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ABSTRACT
We present a question answering (QA) system which learns
how to detect and rank answer passages by analyzing ques-
tions and their answers (QA pairs) provided as training data.
We built our system in only a few person-months using off-
the-shelf components: a part-of-speech tagger, a shallow
parser, a lexical network, and a few well-known supervised
learning algorithms. In contrast, many of the top TREC
QA systems are large group efforts, using customized on-
tologies, question classifiers, and highly tuned ranking func-
tions. Our ease of deployment arises from using generic,
trainable algorithms that exploit simple feature extractors
on QA pairs. With TREC QA data, our system achieves
mean reciprocal rank (MRR) that compares favorably with
the best scores in recent years, and generalizes from one
corpus to another. Our key technique is to recover, from
the question, fragments of what might have been posed as
a structured query, had a suitable schema been available.
One fragment comprises selectors: tokens that are likely
to appear (almost) unchanged in an answer passage. The
other fragment contains question tokens which give clues
about the answer type, and are expected to be replaced in
the answer passage by tokens which specialize or instanti-
ate the desired answer type. Selectors are like constants
in where-clauses in relational queries, and answer types are
like column names. We present new algorithms for locating
selectors and answer type clues and using them in scoring
passages with respect to a question.

Categories and subject descriptors: [H.3.1 Content
Analysis and Indexing; Linguistic processing] [H.3.3 Infor-
mation Search and Retrieval; Query formulation, Retrieval
models]. General terms: Algorithms, Experimentation.
Keywords: Question answering, machine learning.

1. INTRODUCTION
A QA System responds to queries like Who is the Greek

God of the Sea? with a precise answer like Poseidon. An
important first step is to identify short snippets or passages
of up to several words which contain the answer.

In this work we focus on open-domain systems that are
of interest to the Information Retrieval (IR), Information
Extraction, and Message Understanding communities. Fal-
con [14], Webclopedia [15], Mulder [18], AnswerBus [28]
and AskMSR [11] are some well-known research systems,
as are those built at the University of Waterloo [7, 8], and
Ask Jeeves (http://ask.com).
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Most QA systems are substantial team efforts, involving
the design and maintenance of question taxonomies [14, 15],
question classifiers, and passage-scoring heuristics. E.g., the
Webclopedia team has compiled a taxonomy of 180 types of
question targets1 after analyzing over 27600 questions from
Answers.com. The wisdom derived by QA experts from the
corpus and task is embedded in rules like this [16]:

Matching an upper-cased term adds a 60% bonus
. . . for multi-words terms and 30% for single words
. . . Matching a WordNet2 synonym . . . discounts
by 10% (lower case) and 50% (upper case) . . .
Lower-case term matches after Porter stemming
are discounted 30%; upper-case matches 70%.

Owing to these myriad details, it is very difficult to repro-
duce a well-tuned QA system from scratch, gauge the ben-
efits of new algorithmic ideas, and generalize the tuning ex-
perience to new domains, new corpora, and new languages.

Compare the QA situation with IR engines, which are
largely based on the now-standard vector-space model and
TFIDF ranking, a declarative specification of what is a good
matching document. The procedural details of how to re-
trieve the top-ranking documents have only efficiency im-
plications. Consequently, off the shelf IR engines (Lucene,
Glimpse, htDig, Verity) require essentially no tuning, and
can be deployed in minutes.

In contrast, QA systems not only depend on complex
building blocks like taggers and parsers (which we see as
inevitable to an extent) but lash them together with cus-
tomized “glue” and many crucial knobs that are best preset
by QA specialists rather than the end-user. This might ex-
plain in part why off-the-shelf QA packages are rare.

1.1 Our goal
We seek to decompose the QA task cleanly into discover-

ing features and learning to score potential answer snippets
from a corpus and past question-and-answer examples. Our
QA system

• performs fast, shallow processing of the corpus
• structures the scoring task using features and learners,

which are cleanly separated
• trains its scoring algorithm from a past history of pairs

of questions and vetted answers
• can include side information (WordNet, almanac) as a

natural part of the learning process
• reuses expertise accumulated from one corpus to a new

corpus
• can be reproduced easily from a complete yet concise

description

1http://www.isi.edu/natural-language/projects/
webclopedia/Taxonomy/taxonomy_toplevel.html
2A lexical network [22].



Our QA system is trained using QA pairs [2, 19]. A trainable
QA system also eases the task of adapting to a new genre of
corpus and even new languages. QA pairs can be acquired
for training from a number of sources. FAQs abound on the
Web; indeed, there is even a markup language, QAML3, to
represent FAQs. Search engines validate any new ranking
tweak by regression tests across large query-response collec-
tions. Audit trails of paid services (like Google Answers4)
can provide a wealth of QA-pair sources.

In this paper, we will be concerned with passage/snippet
scoring. We will not discuss the final step of answer extrac-
tion from passages. Even without the final step, QA sys-
tems can reduce the searcher’s burden from visiting dozens
of URLs to browsing only a dozen lines of snippets.

1.2 Our contributions
We start in §2 with a novel noisy simulation perspective

on the QA task. In a structured database with a suitable
schema and a structured query language, information needs
can be expressed precisely. We see QA as a transformation
of this process by adding natural language from an unknown
generative process, for both the data and the query.

