarity-
based replacement technique using WordNet synsets



in section 3. Details about our experiments are de-
scribed in Section 4. In section 5, we present our
results and discussions. We contextualize our work
with respect to other related works in section 6. Fi-
nally, section 7 concludes the paper and points to
future work.

2 WordNet Senses as Features

In their original form, documents are said to be in
lexical space since they consist of words. When the
words are replaced by their corresponding senses,
the resultant document is said to be in semantic
space.

WordNet 2.1 (Fellbaum, 1998) has been used as
the sense repository. Each word/lexeme is mapped
to an appropriate synset in WordNet based on
its sense and represented using the corresponding
synset id of WordNet. Thus, the word love is dis-
ambiguated and replaced by the identifier 21758160
which consists of a POS category identifier 2 fol-
lowed by synset offset identifier 1758160. This
paper refers to POS category identifier along with
synset offset as synset identifiers or as senses.

2.1 Motivation
We describe three different scenarios to show the
need of sense-based analysis for SA. Consider the
following sentences as the first scenario.

1. “Her face fell when she heard that she had
been fired.”

2. “The fruit fell from the tree.”

The word ‘fell’ occurs in different senses in the
two sentences. In the first sentence, ‘fell’ has the
meaning of ‘assume a disappointed or sad expres-
sion, whereas in the second sentence, it has the
meaning of ‘descend in free fall under the influence
of gravity’. A user will infer the negative polarity
of the first sentence from the negative sense of ‘fell’
in it. This implies that there is at least one sense of
the word ‘fell’ that carries sentiment and at least one
that does not.

In the second scenario, consider the following ex-
amples.

1. “The snake bite proved to be deadly for the
young boy.”

2. “Shane Warne is a deadly spinner.”

The word deadly has senses which carry opposite
polarity in the two sentences and these senses as-
sign the polarity to the corresponding sentence. The
first sentence is negative while the second sentence
is positive.

Finally in the third scenario, consider the follow-
ing pair of sentences.

1. “He speaks a vulgar language.”

2. “Now that’s real crude behavior!”

The words vulgar and crude occur as synonyms
in the synset that corresponds to the sense ‘conspic-
uously and tastelessly indecent’. The synonymous
nature of words can be identified only if they are
looked at as senses and not just words.

As one may observe, the first scenario shows that
a word may have some sentiment-bearing and some
non-sentiment-bearing senses. In the second sce-
nario, we show that there may be different senses
of a word that bear sentiments of opposite polarity.
Finally, in the third scenario, we show how a sense
can be manifested using different words, i.e., words
in a synset. The three scenarios motivate the use of
semantic space for sentiment prediction.

2.2 Sense versus Lexeme-based Feature
Representations

We annotate the words in the corpus with their
senses using two sense disambiguation approaches.

As the first approach, manual sense annotation
of documents is carried out by two annotators on
two subsets of the corpus, the details of which are
given in Section 4.1. The experiments conducted on
this set determine the ideal case scenario- the skyline
performance.

As the second approach, a state-of-art algorithm
for domain-specific WSD proposed by Khapra et
al. (2010) is used to obtain an automatically sense-
tagged corpus. This algorithm called iterative WSD
or IWSD iteratively disambiguates words by rank-
ing the candidate senses based on a scoring function.

The two types of sense-annotated corpus lead us
to four feature representations for a document:

1. A group of word senses that have been manu-
ally annotated (M)



2. A group of word senses that have been anno-
tated by an automatic WSD (I)

3. A group of manually annotated word senses
and words (both separately as features) (Sense
+ Words(M))

4. A group of automatically annotated word
senses and words (both separately as features)
(Sense + Words(I))

Our first set of experiments compares the four fea-
ture representations to find the feature representa-
tion with which sentiment classification gives the
best performance. Sense + Words(M) and Sense
+ Words(I) are used to overcome non-coverage of
WordNet for some noun synsets.

3 Similarity Metrics and Unknown Synsets

3.1 Synset Replacement Algorithm

Using WordNet senses provides an opportunity to
use similarity-based metrics for WordNet to reduce
the effect of unknown features. If a synset encoun-
tered in a test document is not found in the training
corpus, it is replaced by one of the synsets present
in the training corpus. The substitute synset is deter-
mined on the basis of its similarity with the synset
in the test document. The synset that is replaced is
referred to as an unseen synset as it is not known to
the trained model.

