
1

Context-Aware Unified Communication

Hui Lei
IBM T.J. Watson Research Center

hlei@us.ibm.com

Anand Ranganathan*

University of Illinois at Urbana-

Champaign

ranganat@uiuc.edu

Abstract

Enabling people-to-people interaction across
heterogeneous communication end-points enhances user

experience and fosters people collaboration. This paper

presents the design and implementation of a unified
communication system, dubbed Mercury, that allows a

user to interact with others using the most convenient

device at the time. Mercury supports both two-way
conversation and one-way messaging. It leverages the

Session Initiation Protocol to manage communication

sessions and exploits dynamic user context to
proactively route and migrate calls. It allows for

subscription to other users’ unified reachability status

and provides a soft ring feature via universal
notification. Mercury has an extensible architecture that

allows new device types to be easily incorporated into

the system. Our prototype implementation integrates a
variety of devices: telephones, Sametime instant

messaging clients, email, and pagers.

1. Introduction

Modern man is part of a highly connected
communication network. People can interact with each
other through a wide variety of communication
mechanisms, such as email, instant messaging, cellular
phone, landline phone, SMS, voice-mail, and pager.
Each means of communication has its own sets of
features and drawbacks. Although a person typically has
multiple communication devices1, he may have access
to only a subset of them at a particular time. Depending
on his situation, he may also have a preference on which
of the available devices to use. For example, a person
may prefer chatting with somebody using an instant
messaging (IM) client when he is working on something
else or in the middle of a meeting. But when the
meeting is over or if he has to leave the room, he may
want to continue chatting with the other party on his cell

* This work was performed while the author was visiting IBM Watson
Research
1 In this article, we use the word “device” in a broad sense to mean
either hardware entities (like phones, pagers, etc.) or software entities
(like instant messaging clients, email clients, etc.)

phone or via short messaging service (SMS). Hence, a
unified communication system that allows a person to
communicate using the most convenient device at the
time will enhance user experience and offer more
opportunities for collaboration.

People-to-people interaction falls into one of two
categories: two-way communication (i.e., conversation)
or one-way messaging (i.e., notification). Two-way
communication is inherently more complicated than
one-way messaging. First, messaging is asynchronous in
that there may be arbitrary time lapse between the
sending and receiving of a message. In comparison,
conversation is synchronous: both parties must be
present in order for a conversation to take place. Thus,
conversation requires proper call setup. Call setup alerts
the callee and obtains her acceptance for the call. It
further involves negotiation between the devices on
what media and data formats should be used for
communication. Second, while messaging is stateless,
conversation consists of a sequence of exchanges and is
stateful. Call state must be maintained for the entire
duration of the call. Also, call migration from one
device to another may be desirable and needs to be
supported. Despite the differences, messaging can be
effectively treated as a special case of conversation,
where the conversation consists of just one message.

A promising technology for unified communication
is the Session Initiation Protocol (SIP) [1]. SIP is an
application-layer control or signaling protocol for
creating, modifying and terminating sessions with two
or more participants. These sessions include Internet
multimedia conferences, Internet telephone calls,
multimedia distribution, and instant messaging.
However, SIP only provides a mechanism for managing
calls. It does not specify what policies should be used
for call management or how the policies should be
enforced. It is obviously impractical to expect users to
manually and constantly control all the call aspects such
as where to route a call and whether to migrate a call.
Further, many legacy systems and devices are not yet
SIP-enabled and therefore may not be directly plugged
into the SIP framework.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

2

We have designed and implemented a unified
communication system, dubbed Mercury2. While using
SIP as the underlying mechanism for creating,
maintaining and terminating calls, Mercury exploits
dynamic user context information (e.g., user location
and activity) to proactively manage communication
sessions. Context awareness [9] is a well-recognized
technique in pervasive computing. It enables
personalized access to services and reduces demand for
user attention. Not only does Mercury use context
information to decide upon the most appropriate device
to which an incoming call should be routed, it also
monitors the context of the communicating parties and
decides if the call should be migrated to another device
due to change in user context. In addition, Mercury uses
context information in a number of other value-added
features to enhance the overall user experience.

To illustrate the main capabilities of Mercury, we
present a scenario that shows Mercury in action.

Bob is having a meeting in his office. His

preference profile in Mercury specifies that,
during meetings, he will not take calls from his

friends, but he will answer calls from his

family and using his IM client. Now a friend,
Alice, wants to communicate with Bob. She

checks his unified reachability status from her

SMS device and finds that he is not available to
talk to her at this time. Therefore she submits

to Mercury a subscription for Bob’s unified

reachability status so that she can be notified
when Bob’s availability changes. A few

moments later, Bob’s wife, Carol, calls him
from a telephone. Mercury notices that Bob

prefers to use the IM client for two-way

communication under the circumstance.
However, Bob is not currently logged on the

IM system. The only device he is connected to

is his SMS-enabled cell phone which has been
set on vibration mode. So Mercury uses the soft

ring feature to notify Bob through SMS that

Carol wants to get in touch with him. Upon
receiving the notification, Bob immediately

logs on the IM system, which leads Mercury to

route Carol’s pending call to Bob’s IM client.
Bob and Carol thus have a conversation with

Bob using his IM client and Carol using her

phone. When the meeting is over, Mercury
detects the context change and asks Bob

whether he would like to use his office phone

instead. With Bob’s confirmation, Mercury
transfers the call to Bob’s office phone without

Carol being aware of the change. After Bob

2 Our system is named after the light-footed messenger
God of Roman Mythology.

finishes talking to Carol, Mercury sends a

callback to Alice informing her that Bob is
available to talk to her. So Alice calls Bob from

her SMS device. Although Bob is reachable on

IM client, cell phone as well as office phone,
Mercury properly routes the call to Bob’s

office phone, according to his preference.