Guided by this framework, we work backwards: given a
question, we discover structured fragments in it, glimmer-
ings of a structured query which would have been possible,
had there been a schema. Specifically, we extract selectors
which we are confident will appear (almost) unchanged in
an answer passage, and we extract atype clues, which tell
us what else to look for in a passage that has satisfied all
selectors.

We learn the process of finding selectors and atype clues
automatically from a training collection of question-and-
answer pairs, where an “answer” is a passage with the an-
swer zone specifically marked, as shown:

<q>Name Pittsburgh’s baseball team.</q>
<a>Johnson was president of the <zone>Pittsburgh
Pirates</zone> baseball team for a time.</a>

We can flag selectors with about 73–80% accuracy. We also
describe a simple procedure to extract atype clues via a shal-
low parse of the question, such as can be performed readily
by the Link Parser [25].

Next, we propose a simple and intuitive ranking procedure
by combining information from the selectors, atype clues,
and passage words. This procedure is tuned by automatic
QA-training. All the important procedures of our system
are described in §3.

Given infinite data, we may hope QA-pairs to suffice in
training our ranking algorithm, but in reality, the extreme
sparsity and high dimensionality of our learning problems
makes it worthwhile to help the system through generic bi-
ases in the form of known relationships between words. We
use WordNet [22], a lexical network.

We use data from the TREC QA competition to show
that our basic approach and specific learning methods are
effective (§4). From a baseline in which we index passages
and return passages in the order returned by a typical IR
engine, we get substantial increases in MRR (mean recip-
rocal rank, see §4.4) by our techniques. We also show that
our system can learn on one year’s worth of TREC data
and generalize to data from a different year, where even the
corpus is different.
3http://www.ascc.net/xml/en/utf-8/qaml-index.html
4http://answers.google.com

1.3 Related work
The broad architecture of QA systems [7, 14, 15, 18, 28, 8,

24] has become standard. The corpus is segmented into doc-
uments or passages of some suitable size. A named entity
(NE) tagger marks people, places, organizations, etc. [1],
and the corpus with annotations is indexed by an IR sys-
tem. A taxonomy of (hundreds of) question types is built
by hand, and question classifiers designed to label questions
with types. Based on the label, a new question is first trans-
formed into a keyword query for the IR system. Responding
passages are reranked using a variety of strategies, usually
involving some natural language analysis.

Clarke et al. [9] showed that a limited window of sentences
is acceptable as the unit within which to look for exact an-
swers. Tellex et al. [26] showed that 3 to 6 sentence-long
passages gave the best accuracy, and claimed that simple
Boolean queries with TFIDF style ranking (as provided by
Lucene) are good enough to short-list passages for rerank-
ing. These numbers confirm earlier choices made by Abney
et al. [1].

Our approach is closest in methodology to the work of
Agichtein et al. [2] who learn from QA pairs how to trans-
form a question into words and short phrases likely to ap-
pear in an answer. Frequent itemset and co-occurrence de-
tection is at the core of their system. A related paper [19]
explores how to pick one answer from a small set of candi-
date answers, as in the Millionaire TV show. While inspired
by these ideas, we go further in our precise QA model and
processing of the query as well as the trainable passage rank-
ing procedure.

AskMSR and variants [11] use a seven-way classification
of the question followed by a customized rewrite for each
class. More importantly, AskMSR makes a strong case fa-
voring data-intensive QA over knowledge-intensive QA. A
search for passages satisfying the proximity query bjorn

borg NEAR wimbledon NEAR [numeric-literal] is likely to
retrieve the answer to the question “How many times did
Bjorn Borg win Wimbledon?” and no deeper understanding
of language may be needed in many cases. These observa-
tions form the launching-pad of our system.

We regard question-processing as extracting fragments of
a structured query from among some natural language “noise.”
This approach is reminiscent of an area of database research
[4] that seeks to translate natural language queries to SQL.
Those systems can exploit the well-defined schema that un-
derlies the data, which is missing in the QA scenario). With
recent and notable exceptions [23], these systems are often
based on rigid transformations of question parses into SQL
syntax trees.

2. THE NOISY SIMULATION MODEL
If all natural language texts were replaced by relational

or semi-structured databases, and people asked questions
in structured query languages with precise semantics, there
would be no need for QA systems.

Even with structured data, precise queries are hard on the
searcher because s/he does not want to master the schema.
E.g., a user may prefer to type avg(salary (near physics))

in place of the structured query select avg(salary) from

payroll where dept=’physics’. In the RDBMS and XML
communities, recent research has led to systems [13, 6, 3, 17,
23] that allow such schema-less access.

These systems have to infer that physics is a constant in
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Figure 1: A pictorial view of the typical connections between a question and its answer, which helps us design
our basic query processing strategy.

a select clause which will match the value of a column in
a tuple (which we therefore call a selector), salary is the
name of a column (which we therefore call an answer type
or atype for short), and avg is an aggregator.

The loss of schema in the question can lead to some am-
biguity: should we include adjunct and courtesy appoint-
ments? Should we include the stipend of a Chemistry stu-
dent taking a Physics course? Yet, the fact that there is a
schema helps making some sense of the query.