For example, consider excerpts of two reviews,
the first of which occurs in the training corpus while
the second occurs in the test corpus.

1. “ In the night, it is a lovely city and... ”

2. “ The city has many beautiful hot spots for hon-
eymooners. ”

The synset of ‘beautiful’ is not present in the train-
ing corpus. We evaluate a similarity metric for all
synsets in the training corpus with respect to the
sense of beautiful and find that the sense of lovely is
closest to it. Hence, the sense of beautiful in the test
document is replaced by the sense of lovely which is
present in the training corpus.

The replacement algorithm is described in
Algorithm 1. The term concept is used in place
of synset though the two essentially mean the

same in this context. The algorithm aims to find a
concept temp concept for each concept in the test
corpus. The temp concept is the concept closest to
some concept in the training corpus based on the
similarity metrics. The algorithm follows from the
fact that the similarity value for a synset with itself
is maximum.

Input: Training Corpus, Test Corpus,
Similarity Metric
Output: New Test Corpus
T:= Training Corpus;
X:= Test Corpus;
S:= Similarity metric;
train concept list = get list concept(T) ;
test concept list = get list concept(X);
for each concept C in test concept list do

temp max similarity = 0 ;
temp concept = C ;
for each concept D in train concept list do

similarity value = get similarity value(C,D,S);
if (similarity value > temp max similarity) then

temp max similarity= similarity value;
temp concept = D ;

end
end
replace synset corpus(C,temp concept,X);

end
Return X ;

Algorithm 1: Synset replacement using similarity
metric

The for loop over C finds a concept temp concept
in the training corpus with the maximum
similarity value. The method replace synset corpus
replaces the concept C in the test corpus with
temp concept in the test corpus X.

3.2 Similarity Metrics Used
We evaluate the benefit of three similarity metrics,
namely LIN’s similarity metric, Lesk similarity
metric and Leacock and Chodorow (LCH) similarity
metric for the synset replacement algorithm stated.
These runs generate three variants of the corpus.
We compare the benefit of each of these metrics by
studying their sentiment classification performance.
The metrics can be described as follows:

LIN: The metric by Lin (1998) uses the infor-
mation content individually possessed by two con-
cepts in addition to that shared by them. The infor-
mation content shared by two concepts A and B is
given by their most specific subsumer (lowest super-



ordinate(lso). Thus, this metric defines the similarity
between two concepts as

simLIN (A,B) =
2× logPr(lso(A,B))

logPr(A) + logPr(B)
(1)

Lesk: Each concept in WordNet is defined
through gloss. To compute the Lesk similar-
ity (Banerjee and Pedersen, 2002) between A and
B, a scoring function based on the overlap of words
in their individual glosses is used.

Leacock and Chodorow (LCH): To measure
similarity between two concepts A and B, Leacock
and Chodorow (1998) compute the shortest path
through hypernymy relation between them under the
constraint that there exists such a path. The final
value is computed by scaling the path length by the
overall taxonomy depth (D).

simLCH(A,B) = − log

(
len(A,B)

2D

)
(2)

4 Experimentation

We describe the variants of the corpus generated and
the experiments in this section.

4.1 Data Preparation
We create different variants of the dataset by Ye et
al. (2009). This dataset contains 600 positive and
591 negative reviews about seven travel destinations.
Each review contains approximately 4-5 sentences
with an average number of words per review being
80-85.

To create the manually annotated corpus, two hu-
man annotators annotate words in the corpus with
senses for two disjoint subsets of the original cor-
pus by Ye et al. (2009). The inter-annotation agree-
ment for a subset(20 positive reviews) of the corpus
showed 91% sense overlap. The manually annotated
corpus consists of 34508 words with 6004 synsets.

The second variant of the corpus contains word
senses obtained from automatic disambiguation us-
ing IWSD. The evaluation statistics of the IWSD is
shown in Table 1. Table 1 shows that the F-score for
noun synsets is high while that for adjective synsets
is the lowest among all. The low recall for adjec-
tive POS based synsets can be detrimental to classi-
fication since adjectives are known to express direct
sentiment (Pang et al., 2002).

