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A Derivation of partial dual in Theorem 1

We first present a detailed derivation of the partial dual (4). We begin by writing the primal formulation
with the proposed regularizer (3).
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Without loss of generality, we assume that tasks within each group/node w are arranged in the order of
their number (hence ti before tj if ti < tj). Next, we formulate the feature map of an input instance
x of task t (similar to Evgeniou & Pontil (2004)), but for each group w and for each kernel space
kj . For a given input instance x of task t and feature space φj , its feature map within a group w

(containing task t) will be: Φjw(x, t) = (φ
j(x)√
µ , 0, . . . ,0︸ ︷︷ ︸

tasks before t

, φj(x), 0, . . . ,0︸ ︷︷ ︸
tasks after t

), where 0 represents a zero

vector in the induced feature space of φj(·). The corresponding model of the group in jth feature
space will be: f jw = (

√
µhj0w, h

j
t1w, . . . , h

j
t|w|w

). We also define the overall feature map and model of

a group w as Φw = (Φ1
w, . . . ,Φ

n
w) and fw = (f1

w, . . . , f
n
w) respectively. From such constructions, it

is evident that the the mixed-norm base regularizer ‖Θw‖p within each group w can be written as:

‖Θw‖p =
(∑

j ‖f jw‖
p
2

) 1
p

= ‖fw‖p,2. Using the above defined feature map, the decision function becomes

Ft(x) =
∑
w:t∈Tw〈fw,Φw(x, t)〉 − bt and formulation (A.1) with hinge loss function can be equivalently

rewritten as:

min
f ,ξ,b

1
2ΩS(f)2 + C

∑T
t=1

∑m
i=1 ξti (A.2)

s.t. ytiFt(xti) ≥ 1− ξti, ξti ≥ 0 ∀ i, t

where ΩS(f) =
∑
v∈V dv‖fD(v)‖q,p and ‖fD(v)‖q,p =

(∑
w∈D(v) ‖fw‖

q
p,2

) 1
q

.

Note that (A.2) aims at finding an optimal vector in an RKHS. In order to facilitate the application
of a suitable representer theorem (Schölkopf & Smola, 2002) for writing down the dual, we employ a
variational formulation of ΩS(f). We note the following lemma (Micchelli & Pontil, 2005) which will be
useful in the derivations:
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Lemma A.1. Let ai ≥ 0, i = 1, . . . , d and 1 ≤ r <∞. Let ∆d,r =
{
θ ∈ Rd | θ ≥ 0,

∑d
i=1 θ

r
i = 1

}
. Then,
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γ∈∆d,r

∑
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i

)1+ 1
r

(A.3)

and the minimum is attained at
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a

1
r+1

i(∑d
i=1 a

r
r+1

i

) 1
r

Here, by convention, a/0 is 0 if a = 0 and is ∞ otherwise. In the limit r →∞ the following holds

min
γ∈∆d,∞

∑
i

ai
γi

=

d∑
i=1

ai (A.4)

and equality is attained when γi = 1 ∀ ai > 0.

Applying the lemma we get the following equalities:

Ω(f)2 =

(∑
v∈V

dv‖fD(v)‖q,p

)2

= min
η∈∆|V |,1
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d2
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ηv
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ζvw
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q

2− q
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σw∈∆n,p̂

n∑
j=1

‖f jw‖22
σjw
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p

2− p

Thus we have the following variational formulation:

Ω(f)2 = min
η∈∆|V|,1

min
ζv∈∆|D(v)|,q̂∀v∈V

min
σv∈∆k,p̂∀v∈V

∑
w∈V

τ−1
w (η, ζ)

‖fw‖22
σjw

where τ−1
w (η, ζ) =

∑
v∈A(w)

d2
v

ηvζvw
. Next, by applying the representer theorem (see also Rakotomamonjy

et al. (2008)) and using the notion of dual norm Boyd & Vandenberghe (2004), we derive a partial-dual
(dual wrt. variables f , b, ξ alone) of (A.2) to be the following:

min
η∈∆|V|,1

min
ζv∈∆|D(v)|,q̂∀v∈V

max
βt∈Sm(yt,C) ∀t∈T

G(η, ζ, β) (A.5)

where

G(η, ζ, β) =
∑
t,i

βti −
1

2

∑
w∈V

τw(η, ζ)‖β>Kwβ‖p̄,

‖β>Kwβ‖p̄ =
(∑k

j=1

(
β>Kj

wβ
)p̄) 1

p̄

and p̄ = p
2(p−1)

It turns out that at optimality:

ΩS(f)2 =
∑
w∈V

τw(η, ζ)‖β>Kwβ‖p̄, (A.6)

which can be realized from the KKT conditions associated with this primal-dual pair.