In QA, neither the question nor the corpus adheres to a
fixed schema. However, given a factoid question, it is not
hard to conceive of a simple relation with very few attributes
whose rows can be matched with the question to generate
the answer, if only such a table were populated on-demand
by extracting information from the corpus (Figure 1). The
trick, then, is to achieve the matching without the inter-
mediation of the schema, assuming that all the information
needed to populate a row in our phantom relation can be
gleaned from a short passage.

A key step is to regard the question as a transformation
of a structured query of the form select...where... to
natural language, and try to recover the structured query
by filling in the two blanks.

In the structured query select...where..., the contents
of the second blank restrict our attention to some rows, and
the first blank tells us which column to read off. So the first
blank has to be filled with a type to be specialized to an
instance, and the second blank has to be filled with one more
more constants. Each word in a question can contribute
information to filling in either (possibly both) blanks. In
the remainder of this section, we discuss how to identify
words of each type in the question. First we take a brief
detour to describe WordNet, a lexical network.

2.1 WordNet primer
For our purposes, WordNet [22] is a graph where nodes

are concepts and edges are relations between concepts. A
concept is called a synset because it is described by a set
of synonyms, also called lemmas. A synset may be de-
scribed by many lemmas. Conversely, a lemma (like match)
can describe many synsets, in which case it is highly poly-
semous. A lemma, a part-of-speech, and a (standardized)
sense number together defines a synset uniquely, and is writ-

ten as match#n#1 (first noun sense of match). We only con-
sider hypernym and hyponym edges in WordNet, which
represent IS-A relations. E.g., in this chain of generalization:

horse, Equus caballus → equine, equid → · · · →
ungulate, hoofed mammal → placental, placen-
tal mammal, eutherian, eutherian mammal →
mammal → · · · → animal, animate being, beast,
brute, creature, fauna → · · · → entity

beast and brute are synonyms, equid is a hyponym of ungu-
late, horse is a hyponym descendant of mammal, equid is
a hypernym of horse, and entity is a hypernym ancestor
of horse.

2.2 Atype
Most factoid questions5 have answers that are specific in-

stances of broad classes of real-world entities, such as person,
animal, time, duration, length, place, proper name, cardinal
number, money amount, etc. A human can usually identify
with ease a minimal subclass of entities which will answer a
given question. We call this the atype of the question (and
its answer).

To be able to compute with atypes, they must be rep-
resented somehow, and connected to all possible instances.
We will consider two representations which are important to
factoid QA: WordNet synsets and syntactic surface patterns.

Atype as synset:The imperative question Name an animal
that sleeps upright is answered by horse. WordNet helps us
recognize that horse is an instance (hyponym descendant)
of animal, which appears in the question and is the atype of
this question. If an atype and a passage token map to Word-
Net synsets with a suitably directed hypernym/hyponym
chain, the token is a strong candidate for further evalua-
tion. Most answers which are common nouns are assisted
by this representation of atypes. WordNet is an obvious
first resource to use for is-a information, but there is much
research afoot [12] to extract ontologies from the Web.

Atype as surface patterns:Infinite or very large domains
such as numbers, person names, place names, etc. cannot
be covered by WordNet. However, we can logically aug-
ment WordNet to add connections from synsets to pattern

5Enumeration, aggregation, and true/false questions are beyond
our current scope.
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Figure 2: Overall architecture of our trainable QA system.

matchers (e.g., regular expressions) that work on the answer
entity and/or its left and right lexical neighborhoods, such
as “at DD:DD”, “in the ’DDs”, “in DDDD” or “Xx+ said”,
as in information extraction systems (here D is a digit and
X is any uppercase letter, x is any lowercase letter). We
can pretend they are like special synsets, and even connect
them to appropriate synsets originally in WordNet. E.g.,
surface patterns for (calendar) dates can be associated with
the synset date#n#7.

The accuracy of the system depends only on the lexical
network, the choice of the surface features, and the learning
algorithms used. Observe that we make no judgment about
the relative importance of the two kinds of is-a relations,
but let our learning algorithms figure this out based on the
training corpus and QA pairs. If a third kind of atype spe-
cialization is devised later, it can be plugged in right away
with no change in the algorithms.

The atype of a question is manifested through specific
words (Where, When, Who) or by generic words (Which
city, What is the density). We describe atype extraction
in §3.1.

2.3 Selector
The second blank in the SQL query select...where... is

the “where clause” which restricts the set of rows which will
be considered by the query plan. In QA, the “where clause”
is simply a set of words in the question that we expect will
appear unchanged in a passage containing the answer. We
call these words selectors. E.g., any passage that answers
the question Tokyo is the capital of which country? is very
likely to contain the word Tokyo in it, so Tokyo is a selector.
The notion of a selector is “soft”: in the question above,
capital might also be a selector, but we are not as sure as
with Tokyo; perhaps a passage writer might use “center of
governance” with a small probability. Country is still softer:
it is fairly likely that a synonym like nation may be used
instead, or that neither country nor a synonym is used in
the answer passage. (In fact, country is the atype.)

Adept users of text search systems, faced with the prob-
lem of satisfying a difficult-to-express information need, un-

consciously determine selectors and then frame a series of
keyword queries which share selectors but try out a variety
of non-selecter alternatives.