POS #Words P(%) R(%) F-Score(%)
Noun 12693 75.54 75.12 75.33
Adverb 4114 71.16 70.90 71.03
Adjective 6194 67.26 66.31 66.78
Verb 11507 68.28 67.97 68.12
Overall 34508 71.12 70.65 70.88

Table 1: Annotation Statistics for IWSD; P- Precision,R-
Recall

4.2 Experimental Setup

The experiments are performed using C-SVM (lin-
ear kernel with default parameters1) available as a
part of LibSVM2 package. We choose to use SVM
since it performs the best for sentiment classification
(Pang et al., 2002). All results reported are average
of five-fold cross-validation accuracies.

To conduct experiments on words as features, we
first perform stop-word removal. The words are
not stemmed as per observations by (Leopold and
Kindermann, 2002). To conduct the experiments
based on the synset representation, words in the
corpus are annotated with synset identifiers along
with POS category identifiers. For automatic sense
disambiguation, we used the trained IWSD engine
(trained on tourism domain) from Khapra et al.
(2010). These synset identifiers along with POS cat-
egory identifiers are then used as features. For re-
placement using semantic similarity measures, we
used WordNet::Similarity 2.05 package by Pedersen
et al. (2004).

To evaluate the result, we use accuracy, F-score,
recall and precision as the metrics. Classification
accuracy defines the ratio of the number of true in-
stances to the total number of instances. Recall is
calculated as a ratio of the true instances found to
the total number of false positives and true posi-
tives. Precision is defined as the number of true
instances divided by number of true positives and
false negatives. Positive Precision (PP) and Posi-
tive Recall (PR) are precision and recall for positive
documents while Negative Precision (NP) and Nega-
tive Recall (NR) are precision and recall for negative
documents. F-score is the weighted precision-recall

1C=0.0,ε=0.0010
2http://www.csie.ntu.edu.tw/ cjlin/libsvm



Feature Representation Accuracy PF NF PP NP PR NR
Words 84.90 85.07 84.76 84.95 84.92 85.19 84.60
Sense (M) 89.10 88.22 89.11 91.50 87.07 85.18 91.24
Sense + Words (M) 90.20 89.81 90.43 92.02 88.55 87.71 92.39
Sense (I) 85.48 85.31 85.65 87.17 83.93 83.53 87.46
Sense + Words(I) 86.08 86.28 85.92 85.87 86.38 86.69 85.46

Table 2: Classification Results; M-Manual, I-IWSD, W-Words, PF-Positive F-score(%), NF-Negative F-score (%),
PP-Positive Precision (%), NP-Negative Precision (%), PR-Positive Recall (%), NR-Negative Recall (%)

score.

5 Results and Discussions

5.1 Comparison of various feature
representations

Table 2 shows results of classification for different
feature representations. The baseline for our results
is the unigram bag-of-words model (Words).

An improvement of 4.2% is observed in the ac-
curacy of sentiment prediction when manually an-
notated sense-based features (M) are used in place
of word-based features (Words). The precision of
both the classes using features based on semantic
space is also better than one based on lexeme space.
Reported results suggest that it is more difficult to
detect negative sentiment than positive sentiment
(Gindl and Liegl, 2008). However, using sense-
based representation, it is important to note that neg-
ative recall increases by around 8%.

The combined model of words and manually an-
notated senses (Sense + Words (M)) gives the best
performance with an accuracy of 90.2%. This leads
to an improvement of 5.3% over the baseline accu-
racy 3.

One of the reasons for improved performance is
the feature abstraction achieved due to the synset-
based features. The dimension of feature vector is
reduced by a factor of 82% when the document is
represented in synset space. The reduction in dimen-
sionality may also lead to reduction in noise (Cun-
ningham, 2008).

A comparison of accuracy of different sense rep-
resentations in Table 2 shows that manual disam-

3The improvement in results of semantic space is found to
be statistically significant over the baseline at 95% confidence
level when tested using a paired t-test.

biguation performs better than using automatic al-
gorithms like IWSD. Although overall classification
accuracy improvement of IWSD over baseline is
marginal, negative recall also improves. This bene-
fit is despite the fact that evaluation of IWSD engine
over manually annotated corpus gave an overall F-
score of 71% (refer Table 1). For a WSD engine
with a better accuracy, the performance of sense-
based SA can be boosted further.

Thus, in terms of feature representation of docu-
ments, sense-based features provide a better overall
performance as compared to word-based features.