As exemplified by the above scenario, Mercury has
three novel features:

• Proactive call routing and call migration based
on dynamic user context information.

• Support for the querying and notification of a
user’s unified reachability status, which
considers the user’s availability across all of
his devices.

• Soft ring: using an appropriate messaging
device to alert the callee of an incoming two-
way call.

The Mercury features embody two main thrusts:
integration and context sensitivity. While prior work is
limited to device integration in the initial routing of
communication [2, 3, 4], Mercury goes far beyond that.
It also integrates devices when reporting a user’s
reachability, when ringing the callee, and when
transferring an on-going call. In addition, the policies
that drive all the integration features in Mercury are
expressed in terms of user context, which makes the
integration more adaptive and flexible. Architecturally,
Mercury demonstrates how all the above features can be
implemented in a standard SIP framework. Further,
Mercury makes use of an infrastructure context service
to gather and manage a wide array of user context
information. This simplifies the core logic for
communication management. It also allows Mercury to
easily broaden its use of context information as the
latter become available via the context service.

The rest of the paper is organized as follows.
Section 2 presents considerations underlying the
Mercury design. Section 3 describes the actual design of
the architectural components. Section 4 describes in
detail various system operations. Section 5 discusses the
prototype implementation and our experiences. Section
6 discusses related work and Section 7 summarizes our
conclusions.

2. Design Rationale

A number of considerations have influenced the
design of our system. Among them are context
awareness, device heterogeneity, user privacy,
reachability status, and system extensibility. In this
section, we elaborate on these issues.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

3

A critical issue in any unified communication
system is the selection of an appropriate device for the
recipient. For a conversation session, the choice of the
appropriate device may also change during the session,
for either the caller or the callee. In today’s
communication systems, selection of communication
devices is left to the caller. The callee is forced to use
whatever device the caller chooses for the entire
conversation, even though it might not be the most
appropriate device for his or her context. Also, the caller
may not know how and where to reach the callee.
Consider the use of telephones: the caller is responsible
for deciding which phone number to dial (he has to
choose from multiple home, office and mobile phone
numbers). Also, the callee is now forced to talk on the
phone, even though he may currently be in a meeting or
talking to somebody else. Besides, the end-users are
responsible for manually tranferring an on-going call to
another number, if it is at all feasible.

Device selection can be expected to be much more
burdensome when multiple, heterogeneous devices may
be associated with a user. For instance, sometimes
people may have to instant-message each other to find
out whether it is a good time to talk on the phone and
what phone number should be used. We advocate
exploiting user context information to proactively select
the communication device. The best means of reaching
a person at a particular time depends on many factors,
including the person’s location, activity and
connectivity. Such attributes are often referred to as user
context. By obtaining information on dynamic user
context, the system can make call routing and migration
decisions automatically, based on a user preference
profile. This reduces the demand for user attention and
potentially improves user productivity. On the other
hand, there is a limit to the use of context data. Sensed
context may be ambiguous or incomplete, and user
intention may not be perfectly inferable. Therefore, a
user should also be allowed to override the system’s
decision by providing explicit input.

Integrating heterogeneous devices in a unified
communication system supports personal mobility and
promotes people-to-people reachability [2, 3]. Devices
may differ in communication protocols, data modalities
and formats, and even duplex mode. Depending on the
circumstance, some types of communication devices
may be more preferable than the others. In particular,
messaging devices such as pagers, email and voice mail
do not support conversation sessions between users.
Nevertheless, they are very useful for sending messages
and are popular communication mechanisms. It is thus
important to provide an overarching communication
framework that integrates all types of devices, including
messaging devices. An added advantage of such
integration is that messaging devices can even be used
to enhance conversation. There may be times when a

callee is accessible via some messaging devices only,
but not via any conversation devices. The system may
choose to send a notification to a proper messaging
device informing the user of the in-coming call, who
can then take the call on a conversation device. This is
the soft ring feature we alluded to earlier.

Unified communication should be provided without
compromising the privacy of the parties involved [2].
Each party should control which device to use for a
particular communication. Due to their private nature,
user context information and preferences that are used
for device selection should not be revealed to other
parties. Even the device of choice should not be
disclosed because it could give a clue on the user’s
activity and location. Further, receiving unwanted calls
is also an intrusion of privacy. Thus the system must
allow for prioritization and filtering of calls based on
user preferences.