There is an obvious trade-off between picking selectors
eagerly and losing recall vs. picking selectors reticently and
losing precision, given QA systems can afford to rerank only
the top passages returned from the index, owing to high
computational costs.

We mention in passing that schema-free keyword search
in relational and XML databases [6, 17, 3, 23] face a similar
problem of deciding whether a query keyword should map
to metadata (name of a table, name of a column, element
name, IDREF attributes) or data (text in relation cell or
CDATA in element). Response-ranking in these settings is
also an open area of research.

3. SUB-PROBLEMS AND SOLUTIONS
In this section we set up our problem more formally and

propose approaches to identifying atype clues and selec-
tor words, connecting question and passage words through
WordNet, and scoring passages. The overall architecture of
our systems is shown in Figure 2. The broad outline is:

• The corpus is chopped into passages, and a shallow
tagger such as GATE attaches annotations of surface
patterns (§3.1). Passages are indexed by a standard
IR system.
• QA pairs are provided. These help train a selector-

finder (§3.2), an atype-finder (§2.2), and a passage
reranking algorithm (§3.3). QA pairs also help build a
mapping from atype clues to atypes (§3.1.2).
• When a new question arrives, the selector-finder pro-

poses selectors which assist the initial keyword search,
giving some number of top-ranking passages from the
passage index.
• Each passage is combined with the question to form

an unlabeled QA instance. The atype finder and the
atype clue-to-atype mapping helps us extract a feature
vector for the instance, and this is assigned a score by
the passage reranking algorithm.



• Candidate passages are sorted by decreasing score and
presented to the user.

3.1 From the question to an atype
Every language has a small set of common “wh-words”

which express questions; for written English, these are what,
which, why, how, when, where, who, whom and whose [21,
Page 100]. Imperative questions can also begin with name
and define.

Questions starting with when, where and who immediately
reveal their expected atypes, e.g., Where is Belize located?
is clearly asking for a place. How, by itself, gives scant clue
about the atype, but the word after how is almost always a
clue, as in how many, how much, how long, or how often6.
Questions using what and which tend to mention the atype
directly, as in What is the capital of Japan?.

As we describe next, atype identification for what and
which questions is done through shallow parsing of the ques-
tion, while for other questions it is done by learning the
mapping of the atype clues in the question to atypes (which
can be either synsets or surface patterns).

3.1.1 Shallow parsing to extract atype
Shallow parsing, also called partial parsing or chunking

[21, Page 375] involves finding noun phrases, modifiers, and
attachments between phrases based purely on part-of-speech
(POS) tags and without a deeper understanding of the con-
tent. For our purposes, shallow parsing is almost as robust
as POS tagging, because we need only local attachments
between verbs and noun phrase (NP) chunks.

The parse tree that results from a shallow parse of the
question What is the capital of Japan? is

(S (NP what)
(S (VP is

(NP (NP the capital)
(PP of

(NP Japan))))))

Here capital is the “head” (the most important part) of the
NP that is the sibling of the auxiliary verb is, and is the
atype clue we need. The parse tree of another example from
TREC 2002, What American general is buried in Salzburg?,
is

(S (NP what American general)
(VP is

(VP buried
(PP in

(NP Salzburg)))))

The atype word is general, it has an attribute American,
and these are in the NP before the auxiliary verb is.

A study of English questions reveals that the atype words
are embedded in the noun phrases in the neighborhood of
either the auxiliary (e.g., have in “I have completed the
homework” or will in “He will go to London”) or the main
verb (e.g., completed and go in these sentences).

This suggests a strategy for locating the atype clues from
“what” and “which” questions:

1. If the head of the NP appearing before the auxiliary
or main verb is not a wh-word, mark this word as an
atype clue.

2. Otherwise, the head of the NP appearing after the
auxiliary/main verb is an atype clue.

6How followed by a verb or infinitive asks about a procedure and
is outside the scope of factoid QA, as are why questions.

Some atype clue words like name, type and kind are of little
use and are discarded (similar to stopwords in IR). In §4.2.1
we will show that this tiny rule set is surprisingly effective.

Dealing with question syntax is the only place where we
have to pay some attention to what language we are using,
and its grammar rules (at a very superficial level). Porting
our system to another language will require a POS tagger
and partial parser; we see this as inevitable in analyzing a
natural language question.

Training: Given a QA pair (q, a)

1. Connect tokens in a to one or more atype/s
2. Walk from these atypes up hypernym edges (see
§2.1), collecting ancestor synsets in a set Sa

3. Locate the wh-word in the question
4. Walk up to k tokens right of the wh-word
5. Build a prefix tree of depth up to k using these tokens
6. In each node of the prefix tree, maintain a map from

synsets to counters
7. Find the path in the prefix tree corresponding to the
k-prefix of question q starting at the wh-word

8. For each node on the prefix path increment counters
for all synsets in Sa

Significance tests:

1. Collect a background distribution of synset frequen-
cies from the corpus

2. For each node n in the prefix tree and for each synset
s at n, test the hypothesis that s appears more often
at n than in the background distribution

3. Retain only those synsets that survive the test

Deployment:

1. Given a test question, locate its wh-word and walk to
the right, trying to find the longest possible matched
path in the prefix tree

2. At the last node to be matched, collect the surviving
synsets

Figure 3: Generating mappings from wh-words to
atypes.

