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A Derivation of partial dual in Theorem 1

We first present a detailed derivation of the partial dual (4). We begin by writing the primal formulation
with the proposed regularizer (3).
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Without loss of generality, we assume that tasks within each group/node w are arranged in the order of
their number (hence ¢; before ¢; if ¢; < t;). Next, we formulate the feature map of an input instance
x of task ¢ (similar to [Evgeniou & Pontil (2004)), but for each group w and for each kernel space
k. For a given input instance x of task ¢ and feature space ¢/, its feature map within a group w

(containing task t) will be: ®J (x,t) = ((z’j/(i:), 0,...,0 ,¢/(x),0,...,0), where O represents a zero
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vector in the induced feature space of ¢/(-). The corresponding model of the group in gt feature

space will be: fi = (\/ithi,, bl s - - .,h{lwlw). We also define the overall feature map and model of
a group w as ®,, = (®L,...,®") and f, = (fl,..., f") respectively. From such constructions, it

is evident that the the mixed-norm base regularizer ||©,||, within each group w can be written as:

1
1Owllp, = (ZJ ||ffu||g) " = ||fwllp.2. Using the above defined feature map, the decision function becomes

Fi(x) = Zw:teTw< fw, ®w(x,t)) — by and formulation (A.1)) with hinge loss function can be equivalently
rewritten as:

min  3Qs(0)2+ O, ML, &y (A.2)
s.t. ytiFt(Xti) >1 =&y, & >0V 0t

1
where Qs(f) =32, ey dol[ fo@) llgp @0d [[fD(@) llgp = (ZwED(v) ”fw“Z,Q) "
Note that aims at finding an optimal vector in an RKHS. In order to facilitate the application
of a suitable representer theorem (Scholkopf & Smola, [2002) for writing down the dual, we employ a
variational formulation of Qg(f). We note the following lemma (Micchelli & Pontil, 2005) which will be
useful in the derivations:
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Lemma A.1. Leta; >0,i=1,...,dand 1 <r <oco. Let Ay, = {HeRd | GZO,Zd 9721}. Then,
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and the minimum s attained at
Yi= o 1
(Z?:1 aﬁ) '
Here, by convention, a/0 is 0 if a = 0 and is oo otherwise. In the limit r — oo the following holds
. a; d
7err&l;loo ZZ: b = Z:; a; (A.4)
and equality s attained when v; =1V a; > 0.

Applying the lemma we get the following equalities:
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Thus we have the following variational formulation:
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where 7,1 (n,¢) =, € A(w) %dﬁ Next, by applying the representer theorem (see also Rakotomamonjy

et al.| (2008)) and using the notion of dual norm Boyd & Vandenberghe| (2004), we derive a partial-dual
(dual wrt. variables f, b, £ alone) of (A.2)) to be the following:

min min max G 8 A5
NEAVI1  Co€A|p(o)) dVVEY  BLESm (y1,C) VEET (n,¢,8) (A-5)

where
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G.¢.8) =D Bii—5 Y muln OB Kubllp,
t,i
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18TKuBls = (S5, (67KL6)") " and p= it
It turns out that at optimality:

Qs(£)> = D 70, QI8 Kublp, (A.6)

weV

which can be realized from the KKT conditions associated with this primal-dual pair.

Note that G is concave in 8 and convex in 77 and (. Also the feasibility sets involved are convex and
compact. Using the Sion-Kakutani minmax theorem (Sion} [1958]), we have that the min and max in the
above dual can be interchanged (see also |Szafranski et al. (2008)) leading to:

G(n,¢, B) (A7)

max min min
BES(y,C) WEA|V\,1 CHEA\D(W)\,QVUGV



The duality gap resulting from this interchange will be used (as shown later) for proving Theorem 2. For
now, we will concentrate on the second term of equation (A.7)), which is:

max max Z Tw(ﬂ,C)HﬁTKwﬁHﬁ (A.8)

NEA|V|,1 CoEA|D(v)],¢VVEV eV

| | | (Lagrange dual wrt. n)

ﬁngw HﬁTKwﬁ”ﬁ
dz

max min max
CUEA‘D(U”@VUEV reEL veY

(A.9)

weD(v)
| | | (By Sion-Kakutani theorem)
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KEL veV CuEA|D(v)|,4 d

weD(v) v
| | (By Lemma )
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min max d; sz( )(f%wllﬁ Blls) (A-11)

where, L = {/{ e RVIXIVI | x>0, EUGA(w) Kow = 1, ZveA(w)C Kow =0V w € V} and g = 2(%1).

