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Abstract

This paper addresses the problem of Rule En-
semble Learning (REL), where the goal is si-
multaneous discovery of a small set of sim-
ple rules and their optimal weights that lead
to good generalization. Rules are assumed
to be conjunctions of basic propositions con-
cerning the values taken by the input fea-
tures. From the perspectives of interpretabil-
ity as well as generalization, it is highly de-
sirable to construct rule ensembles with low
training error, having rules that are i) sim-
ple, i.e., involve few conjunctions and ii) few
in number. We propose to explore the (ex-
ponentially) large feature space of all possi-
ble conjunctions optimally and efficiently by
employing the recently introduced Hierarchi-
cal Kernel Learning (HKL) framework. The
regularizer employed in the HKL formulation
can be interpreted as a potential for discour-
aging selection of rules involving large num-
ber of conjunctions – justifying its suitability
for constructing rule ensembles. Simulation
results show that, in case of many bench-
mark datasets, the proposed approach im-
proves over state-of-the-art REL algorithms
in terms of generalization and indeed learns
simple rules. Unfortunately, HKL selects a
conjunction only if all its subsets are selected.
We propose a novel convex formulation which
alleviates this problem and generalizes the
HKL framework. The main technical con-
tribution of this paper is an efficient mirror-
descent based active set algorithm for solving
the new formulation. Empirical evaluations
on REL problems illustrate the utility of gen-
eralized HKL.

Technical Report of the work accepted in ICML 2011. It
additionally contains proof of theorems as well as details of
experimental results.

1. Introduction

One of the most expressive and human readable rep-
resentations for learned hypotheses is sets of if-then
decision rules. A decision rule (Rivest, 1987) is a sim-
ple logical pattern of the form: if condition then de-
cision. The condition consists of a conjunction of a
small number of simple boolean statements (proposi-
tions) concerning the values of the individual input
variables while the decision part specifies a value of
the function being learned. The dominant paradigm
for induction of rule sets, in the form of decision list
(DL) models for classification (Rivest, 1987; Michal-
ski, 1983; Clark & Niblett, 1989) has been a greedy
sequential covering procedure.

Our work falls in the league of research (Weiss & In-
durkhya, 2000; Cohen & Singer, 1999; Friedman &
Popescu, 2008; Gao et al., 2007; Dembczyński et al.,
2008; 2010) on Rule Ensemble Learning (REL). REL
is a more general approach that treats decision rules
as base classifiers in an ensemble. These models are
additive in the rules that have optimized weights (coef-
ficients). This is in contrast to the more restrictive DL
models that are disjunctive sets of rules and which use
only one in the set for each prediction. As pointed out
in (Cohen & Singer, 1999), boosted rule ensembles are
in fact simpler, better-understood formally than other
state-of-the-art rule learners and also produce compa-
rable predictive accuracy.

REL approaches like SLIPPER (Cohen & Singer,
1999), LRI (Weiss & Indurkhya, 2000), RuleFit (Fried-
man & Popescu, 2008), ENDER/MLRules (Dem-
bczyński et al., 2010; 2008) have additionally ad-
dressed the problem of learning a compact set of rules
in order to maintain its readability and also learn mod-
els that generalize better. Further, a number of rule
learners like LRI, RuleFit encourage shorter rules (i.e.,
fewer conjunctions in the condition part of the rule) or
rules with a restricted number of conjunctions, for pur-
poses of interpretation.We build upon this and define
our Rule Ensemble Learning (REL) problem as that of
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discovering a small set of simple rules and their weights
that lead to good generalization. Some of these learn-
ers (Friedman & Popescu, 2008; Dembczyński et al.,
2010) propose a regularized (empirical) risk minimiza-
tion problem with a 1− norm regularization term on
the weights of individual rules to encourage a compact
set of non-trivial rules. However, all of them either ap-
proximate such a regularized solution using strategies
such as shrinkage (in RuleFit, ENDER/MLRules) or
resort to post-pruning (Gao et al., 2007). We provide
efficient and optimal solutions to two regularized (em-
pirical) risk minimization formulations for REL. The
first is an application of Hierarchical Kernel Learn-
ing (Bach, 2009) (HKL), which discourages selection
of rules involving large number of conjunctions and ef-
ficiently explores the exponentially large space of all
possible conjunctions, in time polynomial in the num-
ber of selected rules, to yield a small set of simple
rules. The second is a generalized formulation of HKL
to further discourage glaring redundancies in the se-
lected rule set. Again, for this generalized formulation,
we develop an efficient algorithm that yields an opti-
mal solution. Experimental results demonstrate the
suitability of the proposed approaches for solving the
REL problem. It is interesting to note that the gen-
eralized HKL approach, while yielding compact rule
sets, achieved a 25% improvement in terms of general-
ization over state-of-the-art for a benchmark dataset.