Note that G is concave in β and convex in η and ζ. Also the feasibility sets involved are convex and
compact. Using the Sion-Kakutani minmax theorem (Sion, 1958), we have that the min and max in the
above dual can be interchanged (see also Szafranski et al. (2008)) leading to:

max
β∈S(y,C)

min
η∈∆|V |,1

min
ζv∈∆|D(v)|,q̂∀v∈V

G(η, ζ, β) (A.7)
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The duality gap resulting from this interchange will be used (as shown later) for proving Theorem 2. For
now, we will concentrate on the second term of equation (A.7), which is:

max
η∈∆|V |,1

max
ζv∈∆|D(v)|,q̂∀v∈V

∑
w∈V

τw(η, ζ)‖β>Kwβ‖p̄ (A.8)

o
(Lagrange dual wrt. η)

max
ζv∈∆|D(v)|,q̂∀v∈V

min
κ∈L

max
v∈V

∑
w∈D(v)

κ2
vwζvw‖β>Kwβ‖p̄

d2
v

(A.9)

o
(By Sion-Kakutani theorem)

min
κ∈L

max
v∈V

max
ζv∈∆|D(v)|,q̂

∑
w∈D(v)

κ2
vwζvw‖β>Kwβ‖p̄

d2
v

(A.10)

o
(By Lemma (A.1))

min
κ∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
κ2
vw‖β>Kwβ‖p̄

)q̄ 1
q̄

(A.11)

where, L =
{
κ ∈ R|V|×|V| | κ ≥ 0,

∑
v∈A(w) κvw = 1,

∑
v∈A(w)c κvw = 0 ∀ w ∈ V

}
and q̄ = q

2(q−1) .

Let us denote the optimal value of (A.11) by O. Consider the following problem which has opti-

mal value Oq̄: minκ∈L maxv∈V d
−2q̄
v

∑
w∈D(v)

(
κ2
vw‖β>Kwβ‖p̄

)q̄
. The Lagrangian is: L(κ,A, γ) = A +∑

v∈V γv

(
d−2q̄
v

∑
w∈D(v)

(
κ2
vw‖β>Kwβ‖p̄

)q̄ −A). Minimization of Lagrangian wrt. A leads to the con-

straint γ ∈ ∆|V|,1. The minimization problem wrt. κ is given by:

min
κ∈L

∑
v∈V

∑
w∈D(v)

γv
(
d−2
v κ2

vw‖β>Kwβ‖p̄
)q̄

Using the special structure of L, we can re-write this minimization problem as:∑
w∈V

(
‖β>Kwβ‖p̄

)q̄
min

κw∈∆|A(w)|,1

∑
v∈A(w)

(
γvd
−2q̄
v

)
κ2q̄
vw

Using Holder’s inequality1, we have that:

min
κw∈∆|A(w)|,1

∑
v∈A(w)

(
γvd
−2q̄
v

)
κ2q̄
vw = λw(γ) =

 ∑
v∈A(w)

dqvγ
1−q
v

 1
1−q

Hence the dual of (A.11) is:

max
γ∈∆|V|,1

(∑
w∈V

λw(γ)
(
‖β>Kwβ‖p̄

)q̄) 1
q̄

= max
γ∈∆|V|,1

∑
w∈V

λw(γ)

∑
j

(
β>Kj

wβ
)p̄

q̄
p̄


1
q̄

(A.12)

Using the above result in (A.5) and again interchanging the min-max leads to the result in the final
specialized partial dual given in theorem 12.
This completes the derivation of the partial dual given in theorem 1.