The fact that conversation is synchronous imposes
requirements on the connectivity of both parties.
Information on a person’s reachability status helps
others to decide whether it is possible to place a call.
Reachability status is already available in some
homogeneous communication systems. For example,
chat programs indicate whether the other party is online
and can be reached for a chat session. Since Mercury
proactively selects communication devices for users, it
is natural for the system to present a unified picture of
people’s reachability. Mercury integrates all the
presence information from different devices and is able
to tell users if a particular person is reachable on any
communication device. Unified reachability status
simplifies the task of potential callers and in the
meantime better preserves the privacy of the callee A

Last but not least, extensibility is key to any unified
communication framework [3]. We have seen a
proliferation of communication capabilities and devices,
and this trend is likely to continue. A unified
communication system, intended to accommodate
heterogeneous device types, should allow for evolution
of existing communication capabilities and integration
of new capabilities. Supporting upgraded or emerging
devices should involve minimal development and
deployment effort.

3. System Design

In this section, we explore the architecture of the
Mercury communication system. We describe the user
interface as well as different components of the system.

3.1. Architecture

Figure 1 shows the overall system architecture. The
Mercury system comprises an extensible set of Device

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

4

Agents, the Mercury Engine and the Context Service.
Each Device Agent serves as an access point for one
type of communication devices and manages sessions
involving those devices. It includes a device-dependent
adapter that encapsulates the details of interaction with
devices of a particular type. Both conversation devices
(such as IM clients, SMS devices and phones) and
messaging devices (such as pagers and email clients)
may be integrated into Mercury by means of Device
Agents. The Mercury Engine performs address lookup
using an address book. It also makes call routing and
migration decisions based on user preferences and user
context information that is provided by the Context
Service.

Mercury uses SIP as the underlying mechanism for
creating, maintaining and terminating communication
sessions. In fact, Device Agents and the Mercury
Engine are all SIP entities: the former are SIP end points
and the latter acts as a SIP server. They exchange SIP
messages in order to manage calls.

3.2.User Interface

Mercury allows a user to perform the following
functions:

• Place a call. The callee is identified by either a
globally unique ID (GUID) or a device-specific
address. The use of device-specific address is
simply for the caller’s convenience and does
not mandate the use of that device. For
example, if the caller is using a telephone, it
may be easier to enter the callee’s telephone
number instead of some other alphanumeric
ID.

• Transfer a call. Either party in a call can
switch from using one device to another
without disrupting the flow of conversation.

• Terminate a call. Either party in a call may
close the communication session at any time.

• Send a message. A user may send a message to
another person. Both messaging and
conversation devices of the receiver would be
considered for delivering the message.

• Specify reachability. A user can indicate what
devices he may be reached at by marking one
or more of his devices as active or inactive.

• Request for unified reachability information.

Users can query about a particular person’s
unified reachability status or, when the person
is not currently reachable, subscribe for her

Mercury

Engine

 IM

Device Agent

Context
Service

IM-A
Ph-A Ph-B

IM Server Phone Gateway Pager Gateway

Pager A Pager B

 Phone

Device Agent

Address

Book

Preferences

Store

IM Device

Adapter
Phone Device

Adapter

Pager Device

Adapter

Device Agent

 Pager

IM-B

Figure 1. Mercury Architecture

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

5

reachability status so that they can be notified
when the person is reachable. The reachability
status is a function of the requester identity and
the dynamic context of the person in question.
A person that is physically connected to some
device is considered unreachable if his
preference profile prevents Mercury from
routing incoming communication to him.

It should be noted that Mercury is able to make call
migration decisions and determine users’ reachability
automatically. Still, it allows explicit user input to
complement automatic control.

A user may interact with Mercury using any
communication device. The user enters commands
through the device’s native interface. The commands
are then transferred to the Device Agent for the device
type, which has a well-known address on the access
network. For example, the IM Device Agent is another
user in the instant messaging system. The user may start
an IM session with the Device Agent and send it various
commands. Similarly, the phone Device Agent may be
reached at a standard telephone number. The user dials
this number to use Mercury.

Conversation messages with the other party are also
entered through the same device interface and mediated
by the appropriate Device Agent. Because conversation
messages and control messages may inter-mix, they
need to be distinguishable from each other. Separation
of call data and call control is handled in a device-
specific way. For instant messaging, all user commands
are prefixed by a “$”. For telephones, user commands
are entered by pressing various keys and
communication messages are via voice.

3.3. Device Agents

Device Agents allow disparate devices to be
integrated into Mercury. They are addressable SIP
entities and are capable of originating and terminating
SIP requests. Each Device Agent handles one type of
communication devices and acts as an access point for
those devices.

A Device Agent performs three kinds of functions.
First, it interacts with devices of a particular type. The
Device Agent initiates and terminates calls on the
devices. It accepts control and conversation messages
from the devices, and sends response messages to the
devices. Second, the Device Agent implements a SIP
user agent. It constructs SIP messages (including
presence messages in extended SIP [6]) and sends them
to SIP entities such as the Mercury Engine and other
Device Agents. It also listens for various SIP-related
messages and events. Third, the Device Agent relays
conversation messages to and from other Device

Agents. If necessary, it also translates those messages
into different modalities or languages.

A Device Agent consists of a device-independent
component, called the Agent Core, and a device-specific
component, i.e., the Device Adapter. The Agent Core
handles interaction with the Mercury Engine and other
Device Agents, whereas the Device Adapter handles
interaction with devices. The interaction between the
Agent Core and the Device Adapter is through standard
interfaces. Specifically, Device Adapters across all
Device Agents implement a uniform adapter interface
so that the Agent Core components may interact with
them in a device-neutral manner. Another programmatic
interface abstracts the user-related functionality of the
Device Agent, to which the Device Adapter maps user
input.