Let us denote the optimal value of (A.11)) by O. Counsider the following problem which has opti-

mal value O%: minger maxvey d, 737, c p(y) (k2,]18TKwBll5)". The Lagrangian is: L(k, A7) = A +

Y ey Yo (d;2‘7 > weD() (H%wHﬂTKMﬂHp)Q — A). Minimization of Lagrangian wrt. A leads to the con-
straint v € A}y ;. The minimization problem wrt. s is given by:

mind " 3 g (422,15 Kubll,)”

veV weD(v)

Using the special structure of L, we can re-write this minimization problem as:

ST KuBlp)  min ST (yud, ) k2

weV FuwCAlAw)l vEA(w)
Using Holder’s inequalityﬂ we have that:

min > (dy M) k2 =M = [ DD digle

KwE€A
ACOLL e A(w) vEA(w)

Hence the dual of (A.11)) is:

Q=
S
il

YEA V|1 YEA V|1

max <Z Aul) (WKwﬂnp)") = max [ S0 (X (KL (A.12)
wey weV J

Using the above result in (A.5) and again interchanging the min-max leads to the result in the final

specialized partial dual given in theorem

This completes the derivation of the partial dual given in theorem 1.

1
ITake vectors u; and us as those with entries d;l'yvzq Kow and dyyy
from the Holder’s inequality: u] us < ||ui||24]luz|lq
2From the proof it is clear that if 8 is obtained by solving the dual (4), then it also is an optimal 8 in the context of
(A.5) and hence can be directly employed for verifying the sufficiency condition

1
29 for all v € A(w) respectively. The result follows



B Derivation of sufficiency condition in Theorem 2

Looking back at the min-max exchange employed to get (A.7) from (A.5)), the duality gap with a given
triplet (n,(, 8) is given by (here, (f,b,£) represents the associated primal solution):

max,@es(%C) G(na G B) - minﬁEAW\,l minéueA‘D(v)‘,quev G(ﬁa G, B)

%Qs(f)2 +C Zt,i i — minﬁGA\vm minéveA‘D(m,queV G(ﬁ» ¢, 5)
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Qs(0)*+C X, ; 6=y, Bra +3 (maxﬁeA‘VH MAXE, €A py)|,g7VEV >wev "'w(%C)HﬂTKwBHp*QS(f)z)

q

Gap in solving the problem with fixed (7,¢) Gap in solving the problem with fixed 8

Let the optimal solution of the dual formulation restricted to active set W be (mw, G, Bwv). Using the
above upper bound and (A.6)), it is easy to see that the following condition is sufficient for (my, G, Bw)
having a duality gap less than € w.r.t the original primal formulation (A.2):

T T
max max Tw (1, K, 5 < Tw , K, >+ 2¢ B.1
neAWCUGAWW%GV; (1. OllBWKw Bl gv (. W)l B KBl (B.1)

In the following we obtain an upper bound on the L.H.S. term of (B.1) which lead to the sufficiency
condition (6) given in Theorem 2. We first note that the L.H.S. term of (B.1) is same as (A.8) and hence

is equivalent to ({A.11]). Since (A.11) is a minimization over x, any feasible x for (A.11]) will provide us
an upper bound on the L.H.S. term. More specifically: for all w € W we simply take it to be the optimal

k obtained by solving (A.2)) restricted to the active set W. This is fine because W = hull(W). For all
w € W€, motivated by the choice in case of ¢ = 2 by Bach| (2009)) (section A.5), we choose it to be:

—1
Kyw = dy (ZueA(v)ﬂWC du) . With this choice we have that:

T
neHAl?xi{‘,l Q&Aé{iquev 1;/ Tw(m N8 Kullp
< (.- Specific choice of &)
NE
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max ¢ Qg(fy)?, max 5
) weD(t) (Z'UEA(w)ﬂW“ d”)

= (- W=hull(W))

Q=
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max { Qgs(fw)?, max By KwBw |5 ,
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weD(t) (ZveA(w)ﬂD(t) d“)

max { Qs(fiv)?, max
tesources(W<e)

Employing this upper bound in (B.1)), we get:

Q
Q=

max
tesources(W*e)

-
Ko Owllp
1By KuwBw |5 ; <l BV KWWl +2¢ (B.2)
weD(t) (ZUeA(w)ﬁD(t)d’U> wev



Now we know that for any vector z, ||z||, < ||z[; Vp > 1. ThlS implies || By KuwBw |5 < > Bk, BWH
Using the same inequality again for the @-norm present in , we get the following bufﬁ(:lency condition:

BLVK
max > L Pwlubn <5 rulw W) 18 Kubwlp +2¢ (B3)

sources © i
te (Wwe) weD(t) (ZueA(w)ﬂD(t) dv) weV

From the proof of Theorem 1, we had obtained the following equality:

il
Q=

eA VEA| D (v dVVEV yEA
n€Av|1¢ ID(),aVVEV = ey

max max Z 7w (1, OB KBy = ma‘uxl Z Aw Z (BTKI, 6) (B.4)
1
J
It can easily be seen that at optimality, the equality also holds when the formulation is restricted to the
active set W (since terms corresponding to nodes outside the active set will be zero in both L.H.S and
R.H.S.). Let (¥, 8) be the optimal solution of (4) restricted to W. It is clear from the above derivations
that By, = B and hence the following equality holds:

ikl
Q=

S i o) IBRK Bl = | 30 ) | 30 (5706)"

weV weV J

By substituting the above result in (B.3), we arrive at the final sufficiency condition in Theorem 2.
This completes the proof of Theorem 2.

C Applicability of Mirror-Descent Algorithm

For the applicability of mirror descent algorithm in our case, we need to prove that H is Lipschitz
continuous. We prove the following statement: if all the eigen-values of the gram-matrices K7, are finite
and non-zero, then H is Lipschitz continuous.

We begin by recalling the expression for the i*” entry in the sub-gradient

(VH(1))i =~ (ZA IIBTKwBIp)> > dly () (18T KuwBlp)”

\v_/ wey wED(z)
T:

T> T

We show that ¢ is Lipschitz continuous by showing that the sub-gradient is bounded. Since g € [1, c0),
we have that |Ty| < 1/2. Let the maximum and minimum eigenvalues over all KJ be «, 7 respectively.
Then, we have that nal|3||* < ||37K.f|l5 < nr||8]|?, where n is the number of given base kernels. Using
this, we obtain: Y, -y, Aw(7) (HBTKU,BH ) > (na)?||BII*7Y ey Aw (7). Note that A, is zero whenever
any v, = 0,0 € A(w). Hence, by it is clear that the set of non—zero v is such that it is equal to its
hull. Also, since 7 € Ay, we must have that atleast one v, > \VI This gives us that >\, Aw(y) >

d?,{c(ti q)/\V\ where d,,q, is the maximum of d,,v € V. Note that 5 —1<0Vq € (1,2]. Thus we

_ 1_g a=2 _
obtain: Ty < (nal|B|? /|V|1/q)1 Y dat. Now, it is easy to see that: ~; I\, ()9 < d;i{,ﬁl 9. Hence
T3 < |V|(nm)?) 3||%4d4, , .d2 */(-a) . Also, because 0 < 3 < C, we have that ||3| < v/mC. Summarizing

these finding we obtain the followmg bound on the sub-gradient:

02
HVH( )Hl < Tnal qﬂ-q‘v| dmam dl z

min

3This is because K{U are positive semi-definite kernel matrices and hence = ZTK{.UZ >= 0 Vz € R™T. Therefore,

1By KuwBwllt = 3 ; By, Kb Sw-
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