1Take vectors u1 and u2 as those with entries d−1
v γ

1
2q̄
v κvw and dvγ

− 1
2q̄

v for all v ∈ A(w) respectively. The result follows
from the Holder’s inequality: u>1 u2 ≤ ‖u1‖2q̄‖u2‖q

2From the proof it is clear that if β is obtained by solving the dual (4), then it also is an optimal β in the context of
(A.5) and hence can be directly employed for verifying the sufficiency condition
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B Derivation of sufficiency condition in Theorem 2

Looking back at the min-max exchange employed to get (A.7) from (A.5), the duality gap with a given
triplet (η, ζ, β) is given by (here, (f , b, ξ) represents the associated primal solution):

= maxβ̂∈S(y,C)G(η, ζ, β̂)−minη̂∈∆|V |,1 minζ̂v∈∆|D(v)|,q̄∀v∈V G(η̂, ζ̂, β)

≤ 1
2ΩS(f)2 + C

∑
t,i ξti −minη̂∈∆|V |,1 minζ̂v∈∆|D(v)|,q̄∀v∈V G(η̂, ζ̂, β)

= ΩS(f)2+C
∑
t,i ξti−

∑
t,i βti︸ ︷︷ ︸

Gap in solving the problem with fixed (η,ζ)

+ 1
2

(
maxη̂∈∆|V |,1 maxζ̂v∈∆|D(v)|,q̄∀v∈V

∑
w∈V τw(η̂,ζ̂)‖β>Kwβ‖p̄−ΩS(f)2

)
︸ ︷︷ ︸

Gap in solving the problem with fixed β

Let the optimal solution of the dual formulation restricted to active set W be (ηW , ζW , βW). Using the
above upper bound and (A.6), it is easy to see that the following condition is sufficient for (ηW , ζW , βW)
having a duality gap less than ε w.r.t the original primal formulation (A.2):

max
η∈∆|V |,1

max
ζv∈∆|D(v)|,q̄∀v∈V

∑
w∈V

τw(η, ζ)‖β>WKwβW‖p̄ ≤
∑
w∈V

τw(ηW , ζW)‖β>WKwβW‖p̄ + 2ε (B.1)

In the following we obtain an upper bound on the L.H.S. term of (B.1) which lead to the sufficiency
condition (6) given in Theorem 2. We first note that the L.H.S. term of (B.1) is same as (A.8) and hence
is equivalent to (A.11). Since (A.11) is a minimization over κ, any feasible κ for (A.11) will provide us
an upper bound on the L.H.S. term. More specifically: for all w ∈ W we simply take it to be the optimal
κ obtained by solving (A.2) restricted to the active set W. This is fine because W = hull(W). For all
w ∈ Wc, motivated by the choice in case of q = 2 by Bach (2009) (section A.5), we choose it to be:

κvw = dv

(∑
u∈A(v)∩Wc du

)−1

. With this choice we have that:

max
η∈∆|V |,1

max
ζv∈∆|D(v)|,q̄∀v∈V

∑
w∈V

τw(η, ζ)‖β>Kwβ‖p̄

≤ (∵ Specific choice of κ)

max

ΩS(fW)2, max
t∈Wc

 ∑
w∈D(t)

 ‖β>WKwβW‖p̄(∑
v∈A(w)∩Wc dv

)2


q̄

1
q̄


= (∵W=hull(W))

max

ΩS(fW)2, max
t∈sources(Wc)

 ∑
w∈D(t)

 ‖β>WKwβW‖p̄(∑
v∈A(w)∩Wc dv

)2


q̄

1
q̄


≤ (∵

∑
v∈A(w)∩Wc dv≥

∑
v∈A(w)∩D(t) dv)

max

ΩS(fW)2, max
t∈sources(Wc)

 ∑
w∈D(t)

 ‖β>WKwβW‖p̄(∑
v∈A(w)∩D(t) dv

)2


q̄

1
q̄


Employing this upper bound in (B.1), we get:

max
t∈sources(Wc)

 ∑
w∈D(t)

 ‖β>WKwβW‖p̄(∑
v∈A(w)∩D(t) dv

)2


q̄

1
q̄

≤
∑
w∈V

τw(ηW , ζW)‖β>WKwβW‖p̄ + 2ε (B.2)
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Now we know that for any vector z, ‖z‖ρ ≤ ‖z‖1 ∀ρ ≥ 1. This implies ‖β>WKwβW‖p̄ ≤
∑
j β
>
WKj

wβW .3

Using the same inequality again for the q̄-norm present in (B.2), we get the following sufficiency condition:

max
t∈sources(Wc)

 ∑
w∈D(t)

∑
j β
>
WKwβW(∑

v∈A(w)∩D(t) dv

)2

 ≤ ∑
w∈V

τw(ηW , ζW)‖β>WKwβW‖p̄ + 2ε (B.3)

From the proof of Theorem 1, we had obtained the following equality:

max
η∈∆|V |,1

max
ζv∈∆|D(v)|,q̄∀v∈V

∑
w∈V

τw(η, ζ)‖β>Kwβ‖p̄ = max
γ∈∆|V|,1

∑
w∈V

λw(γ)