3.4. Mercury Engine

The Mercury Engine is essentially a SIP server. It
forwards call requests to appropriate Device Agents. It
monitors user context during a call and, if necessary,
prompts the user to transfer the call to another device. It
accesses an address book to map between a user’s
GUID and various device-specific addresses. In
addition, the Engine accepts registration of and
subscription for presence information, and sends
notification of reachability. The Engine’s presence
capability builds upon the functionality of the external
Context Service.

The Mercury Engine makes call routing and
migration decisions based on individual users’
preferences. A user’s preferences are expressed as a set
of rules. Each rule specifies the devices that may be
used under a particular condition. The rule condition is
in terms of the callee’s context variables (e.g., location,
activity) and/or the attributes of the caller (e.g, caller ID,
caller group). Each rule is optionally associated with a
priority value to help resolving conflicts between rules.

Although we talk about the Engine as a single
logical unit, the Engine functionality may be physically
replicated so that each Engine instance services only a
subset of the users. For example, an Engine instance
may be deployed for one administrative domain or, in
the extreme case, for a single user. This way, the Engine
instance is exposed only to the preferences and context
information of the users it services, resulting in better
security and privacy. In addition, since the service load
is divided among multiple Engine instances, the system
can scale better.

3.5. Context Service

The Context Service, described in detailed in a
separate publication [4], allows the Mercury Engine to

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

6

obtain user context information without having to worry
about the details of context derivation and context
management. The Context Service API includes both
synchronous query and asynchronous callback
functions. It is also very easy to incorporate new types
of context data into the Context Service. Information
currently provided by the Context Service includes IM
online status, activities and contact means derived from
calendar entries, desktop activities, as well as user
location reported from a variety of sources such as
cellular providers, wireless LANs, GPS devices, and
RIM blackberry devices.

In addition to providing user context information,
the Context Service also provides the basis for the
presence capability in Mercury. In fact, reachability
state is treated as one type of context information and
maintained by the Context Service. The context update
and callback functions in the Context Service directly
correspond to the REGISTER, SUBSCRIBE and
NOTIFY features in SIP.

4. System Operations

In this section, we describe how various system
operations are performed.

4.1. Call Creation

The successful creation of a call is shown in Figure
2. Let us assume that person X wants to converse with a
person Y. So, X would pick up any device that is most
suitable at the time. For example, he may use an IM
client if he is next to a computer or he may use his cell
phone if he is on the road. The user calls the Device
Agent first and, using the native device interface, asks
the Device Agent to start a session with Y (Step 1). The
Device Agent then sends a SIP INVITE request to the
Mercury Engine indicating the address of the other party
(Step 2). The Engine finds the GUID of Y, if necessary,
by referring to the address book, looks up the
preferences of Y and obtains the current context from
the Context Service (Step 3). The types of context
information that can be used in the preferences and in
making call routing decisions include location of the
user, activity, status on an instant messenger and time of
day. The Engine then sends a SIP INVITE to the
appropriate Device Agent (Step 4). The Device Agent
receiving the INVITE indicates to Y, through the
Device Adapter, that he has an incoming call from X
(Step 5) and allows him to accept or reject the session
(Step 6). If Y accepts the session, a positive response is
sent back to X via the Engine and X’s Device Agent
(Steps 7, 8, 9). The caller’s Device Agent then sends
back an ACK to the callee, completing the 3-way
handshake for creating a session (Steps 10, 11). The

callee’s Device Agent then opens a socket to the caller’s
Device Agent and conversation messages are exchanged
between the caller and the callee via the socket (Step

12). If the callee rejects the session, a negative response
is sent back to the caller’s Device Agent via the Engine.
The caller’s Device Agent asks the caller whether she
would like to leave a message. If the caller so chooses,
the Device Agent then starts a session with one of
callee’s messaging devices. The operation of messaging
is described in Subsection 3.4.

The INVITE request also indicates the data types
(like text, audio, etc.) the caller’s Device Agent is able
to support. The callee indicates the data type it prefers
to receive in its response to the caller. If the callee
cannot understand any of the caller’s data types, it sends
back a negative response, indicating what data types it
supports. The caller can then re-send the INVITE
request if it is able to support any of the callee’s data
types.

Caller
Device

Mercury Engine

Caller Device
Agent

Caller Device
Adapter

Callee Device
Agent

Callee Device
Adapter

Callee
Device

Context
Service

Address
Book

Preferences
Store

3

12

11

10

12

6

7

8

9

5

4

2

1

12

3

3

Figure 2. Call Creation

4.2. Call Migration

The most appropriate device for a user may change

during a call. For example, a person who uses a portable

SMS device while walking to his office may want to

switch the conversation to a desktop IM client once he

is in the office. Mercury monitors a user’s context and

proactively prompts the user to switch to a more

convenient device. The call flow for such a proactive

call migration is shown in Figure 3.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