We formally state the problem of Rule Ensemble
Learning (REL) in Section 2. We note that the size of
the space of conjunctions of simple boolean statements
concerning values of the individual input variables is
exponential in the number of the basic propositions.
In Section 3 we solve the REL problem efficiently by
posing it as an instance of HKL, which provides for
efficient and optimal exploration of this exponentially
large search space. Although the HKL formulation en-
courages selection of a small set of simple rules, it can
be shown that if a rule with a particular condition is
selected, then every subset of the conjunctions in the
condition appears as the condition statement of some
other selected rule. Such redundancies can hamper the
readability of the rule-set and more importantly con-
tradict our goal of selecting as few rules as possible.
In Section 4, we propose a novel convex formulation
that not only addresses this problem but also gener-
alizes the HKL framework. We develop an efficient
mirror-descent (Ben-Tal & Nemirovski, 2001) based
active set algorithm for solving the new formulation.
We report empirical evaluations of our HKL and gen-
eralized HKL formulations for REL on several publicly
available datasets in Section 5. We also compare our
results against several state-of-the-art decision list and

rule ensemble learners. Results clearly illustrate that
without compromising on accuracy, the HKL formu-
lation yields shorter rules than state-of-the-art while
generalized HKL additionally yields highly compact
rule-sets. We summarize and conclude in Section 6.

2. Rule Ensemble Learning

Let D = {(x1, y1), . . . , (xm, ym)} be the training data
where xi = [xi1, . . . , xin]> ∈ Rn and yi ∈ R repre-
sent the ith input data point and the corresponding
label respectively. Let V be a set of indices for the
ensembles. Then the prediction model for ensemble
learning takes the form (Friedman & Popescu, 2008):∑
v∈V fvφv(x)− b where, x is the input data point at

which the prediction is made, φv(·) is the vth ensemble
function and fv is the weight given to this ensemble
function. Ensemble learning algorithms differ based
on the choice of the ensemble function class and on
the learning algorithms employed for deriving the en-
semble functions and their weights from the data.

Following the works on REL (Friedman & Popescu,
2008; Dembczyński et al., 2010), we assume that each
ensemble φv(x), v ∈ V is a conjunction of basic propo-
sitions concerning the input feature values of x; thus,
φv(x) : Rn → {0, 1}. For a nominal input feature, say
j ∈ {1, 2, . . . , n}, and taking nominal values from the
set {aj1, . . . , ajnj}, the basic propositions evaluated at
a data point x take one of the forms: xj = ajk or
xj 6= ajk for all k = 1, . . . , nj . For a numerical in-
put feature, say j ∈ {1, 2, . . . , n}, we pick nj critical
points, say aj1, . . . , ajnj . The basic propositions in this
case are of one of the following forms: xj ≤ ajk and
xj ≥ ajk for all k = 1, . . . , nj . To summarize, the total
number of basic rules are p = 2

∑n
j=1 nj . We consider

V to be the set of all possible conjunctions of the p
propositions. Then, φv(x) is the vth conjunction of the
basic rules evaluated on x. Denote by f and φ(·) the
vectors with entries as fv and φv(·) for all v ∈ V respec-
tively. The REL problem can be posed as that of deter-
mining the feature weights that minimize a weighted
combination of the empirical risk1 and a regularization

term2: min
f ,b

1
2 (Ω(f))

2
+C

m∑
i=1

l(yi, 〈f , φ(x)〉 − b) where

C is the regularization parameter and l is a convex

1Here, 〈u1,u2〉 denotes the inner product of u1,u2.
2Note that V as defined above may include some impos-

sible conjunctions. This inclusion is done only for conve-
nience sake. With any norm-based regularizer, it is easy to
see that the weight fv given to such conjunctions is always
zero. As we shall understand later, the complexity of the
proposed active set algorithm is not adversely affected by
this.
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loss function (e.g., hinge loss, logistic loss, huber loss
etc.). The regularization term (Friedman & Popescu,

2008; Dembczyński et al., 2010), (Ω(f))
2

= ‖f‖21, is
meant to encourage a sparse f , so that only a few
rules are learned. However, to the best of our knowl-
edge, rule ensemble learners that identify the need
for sparse f , either approximate the solution or per-
form post-pruning (Friedman & Popescu, 2008; Dem-
bczyński et al., 2010; Gao et al., 2007). Moreover, as
motivated earlier, it is desirable to learn rules which
are simple i.e., involving as few rules as possible and
for this Ω needs to be chosen appropriately.