3.1.2 Learning to map atype clues to atypes
Unlike what and which questions, when, where, who and

how X questions do not directly use a term that describes
a synset. E.g., when is only an adverb, meaning “as soon
as”, whereas we would like to establish a connection to the
synset described as time period, among others. Moreover,
WordNet does not know that 1947 is likely to be a year in a
given context, and an augmented “synset” based on surface
pattern (DDDD) may come handy.

Therefore there is a need to map (note the dotted line
in Figure 1) atype clues in questions to a general atype,
expressed either as a synset or as a surface pattern. In a
significant departure from much of earlier work, we wish to
discover and maintain this map automatically via learning
techniques.

We devised another learning module to help us compile
a table of mappings between short token sequences in ques-
tions to atypes. This module is also trained from QA pairs,
and is described in Figure 3.

3.2 Identifying selectors
Determining selectors is a fundamental aspect of trans-

lating our information needs into queries suited for search
engines. Millions of search engine users do this every day.
A separate study of Web query log sessions that we con-
ducted showed that a typical user is fairly sure that some
words must appear on an answer page, but explores a larger



neighborhood of other words in a more tentative way. The
former are selectors, the latter are not. Our goal is to mimic
this process to be able to generate a keyword query from a
question.

3.2.1 Choice of features
It stands to reason that our judgment on whether a word

is a selector depends on various features we observe about
the word, both in the context of the specific question and in
our prior knowledge about the language being used.

Features of a candidate word that are local to the question
may include

• The part-of-speech (POS) assigned to a word
• The POS assigned to left and right neighbors of the

word, up to some window width
• Whether the word starts with an uppercase letter

whereas global features may include

• Whether the word is a known stopword like an, is etc.
• The fraction of documents which contain the word

(some version of IDF)
• How many senses the word has in isolation (available

from WordNet)
• For a given sense described by this word, how many

other words describe the sense

Words vary widely w.r.t. the number of senses, so for sim-
plicity we reduce the last feature to one number by finding
the average number of other words describing the various
senses of the given word.

We call the last two items ambiguity indicators: they indi-
cate the extent of aliasing of the candidate word with other
words. Among other things, it is of interest to see how ambi-
guity indicators derived from knowledge bases like WordNet
affect our ability to spot selectors.

Whether a question word has been flagged as an atype
clue by the atype extractor (§3.1) is another feature that
can be used. Being marked as an atype clue often, but not
always, means that a word is likely not a selector.

3.2.2 Choice of learners
Once we put all the attributes discussed above into a fea-

ture vector, we can use a variety of learners. The hypoth-
esis space is not very simple. There are discrete and con-
tinuous numeric attributes, and, based on world knowledge
about languages, we expect the numeric attributes (ambigu-
ity indicators) to follow different distributions conditioned
on some of the discrete attributes (e.g. POS).

We were therefore predisposed to believe that a decision
tree will work better than learners with simpler hypotheses,
such as Logistic Regression. As we discuss in §4.3, this intu-
ition turned out to be true. We compared two decision tree
classifiers (C4.5 and J48) and a Logistic Regression classifier
packaged in the WEKA data mining toolkit, and picked J48
as the consistent winner.

3.2.3 How to use selectors
Selectors can be used in two places: to pad the initial key-

word query, and to rerank the candidate passages. A key-
word search engine like Lucene has OR-semantics by default
(i.e., passages matching at least one query word is eligible
for scoring) but encourages AND-semantics (i.e., passages
which match all/most query words get priority). In our ex-
periments we insist that each response contains all selectors,

and use Lucene’s OR over other question words. Selectors
can also be used in the reranking phase: one of the passage
features we derive is the average distance from a candidate
answer zone (see Figure 1) to a selector.

3.3 Learning to score passages
The algorithms described so far enable us to analyze the

question q, probe the keyword index and retrieve a set Rq
of promising passages; none, one, or at most a few of the
passages in Rq contain the answer to question q. The rank-
ing imposed by an IR engine on these passages is not the
best possible for QA. Our noisy simulation model has set the
stage for reranking the passages, based on features which
appear in each candidate passage in conjunction with fea-
tures in the question. The scenario is easily framed as a
supervised learning or classification problem. During train-
ing, each (q, r) pair, for r ∈ Rq, forms an instance. The
label is +1 if r contains an answer to q and −1 otherwise.
During testing and deployment, the learner is only given
(q, r) and must guess the label.

An important issue is the encoding of features from (q, r)
which will best assist the reranking learner. Guided by work
in information extraction and chunking, our inclination is to
include any and all features which look useful to us, and let
a sufficiently powerful learner deal with possible redundancy
and correlation.

If (q, r) is a positive instance, we expect that:

• All selectors match between q and r.
• r has an answer zone a which does not contain selec-

tors.
• The linear distances, in terms of number of tokens,

between a and matched selectors in r, tend to be small.
• a has strong WordNet-based similarity with the atype

of q (see §3.3.1).
• There is some relationship between the atype and a’s

part of speech tag and any entity tag (person, place,
amount, etc.)

We will now design a route which turns (q, r) into a fea-
ture vector suitable for a conventional supervised learner.
First we need a brief detour to design the WordNet-based
similarity between the atype of q and a candidate answer
zone a.