7

Party 1
Device

Mercury Engine

Party 1 Device
Agent

Party 1 Device
Adapter

Party 2 Old
Device Agent

Party 2 Old
Device Adapter

Party 2 Old
Device

Party 2 New
Device

13

8 7

Party 2 New
Device Agent

Party 2 New
Device Adapter

1211

10

9 6

4

3

1

5

Context
Service

Address
Book

Preferences
Store

0

2

2

Figure 3. Call Migration

When a call involving some user is first created, the

Mercury Engine creates subscription with the Context

Service for changes in the user’s context (Step 0). When

changes occur, the Context Service sends the Engine a

callback (Step 1). The Engine checks the user’s

preferences to determine whether the context change

warrants a switch of user device and, if so, looks up the

address of the new device to which the call should be

transferred (Step 2). The Engine then sends to the old

Device Agent of the user a NOTIFY message

containing the address of the new device (Step 3). The

user is then asked on the device he is using if he wants

to migrate the call to the new device (Step 4). If the user

accepts the transfer (Step 5), the Device Agent then

sends a REFER message to the other party (Step 6). The

REFER request is a standard SIP message for

transferring calls. It instructs the receiver to start a new

session with the address referred to. Once the other

party gets the REFER request, it sends an INVITE to

the new device and starts a session with the new device

using the standard SIP 3-way handshake (Steps 7-10).

Once the new session is set up, the old session is

terminated by the other party’s Device Agent sending a

BYE message to the user’s old Device Agent (Step 11),

which then replies with a positive response (Step 12).

The old Device Agent also sends a NOTIFY to the

Engine informing it of the successful call transfer (Step

13).

Call migration may also be initiated by the user

specifying a new device explicitly. Manual call

migration works in a similar way as a proactive

migration. It follows Steps 5-13 in Figure 3.

In order for the Mercury Engine to proactively

recommend call migration, it must be aware of the state

of each call. That is why the Device Agent sends it a

Notify message after a successful call migration (Step

13 above) and after the call is terminated (see next

subsection).

4.3. Call Termination

To terminate a call, the user indicates to Mercury
that he wants to close the session. The Device Agent
then sends a BYE request to the other party. The other
party sends a positive response to the BYE and the
session is closed. The Device Agent also sends a
NOTIFY to the Mercury Engine indicating that the call
is terminated, so that the Mercury Engine is aware of
the current state of the call.

4.4. Messaging

A user can send a one-way message to another
user’s device. Messaging is treated as a special case of
synchronous conversation. The choice of which device
to use is again made based on the context and the
preferences of the intended receiver. A session is
created between the sender’s Device Agent and the
receiver’s device, in the same way as for two-way
conversation. The Agents at either end can once again
negotiate the data format of the messages. The only
difference is that the recipient’s Device Adapter must
buffer messages from the sender until the session is
terminated by the sender. This is necessary because the
sender may be using a conversation device (e.g., IM
client) and thus may send multiple messages, while the
receiver may be using a messaging device (e.g., email).
Once the sender terminates the session, the Device
Adapter of the receiving device sends a single message
to the intended receiver containing all messages from
the sender.

4.5. Soft Ring

 It is possible that when a two-way call request
arrives at the Mercury Engine, the callee is either not
reachable on any conversation device, or the current
context and his preferences dictate that the caller cannot
reach him on a conversation device. For example, he
may be away from his office phone, and is not running
the IM client. However, if he is still reachable through
some messaging devices, the soft ring feature of
Mercury notifies the callee of the incoming call via an
appropriate messaging device.
 If the callee desires to start a conversation with the
caller, he makes himself available on a conversation
device. For instance, he can log into his IM client, or go

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

8

to his office, or supply an alternative phone number to
Mercury. Mercury then redirects the call to this
conversation device.

The call flow for soft ring is shown in Figure 4.
Once the Mercury Engine gets an INVITE request from
a caller (Steps 1-2), it looks at the preferences and the
context of the callee to select an appropriate
conversation device (Step 3). If no conversation device
is available but the use of a messaging device is allowed
by the user preferences, the Engine sends a MESSAGE
request [8] to the appropriate Device Agent (Step 4).
This MESSAGE request contains information on the
incoming call. The Device Agent in turn sends a
notification to the user’s messaging device (Step 5).
The Engine then subscribes with the Context Service for
the callee’s connectivity through a conversation device
(Step 6). The subscription has an expiration time. When
the callee becomes available on one of the conversation
devices, the Engine is notified (Step 7). The Engine
then forwards the original INIVTE request to the
conversation device (Step 8) and the session is set up
between the caller and the callee as before (Steps 9-16).
All these actions taking place at the callee’s end is not
visible to the caller. The caller just sees that the session
is set up finally. If the callee does not make himself
available within the Engine timeout period, the Engine
just sends a negative response to the caller saying that
the callee could not be reached.

Caller
Device

Mercury Engine

Caller Device
Agent

Caller Device
Adapter

Context
Service

Address
Book

Preferences
Store

3

16

14

13

12

10

7

8

9

2

1

3

3

Callee
One-Way

Device Agent

Callee One-Way
Device Adapter

Callee
One-Way

Device

11
6

5

4

Callee
Two-Way

Device Agent

Callee Two-Way
Device Adapter

Callee
Two-Way

Device

15

16

16

Figure 2. Soft Ring

4.6. Unified Reachability Status

Mercury reports a person’s unified reachability
status with respect to a particular requester. To achieve
that, Mercury takes into account the following
information of the subject: connectivity state on various
devices, context attributes such as location, activity and
whether the person is currently in a call, preferences
applicable to the current context and the requester. The
connectivity state, like other context attributes, is
obtained from the Context Service. The connectivity
state may be either automatically sensed or manually
asserted.