In this paper, we propose to solve this problem opti-
mally for a family of functions Ω(f) which discourage
selection of large conjunctive rules. Note that V has a
size exponential in p, the number of basic rules. Thus,
our algorithm should also efficiently search this expo-
nentially large space. To achieve this end, we note
that V has a structure; it can be easily verified that
〈V,⊆〉 is a lattice and will be hereafter referred to as
the conjunction lattice. Here ∀ v1, v2 ∈ V, v1 ⊆ v2 iff
v1 is a subset of the conjunctions of v2. In the next
section, we leverage the recent work of Hierarchical
Kernel Learning (Bach, 2009) to explore this structure
in V and solve the REL problem in time polynomial
in the number of selected rules.

Some more notation is in order before we move on.
We follow the convention that the top (level 0) of the
Hasse diagram depicting the conjunction lattice cor-
responds to the empty conjunction and the bottom
(level p) to the conjunction of all basic propositions.
Under this convention, the nodes at level 1, say, de-
noted by B, form the set of basic propositions. Let
D(v) and A(v) represent the set of descendants and
ancestors of the node v in the lattice. We assume that
both D(v) and A(v) include the node v. For any sub-
set of nodes W ⊂ V, the hull and sources of W are

defined as: hull(W) =
⋃
w∈W

A(w) and sources(W) =

{w ∈ W | A(w) ∩W = {w}}. Also, |W| denotes the
size of the set and Wc the denotes the complement
i.e., all the nodes in V which are not in W. We let fW
denote the vector with entries fv, v ∈ W. In general,
the entries in a vector are referred to using an appro-
priate subscript i.e., entries in ui ∈ Rd are denoted by
ui1, . . . , uid etc.

3. Rule Ensemble Learning using HKL

One way of discouraging selection of conjunctions in-
volving many basic rules is by employing a (1, 2)
mixed-norm based regularizer promoting group spar-
sity: Ω(f) =

∑
v∈V ‖fD(v)‖2. Since the 1-norm is

known to promote sparsity (Rakotomamonjy et al.,
2008; Bach, 2009), for most of the v ∈ V, we have
that ‖fD(v)‖2 = 0 (fw = 0 ∀ w ∈ D(v)). Hence the
selection of conjunctions near the bottom of the con-
junction lattice, which correspond to those involving
many basic rules, is indeed discouraged. In order to
facilitate incorporation of prior information regarding
the usefulness of the feature conjunctions, one may
also employ a weighted version of the above regular-
izer: ΩH(f) =

∑
v∈V dv‖fD(v)‖2 where dv ≥ 0 is a

non-negative weight parameter. This leads to the fol-
lowing hierarchical kernel learning formulation (Bach,
2009):

min
f ,b

1

2
(ΩH(f))

2
+ C

m∑
i=1

[l (yi, 〈f , φ(xi)〉 − b)] (1)

where ΩH(f) =
∑
v∈V dv‖fD(v)‖2.

HKL was introduced as a generic framework for per-
forming non-linear feature selection. In the context
of the HKL formulation (1), V can be a set of nodes
in any directed acyclic graph and need not be re-
stricted to those in the conjunction lattice; i.e., φv(·)
is not restricted to be a boolean value, but may be
any vector in the RKHS induced by a kernel, say kv
i.e., kv(xi,xj) = 〈φv(xi), φv(xj)〉. In this case fv
must itself be a vector in this RKHS and 〈f , φ(x)〉 =∑
v∈V〈fv, φv(x)〉. Accordingly, fD(v) is now defined as

the vector with entries given by ‖fw‖2 ∀ w ∈ D(v).
Note that this generalization in the notation is indeed
consistent with that introduced previously in the con-
text of REL — where V represents the set of nodes
in the conjunction lattice and φv(·) and fv are one di-
mensional. In the remainder of this paper we follow
this generalized notation while keeping in mind the
specialization in the context of REL.

The dual of (1) turns out to be the problem of learning
sparse (non-negative) linear combinations of the expo-
nentially large number of kernels kv. Such problems
have also been studied in the name of Multiple Ker-
nel Learning (MKL) (Rakotomamonjy et al., 2008).
Typically in the setting of MKL problems, few base
kernels are given and the goal is to optimally combine
them in order to achieve good generalization. Thus
HKL formulation is an extreme case of MKL where
the number of base kernels is exponential. Since the
RKHS induced by sum of kernels is the concatenation
of those induced by the individual kernels, selection
of kernels is equivalent to selection of the correspond-
ing induced RKHS/feature spaces. More specifically,
in the context of REL, selection of kernels is equiva-
lent to selection of conjunctive rules. The mixed-norm
regularizer ΩH(f) employed in the HKL formulation
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was introduced by the authors from a purely compu-
tational perspective – in order to restrict the sparsity
patterns such that an active set algorithm (refer fig-
ure 6 in Bach (2009)) can be used to efficiently solve
the formulation. In fact, a key result in Bach (2009)
is that the computational complexity of the active set
algorithm is polynomial in the number of selected ker-
nels — provided the kernels kv(·, ·) are such that they
can be summed over the descendants of a given node
in polynomial time in the number of input features.