3.3.1 Strength of WordNet-based similarity
Let t be the atype of the question, and a a candidate

answer zone. Let us overload t to mean the synset (original
or augmented) in WordNet corresponding to t, and likewise
with a. The simplest notion of the strength of a WordNet-
based connection between t and a, as motivated in §2, is
whether a is a hyponym descendant of t: a 0/1 feature.

We found some benefit in refining this boolean feature to
a continuous feature to encode some idea of the significance
of the connecting path. Prior work [20] suggests that simple
graph measures, like the number of links, will not suffice.
As one example, a three-hop path from entity (the most
general noun) to artifact is not as strong a connection as
the three-hop path between mammal and elephant.

This intuition is captured nicely by measuring the overlap
of nodes on the path from each of t and a to all the noun
roots. More specifically, we define the WordNet-based simi-
larity feature (which we call HyperPath) between t and a
as follows:



1. Unless t is a hypernym ancestor of a, the feature value
is zero.

2. Otherwise, we collect the sets of hypernym synsets of
t and a; let us call them Ht and Ha.

3. Compute the Jaccard overlap |Ht ∩Ha|/|Ht ∪Ha|.

We argue that (like POS tagging and shallow chunking in
earlier sections), a lexical network with measure of special-
ization is an essential support structure for QA, and the
experience generalizes easily to a WordNet-like network de-
signed for a different language.

3.3.2 Feature design
We now complete the discussion of the conversion of a

(q, r) instance into a feature vector through a short pseu-
docode.

1. Remove from consideration all terms in r that are
matched selectors of q.

2. Map q to its atype t.
3. Consider each word a (which could be a compound

token like San Francisco) in r as a potential answer
zone.

4. Find the HyperPath similarity between t and a.
5. Retain the winning candidate answer zone a∗ with the

largest HyperPath score.
6. Collect a set L of linear distances from a∗ to each

matched selector.
7. Create a feature vector with these components:

• The original IR rank of passage r
• The HyperPath similarity between a and t
• The maximum, average, and minimum of L
• POS tag of a∗

• Entity tag (person, place, date, etc.) of a∗ if any
• Wh-words (including compound wh-words like how

many) from q

3.3.3 Choice of learner
During training, labels are directly available from QA-

pairs. During testing, a suitable classifier can assign hard
±1 labels to each r ∈ Rq, but, as it turns out, a hard elimi-
nation leads to an unacceptable level of false negatives. In-
stead, we used logistic regression (LR) for reranking. LR
is a discriminative classifier which gives a continuous esti-
mate between 0 and 1 of the probability that the label is +1.
We rerank passages in order or their LR scores. Reranking
does not rule out paying attention to the keyword search
engine’s ranking—that could be encoded as a feature for
LR. Unlike naive Bayes, LR is good at handling features
that are strongly correlated. Because we need to deal with
a large number of training instances (20000 is common in
production runs), we avoided SVM-based methods.

4. EXPERIMENTS
We experimented with a few years of TREC QA data to

assess the merit of our model and approach. In this section
we present data to argue that

• Atypes and selectors can be extracted from questions
effectively
• Reranking passages by applying a trained learner sig-

nificantly boosts the quality of ranking
• The benefits of learning to extract atypes and selectors

and to rerank generalize from one corpus to another
(“inductive transfer” in machine learning jargon)

4.1 Data preparation
We used data from the TREC QA track because it offers

not only a standard corpus and a set of question, but also
answer passages for each question. TREC QA made a major
change in the corpus between 2001 and 2002. To study if
our observations and approaches are sufficiently general, we
initially focused on two years: 2000 and 2002.

Following Tellex et al., [26] we picked sliding windows of
three sentences as passages. For 2000, we got 978953 docu-
ments, 14721729 passages, and 693 questions. For 2002, we
got 1031824 documents, 23266499 passages, and 500 ques-
tions. The passages were indexed by Lucene [5].

For each question, TREC provides a set of document iden-
tifiers which answer it, a regular expression which the par-
ticipant has to match to score, and sometimes, a snippet
from the document that contains the answer. From these,
it was reasonably simple to assemble QA pairs (where the
answer was marked in context).

Questions and passages were tokenized using GATE [10].
GATE also includes a part-of-speech (POS) tagger which
tags each token with one of about 36 standard POS tags used
in the PENN treebank corpus [21, Chapter 3] (also see http:
//www.scs.leeds.ac.uk/amalgam/tagsets/brown.html).

Atype clues were extracted from a shallow parse of the
question by the Link Parser [25], as described in §3.1.1. For
the learning tasks, we used the J48 decision tree and the
logistic regression packages in WEKA [27].

Our code is entirely in Java, except for call-outs to the
Link Parser. For each year of TREC data, our total data
preparation and training time on a dual 1.3GHz Xeon server
was several hours, most of it spent in tagging top passages
returned by Lucene. WEKA itself took only several min-
utes. Typically, each query could be answered in under 30
seconds.

4.2 From questions to atypes
The question is first analyzed to find the atype we would

expect to see in an answer passage. For Which and What
queries, we attempt to extract the atype directly from a
shallow parse (§3.1.1). Otherwise, we take the wh-words
and phrases from the question and try mapping them to
atypes (§3.1.2). Here we show that both these processes
perform well.