When a user explicitly specifies her connectivity on
a device through a Device Agent, the Device Agent
forwards the information to the Mercury Engine via a
REGISTER message. The Engine then pushes the
information to the Context Service as a connectivity
update. Similarly, a subscription for unified reachability
status is forwarded from the Device Agent to the Engine
via a SUBSCRIBE message; the Engine then enters a
callback request to the Context Service on change in the
subject person’s context. When the Context Service
later issues a callback to the Engine, the latter
determines whether the context change results in the
subject becoming available. If so, the Engine notifies
the original subscriber using the unified messaging
scheme outlined in Subsection 4.4.

The use of the Context Service for reachability
status offers a number of advantages. First, the built-in
support for context publication and subscription in the
Context Service simplifies the logic of the Mercury
Engine. Second, the Context Service is able to sense
different types of context information like location, and
then automatically infer that the user is reachable on
certain devices (like telephones in the room he is in).
The Context Service is able to fuse potentially
conflicting context data from multiple sources [18]. This
allows user-asserted presence to be fused with
automatically sensed connectivity, providing aggregated
connectivity state and with better quality. Finally, the
Context Service has mechanisms for managing the
privacy of users. It uses Role-Based Access Control
(RBAC) to determine if a certain requestor is granted
access to reachability information about a particular
subject. The Context Service allows users to specify
access control policies that guard information about
their reachability on any device.

5. Implementation and Experiences

Our current prototype implementation integrates a
number of disparate devices - telephones, Sametime
instant messaging [10], email and paging. The
implementation was done primarily in Java.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

9

Specifically, we use IBM’s DirectTalk [12] to interface
with the telephone network, the client toolkit that comes
with Sametime to send and receive instant messages,
and the messaging services and push toolkit provided in
IBM’s Websphere Everyplace Access [13] to connect to
email clients and pagers. In addition, speech-to-text and
text-to-speech conversions are performed using IBM’s
ViaVoice software [14], and SIP functionality is
accessed via the JAIN SIP API [15].

Our prototype of the Mercury system performed
well in enabling communication between different types
of devices. Communication between even the most
disparate devices (instant messaging and telephone) was
smooth. There was no noticeable extra time-lag between
typing a message in the instant messenger and hearing it
on the telephone at the other end. In fact, to the person
using the instant messenger, there wasn’t much
difference between communicating with another instant
messenger and with a telephone. The only exception to
this finding was that it was not possible to use the
standard acronyms and emoticons, which have become
an integral part of instant messaging conversations
today. This problem can be overcome by performing
transcoding like expanding acronyms or using
emoticons to change the tone of the voice. To the user
on the telephone, too, the conversation flow was
smooth, apart from the fact that the voice of the text-to-
speech software was the same for all users. This reduces
the personal touch that characterizes telephone
conversations. While there was no problem with text-to-
speech, the speech recognition only worked well with a
limited vocabulary. This is an intrinsic limitation with
the current speech recognition technology. We are
hopeful that, with improvements in speech recognition
software, our system will perform more seamlessly.

Since communication devices of today are not SIP
enabled, users had to first establish sessions with the
SIP-aware Device Agent before they could use any of
the features of Mercury. For instance, in the case of
instant messaging, they first had to start a session with
the IM Device Agent (which would be present in the
buddy list). For telephones, they first had to dial the
number of the Phone Device Agent. Once they were in a
session with the Device Agent, they could make calls
and perform other call control actions like transfer and
checking the reachability of others. This extra step of
creating a session with the Device Agent could be
avoided if the device is SIP-enabled. In the future, we
foresee that many IM clients would use SIP. Also, IP
telephones that use SIP would become common. In such
a scenario, users can directly use Mercury’s features
from their devices (i.e. their devices would be able to
perform all the functions of the Device Agent).

Once the user is in a session with the Device Agent,
he can take advantage of the wide variety of features
that Mercury offers. We have tried to make the user

interface intuitive and similar to existing interfaces. For
example, when the user is on a telephone, he is first
presented with a voice-based menu of options that
include creating a call, checking the reachability of
others and modifying privacy preferences for the phone.
He can choose an option by pressing the appropriate
key. If he is in a conversation with somebody else, he
can place the call on hold at any time and access a menu
of options by pressing the “#” key. This menu of
options also allows him to transfer the call to another
device. Similarly, when the user is using the IM, he can
perform various actions by sending control messages to
the IM Device Agent. Control messages are
distinguished from normal conversation messages by
the fact that they are prefixed by a “$”.

In our current prototype, users can specify
preferences for incoming calls in a preference profile,
which is written as a text file. Users can specify
preferences that specify which communication device
should be used in different contexts and for different
callers. This text file is then used by the Mercury
Engine for routing calls to the appropriate device in
different contexts. We are working on a more intuitive
graphical interface for users to specify these
preferences.