Note that, in our case of REL, the kernels do sat-
isfy this criterion: the RKHS in which φv(·) lies is es-
sentially the one dimensional Euclidean space induced
by the vth conjunction and kv(xi,xj) is simply the
product of the vth conjunction evaluated on the ex-
amples xi and xj . Since the basic rules are boolean,
kv(xi,xj) is further equal to the product of evaluations
of all the basic rules corresponding to the vth conjunc-
tion on these two examples. It is easy to see that
in this case the sum of these products over any sub-
lattice formed by the descendants can be computed
efficiently by re-writing it as product of sums; for e.g.,∑
v∈V kv(xi,xj) = Πk∈B(1+φk(xi)φk(xj)) (recall that

B is the set of level 1 nodes in the lattice i.e., the basic
rules themselves). Hence the active set algorithm (fig-
ure 6 in Bach (2009)) can be employed for efficiently
solving the HKL formulation in the context of REL —
enabling us to explore the exponentially large space
of conjunctive rules in polynomial time. Empirical re-
sults in Section 5 show that the rule ensembles con-
structed using the HKL framework indeed learn simple
conjunctive rules with better generalization in many
datasets.

Although these results are encouraging, it must be
noted that under very mild conditions on the kernels,
it can be shown that the HKL algorithm selects a con-
junction only after selecting all conjunctions3 which
are subsets of it (refer theorem 6 in Bach (2009)). This,
particularly in the context of REL, is psycho-visually
redundant, because a rule with k propositional state-
ments, if included in the result, will necessarily entail
the inclusion of 2k more general rules in the result.
This violates the important requirement for a small
set (Friedman & Popescu, 2008; Gao et al., 2007; Dem-
bczyński et al., 2010) of human-readable rules (c.f.
Section 1).

The key reason for this restrictive scheme of
rule/feature selection in HKL is the presence of the
2-norm (which is known to promote non-sparse so-
lutions) over the feature weights of the descendants
(i.e., ‖fD(v)‖2). To achieve our desired objective, we

3This includes the empty conjunction as well.

generalize the HKL formulation and employ the regu-
larizer4: ΩS(f) =

∑
v∈V dv‖fD(v)‖ρ, ρ ∈ (1, 2]. Since

the 1-norm promotes sparsity, as in case of the origi-
nal HKL formulation, for most of v ∈ V we have that
‖fD(v)‖ρ = 0 (fw = 0 ∀ w ∈ D(v)). But now, even
in cases where ‖fD(v)‖ρ is not forced to zero by the 1-
norm, many of the feature weights of its descendants
(i.e., fw for w ∈ D(v)) will be forced to zero as it is
known that norms between (1, 2) promote sparse solu-
tions (for e.g., (Szafranski et al., 2008)). This trans-
lates into relaxing the restrictive scheme of feature se-
lection in HKL. The details of the generalized HKL
formulation and an efficient algorithm for solving it
are presented in the subsequent section.

4. Generalized HKL Formulation

In this section we present the main technical contribu-
tion of the paper — the generalized HKL formulation
and an efficient mirror-descent based active set algo-
rithm for solving it. In order to keep the expressions
simple, in the remainder of this paper we focus on
the case of binary classification (labels yi ∈ {−1, 1})
and present the details using the hinge-loss as the loss
function l. It is easy to extend the following results
for other learning problems with appropriate choices
of loss functions and kernels.

As discussed in the previous section, we generalize the
HKL formulation by replacing the 2-norm with a ρ-
norm (ρ ∈ (1, 2]) over the weights of the descendants:

min
f ,b,ξ

1
2

(∑
v∈V dv‖fD(v)‖ρ

)2
+ C

∑m
i=1 ξi

s.t. yi

(∑
v∈V
〈fv, φv(xi)〉 − b

)
≥ 1− ξi, ξi ≥ 0 (2)

To the best of our knowledge such generalizations of
HKL have not been studied in the literature. In the
following text, we present an efficient mirror-descent
based active set algorithm for solving this (exponen-
tially large) convex problem (2). The computational
complexity of this algorithm is polynomial in the size
of the hull of the selected kernels.