∑
j

(
β>Kj

wβ
)p̄

q̄
p̄


1
q̄

(B.4)

It can easily be seen that at optimality, the equality also holds when the formulation is restricted to the
active set W (since terms corresponding to nodes outside the active set will be zero in both L.H.S and

R.H.S.). Let (γ̂, β̂) be the optimal solution of (4) restricted to W. It is clear from the above derivations

that βW = β̂ and hence the following equality holds:

∑
w∈V

τw(ηW , ζW)‖β>WKwβW‖p̄ =

∑
w∈V

λw(γ̂)

∑
j

(
β̂>Kj

wβ̂
)p̄

q̄
p̄


1
q̄

By substituting the above result in (B.3), we arrive at the final sufficiency condition in Theorem 2.
This completes the proof of Theorem 2.

C Applicability of Mirror-Descent Algorithm

For the applicability of mirror descent algorithm in our case, we need to prove that H is Lipschitz
continuous. We prove the following statement: if all the eigen-values of the gram-matrices Kj

w are finite
and non-zero, then H is Lipschitz continuous.
We begin by recalling the expression for the ith entry in the sub-gradient

(∇H(γ))i = − 1

2q̄︸︷︷︸
T1

(∑
w∈V

λw(γ)
(
‖β>Kwβ‖p̄

)q̄) 1
q̄−1

︸ ︷︷ ︸
T2

 ∑
w∈D(i)

dqi γ
−q
i λw(γ)q

(
‖β>Kwβ‖p̄

)q̄
︸ ︷︷ ︸

T3

We show that g is Lipschitz continuous by showing that the sub-gradient is bounded. Since q̄ ∈ [1,∞),
we have that |T1| ≤ 1/2. Let the maximum and minimum eigenvalues over all Kj

w be α, π respectively.
Then, we have that nα‖β̄‖2 ≤ ‖β>Kwβ‖p̄ ≤ nπ‖β̄‖2, where n is the number of given base kernels. Using

this, we obtain:
∑
w∈V λw(γ)

(
‖β̄>Kwβ̄‖p̄

)q̄ ≥ (nα)q̄‖β̄‖2q̄
∑
w∈V λw(γ). Note that λw is zero whenever

any γv = 0, v ∈ A(w). Hence, by (A.12) it is clear that the set of non-zero γ is such that it is equal to its
hull. Also, since γ ∈ ∆|V |,1, we must have that atleast one γu ≥ 1

|V | . This gives us that
∑
w∈V λw(γ) ≥

d
q/(1−q)
max /|V | where dmax is the maximum of dv, v ∈ V. Note that 1

q̄ − 1 ≤ 0 ∀q ∈ (1, 2]. Thus we

obtain: T2 ≤
(
nα‖β̄‖2/|V |1/q̄

)1−q̄
d
q−2
1−q
max. Now, it is easy to see that: γ−qi λw(γ)q ≤ d

q2/(1−q)
min . Hence

T3 ≤ |V |(nπ)q̄‖β̄‖2q̄dqmaxd
q2/(1−q)
min . Also, because 0 ≤ β̄ ≤ C, we have that ‖β̄‖ ≤

√
mC. Summarizing

these finding we obtain the following bound on the sub-gradient:

‖∇H(γ)‖1 ≤
mC2

2
nα1−q̄πq̄|V |

2
q d

q−2
1−q+q
max d

q2

1−q
min

3This is because Kj
w are positive semi-definite kernel matrices and hence ⇒ z>Kj

wz >= 0 ∀z ∈ RmT . Therefore,
‖β>WKwβW‖1 =

∑
j β
>
WKj

wβW .
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Rakotomamonjy, Alain, Bach, Francis, Canu, Stéphane, and Grandvalet, Yves. Simplemkl. Journal of
Machine Learning Research, 9:2491–2521, 11 2008.

Schölkopf, Bernhard and Smola, Alex. Learning with Kernels. MIT press, Cambridge, 2002.

Sion, M. On General Minimax Theorem. Pacific Journal of Mathematics, 1958.

Szafranski, M., Grandvalet, Y., and Rakotomamonjy, A. Composite Kernel Learning. In ICML, 2008.

6


	Derivation of partial dual in Theorem 1
	Derivation of sufficiency condition in Theorem 2
	Applicability of Mirror-Descent Algorithm