The process of migrating calls was also fairly
smooth. Users could manually migrate calls to other
devices at any point in the conversation. Automatic call
migration, wherein the system proactively migrates the
call to a more suitable device was also useful in some
situations. To avoid startling the user by migrating calls
unexpectedly, the Mercury system prompts the user and
asks for her approval before performing the call
migration.

The use of SIP standards by Mercury allows it to
inter-operate with other SIP-based systems. Because the
key functionalities of Mercury, such as context-aware
call control, soft ring, and unified reachability status, are
all implemented as services (i.e., Mercury Engine and
Context Service) in the core infrastructure, new SIP
endpoints may be integrated into our system easily.
Further, the innovative features of Mercury will become
immediately available to these new devices.

6. Related Work

A number of projects have addressed the issue of
personal mobility to support unified communication.
The Mobile People Architecture (MPA) introduces a
person layer on top of the application layer to
emphasize that the person, rather than the device, is the
communication endpoint [2]. A person-level router,
Personal Proxy, tracks a person’s connectivity, accepts
communications on his behalf, converts them into
different application formats, and forwards the resulting
communications to him. Routing decisions are based on

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

10

a variety of information, including the user’s
connectivity state, communication metadata like sender
and date, and communication content. Obviously, it is
not feasible to rely on communication content for
routing decisions in two-way communication, which is
not available during the initial call setup. In fact, it is
not clear how two-way communication can be handled
by MPA, as there does not seem to be a signaling
protocol.

Universal Inbox enables redirection of in-coming
communication based on user preference profiles [3].
Built on the ICEBERG architecture [19], Universal
Inbox identifies three distinct requirements of unified
communication and realizes them as reusable
infrastructure services: data transformation, preference-
based redirection, and name mapping. It uses a home-
grown signaling protocol and supports manual, but not
proactive, call migration. Although it was suggested in
[3] that redirection preferences might be predicated on
dynamic user context such as location and state, the
feature did not appear to have been implemented.

Mercury shares some design goals as MPA and
Universal Inbox. These include respecting user privacy,
giving control to the callee, and system extensibility.
While the other two projects support integrated in-
coming communication, Mercury identifies additional
aspects where an integrated service can be useful,
ranging from call migration to reachability status and to
call announcement. Mercury implements the integration
features using a well known protocol – SIP, and uses a
much broader array of user context to direct different
types of integration. It demonstrates how SIP can
interoperate with an infrastructure context service.

Certain aspects of Mercury have been explored in
recent research efforts. In [11], Singh and Schulzrinne
discuss the use of SIP in a multimedia mail system to
solve call forwarding, reclaiming and retrieval of
messages. The Family Intercom [17] system aims to
facilitate audio communication in a domestic
environment. It uses the context toolkit to gather
location and activity information of the callee. It then
communicates such information to the caller for him to
decide whether it is socially appropriate to initiate a
conversation. Recognizing the importance of context
information in communication, ConNexus and its
successor, Awarenex, integrate potential contacts’
context information in an interface that runs on a
desktop computer and a mobile device, respectively
[16]. Context-Call [21] and Calls.calm[22] provide
callers information about the callee’s situation and then
rely on callers to make reasonable choices regarding the
time and mechanisms for communication. The MIT
Active Messenger (AM) monitors a user’s incoming
email messages, prioritizes them based on calendar and
other context information, and forwards them to phones,
pagers, fax machines, and other communication

channels near users [23]. Ubiquitous Message Delivery
(UMD) application from Xerox PARC [24] delivered
text messages at the soonest acceptable time via the
most appropriate terminal near the recipient. However,
none of these systems have the notion of call migration
or support synchronous communication between
different kinds of devices.

Mercury was inspired by the Intelligent
Notification System (INS) developed at IBM Watson
Research. INS notifies a mobile user when events of
interests occur using a convenient device of the user
[20]. One component in INS is the Universal
Notification Dispatcher (UND), which routes messages
to one of several possible communication devices
owned by message recipients based on the context of
the recipient and the urgency of the message. UND
leverages the same infrastructure context service as
Mercury, but supports one-way messaging only. In
comparison, Mercury also supports two-way
communication and addresses many inherent challenges
therein.

7. Conclusions

People-to-people interaction is one of the key
activities in a person’s daily life. Systems that
seamlessly integrate communication end-points would
go a long way in improving user experience and
fostering people collaboration. Mercury enables both
asynchronous messaging and synchronous conversation
spanning heterogeneous devices. It allows people to
receive in-coming communication on a convenient
device and, if necessary, switch to a different device
during a conversation. It allows a person to be notified
of other parties’ unified reachability status. It also uses a
person’s messaging device to alert the person about an
in-coming call, providing the feature of soft ring.

Mercury leverages SIP to manage communication
sessions. It exploits dynamic user context to drive user
preferences, based on which it proactively announces,
routes and migrates calls, and to determine users’
reachability. At the same time, it gives users
opportunities to explicitly control various aspects of a
communication. Mercury preserves user privacy as it
does not reveal the communication devices a person is
connected to or the device she is using for a particular
communication. It also allows users to specify policies
that determine which other users have access to their
unified reachability status. Further, a person is able to
prioritize and filter calls based on call attributes and
user context. New types of communication devices can
be easily integrated into Mercury by deploying a Device
Agent for the new devices. The Device Agent consists
of a core logic that is reusable across device types and a
small amount of device-specific code for handling

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

11

interaction with devices. This design makes it easy to
incorporate new kinds of devices into the system.