4.2.1 Extracting atypes from shallow parses
Our algorithm (§3.1) to determine atype clues from ques-

tions is surprisingly effective. Manual inspection of hun-
dreds of queries from TREC 2000 and TREC 2002 showed
that we extracted correct atype clues in a very large fraction
of cases. Figure 4 shows a break-up of our atype-extraction
statistics for different question types (starting with What,
Which, and Name).

4.2.2 Mapping question prefixes to atypes
As described in Figure 3 (§3.1.2), we grow a prefix tree

with a virtual root and the wh-words as the children of the

Question type Total questions # correct
what 630 612
which 29 28
name 23 20

Figure 4: Atype statistics: we can correctly extract
atype clues from a vast majority of questions of var-
ious types.



root. Recall that each node accumulates occurrence counts
of atypes (which are WordNet synsets or surface pattern
IDs) associated with the answer.

We ran the χ2 test, the likelihood ratio test and the t-test
(all with a rejection level of 0.0005) to identify statistically
significant association of an atype to a prefix tree node.

Figure 5 shows some of the most significant atypes (only
WordNet synsets in this specific run) that survive the test.
The survivors are very intuitive, and change dramatically
from node to node in the prefix tree. How, a very unspe-
cific atype clue by itself, gets mapped to a very vague synset:
the 6th sense of the noun abstraction. But survivors at nodes
corresponding to how much or how many are far more spe-
cific and useful.

How => {abstraction#n#6}
fast => {magnitude_relation#n#1,rate#n#2}
much => {fundamental_quantity#n#1, time_period#n#1}
many => {measure#n#3, definite_quantity#n#1}

What => {region#n#3, entity#n#1,living_thing#n#1,
casual_agent#n#1}

city => {area#n#1}
achievement => {physical_phenomenon#n#1}
university => {geographical_area#n#1}

Where => {region#n#3}
Who => {person#n#1}
When => {calendar_month#n#1, happening#n#1,

accident#n#2}

Figure 5: Sample frequent connections from
atype clues to WordNet synsets. The Word-
Net synsets as shown are given in the form
synset#part-of-speech#sense.

If we fail to extract an atype from the parse and we fail
to match a new question to a precompiled prefix, we can
always fall back on keyword-based ranking. Summarizing,
at the end of this stage we are prepared with a set of synsets
which we expect to connect to a suitable hyponym in the
answer zone of an answer-bearing passage.

4.3 Spotting selectors in questions
We compared the J48 decision tree classifier in WEKA

with the Logistic Regression classifier in WEKA. The results
are shown in Figure 6. These numbers include all features
discussed in §3.2 except whether the word has been flagged
as an atype clue (which is negative evidence for being also
a selector). The proximity window was chosen as ±1 and
±2 tokens, and the results were essentially the same. A
window size of zero, i.e., not considering neighboring words,
was slightly worse. As we expected, the decision tree is
better than regression, and this is statistically significant.
The higher precision of J48 is important to avoid eliminating
passages early in our overall algorithm.

Classifier Recall Precision F1 %correct
Logistic 0.79 0.71 0.75 74.5
J48 0.84 0.78 0.81 80.5

Figure 6: J48 (decision tree) is better than Logistic
Regression at identifying selectors in the query.

In a different experiment, we compared the effect of in-
cluding the atype clue flag as a feature. In that experi-
ment, we did not use the ambiguity indicators from Word-
Net. Using the atype flag increased accuracy modestly, from
76% to 79% for TREC 2000 and from 75% to 76.3% for
TREC 2002. On the other hand, adding ambiguity features

was very beneficial: typically, it raised selector classification
accuracy from 71-73% to over 80%, and this was again sta-
tistically significant. Figure 7 shows some snippets of the
decision tree built for selectors, which are very intuitive in
retrospect. Summarizing, we can flag selectors with about
75–80% accuracy.

POS@0=adj
POS@-1=noun

NumSense@0 <= 9
NumLemma@0 <= 2.5: selector
NumLemma@0 > 2.5: not-selector

NumSense@0 > 9: not-selector
...
POS@0=verb

NumLemma@0 <= 1.82
POS@-1=noun

POS@+1=noun: selector
...

NumLemma@0 > 1.82: not-selector

Figure 7: The upper levels of a decision tree in-
duced on the selector-learning data shows intuitive
rules exploiting both local POS and ambiguity in-
formation. NumSense is the number of senses of the
test word and NumLemma is the number of other words
sharing a sense with the test word.

4.4 Passage reranking performance
Once we set up a Logistic Regression (LR) classifier for

the reranking step, a natural first measurement to make is
its accuracy. Sampling training instances and validating on
held-out labeled data show that the classifier learns quickly,
settling near its best accuracy within only 2–4% of the train-
ing data available.

TREC 2000 TREC 2002
−1 +1

−1 51228 308
+1 5017 3359

−1 +1
−1 38396 51
+1 2169 550

P = 0.918± 0.013 P = 0.934± 0.023
R = 0.4± 0.004 R = 0.2± 0.0038
F1 = 0.56± 0.002 F1 = 0.33± 0.004

Figure 8: The reranking classifier can reject nega-
tive (non-answer) passages well, but suffers from low
recall owing partly to the large number of training
instances labeled −1. Label +1 means the passage
has an answer, −1 means it does not. We show repre-
sentative confusion matrices and mean and standard
deviation of recall, precision and F1 scores over five
runs, each using 40% of the labeled QA instances
sampled u.a.r. as training data.