5.2 Synset replacement using similarity metrics

Table 3 shows the results of synset replacement ex-
periments performed using similarity metrics de-
fined in section 3. The similarity metric value NA
shown in the table indicates that synset replacement
is not performed for the specific run of experiment.
For this set of experiments, we use the combina-
tion of sense and words as features (indicated by
Senses+Words (M)).

Synset replacement using a similarity metric
shows an improvement over using words alone.
However, the improvement in classification accu-
racy is marginal compared to sense-based represen-
tation without synset replacement (Similarity Met-
ric=NA).

Replacement using LIN and LCH metrics gives
marginally better results compared to the vanilla set-
ting in a manually annotated corpus. The same phe-
nomenon is seen in the case of IWSD based ap-
proach4. The limited improvement can be due to
the fact that since LCH and LIN consider only IS-A

4Results based on LCH and LIN similarity metric for auto-
matic sense disambiguation is not statistically significant with
α=0.05



Features Representa-
tion

SM A PF NF

Words (Baseline) NA 84.90 85.07 84.76
Sense+Words (M) NA 90.20 89.81 90.43
Sense+Words (I) NA 86.08 86.28 85.92
Sense+Words (M) LCH 90.60 90.20 90.85
Sense+Words (M) LIN 90.70 90.26 90.97
Sense+Words (M) Lesk 91.12 90.70 91.38
Sense+Words (I) LCH 85.66 85.85 85.52
Sense+Words (I) LIN 86.16 86.37 86.00
Sense+Words (I) Lesk 86.25 86.41 86.10

Table 3: Similarity Metric Analysis using different
similarity metrics with synsets and a combinations of
synset and words; SM-Similarity Metric, A-Accuracy,
PF-Positive F-score(%), NF-Negative F-score (%)

relationship in WordNet, the replacement happens
only for verbs and nouns. This excludes adverb
synsets which we have shown to be the best features
for a sense-based SA system.

Among all similarity metrics, the best classifica-
tion accuracy is achieved using Lesk. The system
performs with an overall classification accuracy of
91.12%, which is a substantial improvement of 6.2%
over baseline. Again, it is only 1% over the vanilla
setting that uses combination of synset and words.
However, the similarity metric is not sophisticated as
LIN or LCH. A good metric which covers all POS
categories can provide substantial improvement in
the classification accuracy.

6 Related Work

This work deals with studying benefit of a word
sense-based feature space to supervised sentiment
classification. This work assumes the hypothesis
that word sense is associated with the sentiment as
shown by Wiebe and Mihalcea (2006) through hu-
man interannotator agreement.

Akkaya et al. (2009) and Martn-Wanton et al.
(2010) study rule-based sentiment classification us-
ing word senses where Martn-Wanton et al. (2010)
uses a combination of sentiment lexical resources.
Instead of a rule-based implementation, our work
leverages on benefits of a statistical learning-based
methods by using a supervised approach. Rentoumi
et al. (2009) suggest an approach to use word senses
to detect sentence level polarity using graph-based

similarity. While Rentoumi et al. (2009) targets us-
ing senses to handle metaphors in sentences, we deal
with generating a general-purpose classifier.

Carrillo de Albornoz et al. (2010) create an emo-
tional intensity classifier using affective class con-
cepts as features. By using WordNet synsets as fea-
tures, we construct feature vectors that map to a
larger sense-based space.

Akkaya et al. (2009), Martn-Wanton et al. (2010)
and Carrillo de Albornoz et al. (2010) deal with
sentiment classification of sentences. On the other
hand, we associate sentiment polarity to a document
on the whole as opposed to Pang and Lee (2004)
which deals with sentiment prediction of subjectiv-
ity content only. Carrillo de Albornoz et al. (2010)
suggests expansion using WordNet relations which
we perform in our experiments.

7 Conclusion & Future Work

We present an empirical study to show that sense-
based features work better as compared to word-
based features. We show how the performance im-
pact differs for different automatic and manual tech-
niques. We also show the benefit using WordNet
based similarity metrics for replacing unknown fea-
tures in the test set. Our results support the fact that
not only does sense space improve the performance
of a sentiment classification system but also opens
opportunities for building robust sentiment classi-
fiers that can handle unseen synsets.

Incorporation of syntactical information along
with semantics can be an interesting area of
work. Another line of work is in the context of
cross-lingual sentiment analysis. Current solutions
are based on machine translation which is very
resource-intensive. Using a bi-lingual dictionary
which maps WordNet across languages can prove to
be an alternative.
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