For future work, we plan to conduct a user study of
the system, to experiment with more device types, and
to investigate support for multi-party communication.
We would also like to investigate the use of richer
context information to provide more information about
the reachability and availability of users (e.g. using
information about a user’s current activity level)

8. References

[1] M. Handley, H. Schulzrinne, E. Schooler and J.
Rosenberg. SIP: Session Initiation Protocol. Request for
Comments 2543, Internet Engineering Task Force, March
1999.
[2] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G.
Appenzeller and M. Baker. Personal-level Routing in the
Mobile People Architecture. Proceedings of the USENIX

Symposium on Internet Technologies and Systems, October
1999.
[3] B. Raman, R. Katz, and A. Joseph. Universal Inbox:
Providing Extensible Personal Mobility and Service Mobility
in an Integrated Communication Network. Proceedings of the

Third IEEE Workshop on Mobile Computing Systems and

Applications, Monterey, CA, December 2000.
[4] H. Lei, D. Sow, J. Davis II, G. Banaduth and M. Ebling.
The Design and Applications of a Context Service. ACM

Mobile Computing and Communications Review (MC2R),
6(4), October 2002.
[5] H. Schulzrinne and E. Wedlund. Application-Layer
Mobility using SIP. ACM Mobile Computing and

Communications Review (MC2R), Volume 4, Number 3, July
2000.
[6] J. Rosenberg et al. SIP Extensions for Presence. Internet
Draft, Internet Engineering Task Force, June 2000. Work in
progress.
[7] R. Sparks. SIP Call Control. Internet Draft, Internet
Engineering Task Force, July 2000. Work in progress.
[8] J. Rosenberg et al. SIP Extensions for Instant Messaging.
Internet Draft, Internet Engineering Task Force, June 2000.
Work in progress.
[9] A. K. Dey. Understanding and Using Context. Personal

and Ubiquitous Computing, 5(1): 4–7, 2001.

[10] IBM/Lotus. Lotus Sametime.
http://www.lotus.com/products/lotussametime.nsf-

/wdocs/homepage.
[11] K. Singh and H. Schulzrinne. Unified Messaging using
SIP and RTSP. IP Telecom Services Workshop, Atlanta,
Georgia, September, 2000.
[12] R. Credle et al. IBM DirectTalk for Windows
Implementation Guide. http://www.-redbooks.ibm.com.
[13] IBM. Websphere Everyplace Access. http://www-

3.ibm.com/software/pervasive-

/products/mobile_apps/ws_everyplace_access.shtml.
[14] IBM. ViaVoice. http://www-

3.ibm.com/software/speech/index.shtml.
[15] P. O’Doherty. JAIN

TM
 SIP API Specification.

http://jcp.org/en/jsr/detail?id=32.
[16] John Tang, Nicole Yankelovich, James "Bo" Begole,
Max Van Kleek, Francis Li, and Janak Bhalodia. ConNexus to
Awarenex: Extending awareness to mobile users, CHI 2001,

Seattle, WA, April 2001.
[17] Kris Nagel, Cory D. Kidd, Thomas O’Connell, Anind
Dey, and Gregory D. Abowd (2001). The Family Intercom:
Developing a Context-Aware Audio Communication System.
Ubicomp 2001, LNCS 2201, pp. 176-183, 2001.
[18] J. Myllymaki and S. Edlund. Location Aggregation from
Multiple Sources. Proceedings of Third International

Conference on Mobile Data Management, Singapore, January
2002.
[19] H. Wang et al. ICEBERG: an Internet-core Network
Architecture for Integrated Communications. IEEE Personal

Communications, 2000.
[20] V. Bazinette, N.H. Cohen, M.R. Ebling, G.D.H. Hunt, H.
Lei, A. Purakayastha, G. Stewart, L. Wong, and D.L. Yeh. An
Intelligent Notification System. IBM Research Technical

Report, TR 22089.
[21] A. Schmidt, A. Takaluoma and J. Mäntyjärvi, "Context-
Aware Telephony over WAP," Personal Technologies, vol. 4,
no. 4, Sept. 2000, pp. 225–29.
[22] E. R. Pedersen, "Calls.calm: Enabling Caller and Callee
to Collaborate," Proc. SIGCHI Conf. Human Factors in Comp.
Sys., Apr. 1–4, 2001, Seattle, WA, pp. 235–36.
[23] C. Schmandt et al., "Everywhere Messaging," IBM Sys.
J. 2000, vol. 39, nos. 3 and 4, pp. 660–77.
[24] M. Spreitzer and M. Theimer, "Providing Location
Informatio in a Ubiquitous Computing Environment," Proc.
14t ACM Symp. Op. Sys. Principles, 1993, pp. 270–83; also I
Mobile Computing, T. Imielinski and H. Korth, Eds.
Dordrecht, The Netherlands: Kluwer, 1996, pp. 397–423.

Proceedings of the 2004 IEEE International Conference on Mobile Data Management (MDM’04)

0-7695-2070-7/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on May 1, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