Figure 8 shows that accuracy (the fraction of instances
classified correctly) is high (over 80%) but this is largely be-
cause of the large fraction of negative instances. Recall (R),
precision (P ), and F1 = 2RP/(R + P ) are more modest.
The large negative training bias makes recall low, risking
false negatives if we use the LR classifier to simply eliminate
candidate passages. Luckily, in our application we need not
make a hard decision7; we simply sort by the score returned
by Logistic Regression.

Reranking greatly improves the rank of the correct pas-
sages. We show in Figure 9 a histogram of the number of

7This is not quite true; a very small number of TREC questions
test if the system can return an empty set. We can do a re-
call/precision trade-off and cross-validate in that case.
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Figure 9: Reranking significantly improves the rank
of correct passages. The x-axis is the rank at which
the (first) answer is found, the y-axis counts ques-
tions for which the first answer was found at the
given rank. Note that the y-axis is log-scale, and
reranking increases precision at rank 1 from 78 to
253.

answer passages found at specific ranks by a baseline system
(before reranking) and after passage reranking. It is immedi-
ately obvious that reranking eliminates many non-answers,
pushing answers to better ranks.

In the QA literature, rank histograms are aggregated into
a single figure of merit: the mean reciprocal rank (MRR).
Suppose nq ≥ 1 is the earliest rank of the passage at which
the answer to question q ∈ Q is found. Then MRR is de-
fined as (1/|Q|)

∑
q(1/nq). MRR is between 0 and 1, and a

higher MRR is better.

Passage ranked by TREC 2000 TREC 2002
IR score (Lucene) 0.377 0.249
LR score 0.71± 0.001 0.565± 0.001

Figure 10: Mean and standard deviation of MRRs
after reranking by logistic regression (LR), calcu-
lated over five runs, each using a random 40% sam-
ple of labeled data for training. MRR based on LR
reranking exceeds baseline MRR based on IR rank-
ing by 86% and 127%.

Our MRR scores are shown in Figure 10, For comparison,
some of the top MRRs from the actual TREC 2000 compe-
tition are shown in Figure 11. Our TREC 2000 score com-
pares favorably. (In later years, TREC replaced MRR with
a direct assessment of the pinpointed answer zone, which is
beyond our scope.)

System Corpus MRR
FALCON TREC 2000 0.76
U. Waterloo TREC 2000 0.46
Queens College, CUNY TREC 2000 0.46
Webclopedia TREC 2000 0.31

Figure 11: Recent best MRRs at TREC, showing
that our system compares favorably.

Does reranking benefit all kinds of queries equally? To
study this, we divided queries into categories based on their
starting words (what, which, how..., which are good indica-
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Figure 12: Sample MRR improvement via reranking
separated into question categories.

tors of question type), and plotted their group MRRs before
and after reranking in Figure 12. MRR improvement via
reranking is widespread across question types, but is partic-
ularly high for what and which queries.

Finally, we wanted to verify that our learning approach
picks up generic patterns useful for QA, not patterns specific
to a particular corpus and QA set. TREC has published QA
pairs over several years, and the corpus changed completely
starting 2002. This gave us a good opportunity to test the
generalization power of our system.

Trained on Tested on Reranked MRR
2002 2002 0.565
2000 2002 0.539

2000+2001 2002 0.534
2000+2001+1999 2002 0.541

2000 2000 0.710
2002 2000 0.705

2002+2001 2000 0.627
2002+2001+1999 2000 0.693

Figure 13: MRR improvements if we train on one
TREC year and test on another.

The basic idea was to collect QA instances from some
years set apart as “training years” and test it on a fixed
“testing year.” The results are shown in Figure 13. The
MRR improvement, while smaller than with cross-validated
reranking within each year (as discussed before), are still
quite significant. It is also clear that very little training data
is sufficient, and in fact, some protection against overfitting
to patterns in specific years would help.

5. CONCLUSION
We have presented a QA system that is built by wrap-

ping a small and simple logic around text indexers, tag-
gers, shallow parsers, and classifiers. The system is trained
with QA-pairs. A new model of QA match and proximity is
used to make the system trainable, transparent and modu-
lar. Experiments with past TREC QA data show that our
technique is effective. Our study in this paper clearly ex-
poses what factors matter, and by how much, rather than
report overall system performance.

Our claim is not that our building blocks (POS and entity
tagger, indexer, shallow parser, and classifier) are simple or
free of expert tuning. Our central claim is that the way we



assemble them together is simple (only about 4000 lines of
Java code), and that the resulting assembly can be repro-
duced easily by other researchers and trained mechanically
by QA pairs by people having no QA expertise.

In ongoing work, we are exploring how to get away from
our single-shot selector model using backoff queries on Lucene,
and cautious forms of query expansion, again, guided by
QA-mining alone. The selector learner can perhaps be im-
proved by exploiting word usage statistics from WordNet
and the corpus. Like Dumais and others [8, 11], we would
like to include redundancy into our scoring model. Per-
formance improvement in our graph reachability algorithms
will also let us consider more candidate passages within a
limited response time.
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