We begin by making the following observation: the
problem (2) remains the same when solved with the
original set of variables (i.e., f , b, ξ) or when solved
with only those fv 6= 0 at optimality and b, ξ. However
the computational effort required in the later case can
be far lower, as it is expected that most of the variables
fv will be zero at optimality. This motivates us to

4We, on purpose do not wish to include the case ρ = 1
as then there will be no hope of solving it in polynomial
time.
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Algorithm 1 Active Set Algorithm

Input: Training data D, Oracle for computing kv, Max-
imum tolerance (ε).
Initialize W as set containing only the top node.
Compute η, α by solving (14) using mirror-descent.
while suff. cond. (13) is not met do

Add suff. cond. (13) violating nodes to W
Recompute η, α by solving (14)

end while
Output: W, η, α

explore an active set algorithm, which is similar in
spirit to that in (Bach, 2009).

The active set algorithm (refer algorithm 1 for details)
starts with an initial guess for the set of non-zero fv.
This set is referred to as the active set (W). At each
iteration, the following problem, which is the same as
(2) with variables restricted to the active set, is solved:

min
f ,b,ξ

1
2

(∑
v∈W dv‖fD(v)∩W‖ρ

)2
+ C

∑m
i=1 ξi

s.t. yi

(∑
v∈W
〈fv, φv(xi)〉 − b

)
≥ 1− ξi, ξi ≥ 0 (3)

If the optimal solution for this small problem (3),
henceforth referred to as the reduced solution, is an
optimal solution for the original problem (2), then the
algorithm terminates; else the active set is updated ac-
cordingly. The two issues which need to be resolved
are: i) can the optimality of the reduced solution be
verified efficiently? ii) can the small problem (3) be
solved efficiently?

We begin by addressing the former issue regarding op-
timality of the reduced solution and present a suffi-
cient condition for optimality which can be verified in
polynomial time in the size of the active set. The suffi-
cient condition follows from the insight given by a dual
of (2) which is presented below. The problem (2) aims
at finding the optimal vector in an RKHS. In order
to facilitate the application of a suitable representer
theorem for writing down the dual, we employ here
a variational characterization of ΩS(f). We first note
the following lemma (Micchelli & Pontil, 2005) which
will be useful in the derivations:

Lemma 4.1. Let ai ≥ 0, i = 1, . . . , d and
1 ≤ r < ∞. Then, for ∆d,r defined as{
η ∈ Rd | η ≥ 0,

∑d
i=1 η

r
i = 1

}
,

min
η∈∆d,r

∑
i

ai
ηi

=

(
d∑
i=1

a
r
r+1

i

)1+ 1
r

(4)

and the minimum is attained at

ηi =
a

1
r+1

i(∑d
i=1 a

r
r+1

i

) 1
r

Here, by convention, a/0 is 0 if a = 0 and is ∞ oth-
erwise. In the limit r →∞ the following holds

min
η∈∆d,∞

∑
i

ai
ηi

=

d∑
i=1

ai (5)

and equality is attained when ηi = 1 ∀ ai > 0.

With repeated application of the above lemma, it can
be shown that

ΩS(f)2 = min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δ−1
w (γ, λ)‖fw‖22

where δ−1
w (γ, λ) =

∑
v∈A(w)

d2
v

γvλvw
and ρ̂ = ρ

2−ρ .

Proof. Applying Lemma 4.1 we have that:

ΩS(f)2 =

(∑
v∈V

dv‖fD(v)‖ρ

)2

= min
γ∈∆|V |,1

∑
v∈V

d2
v‖fD(v)‖2ρ
γv

Applying the lemma again, we have: ‖fD(v)‖2ρ =

minλv∈∆|D(v)|,ρ̂

∑
w∈D(v)

‖fw‖22
λvw

where ρ̂ = ρ
2−ρ . Thus

we have the following variational characterization:

ΩS(f)2 = min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δ−1
w (γ, λ)‖fw‖22

where δ−1
w (γ, λ) =

∑
v∈A(w)

d2
v

γvλvw
.

Using this variational characterization and applying
the representer theorem (see also Rakotomamonjy
et al. (2008)), we derive a partial-dual (dual wrt. vari-
ables f , b, ξ alone) of (2):

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
α∈S(y,C)

G(γ, λ, α) (6)

where

G(γ, λ, α) =

m∑
i=1

αi −
1

2
α>

(∑
w∈V

δw(γ, λ)Kw

)
α

and S(y, C) = {α ∈ Rm | 0 ≤ α ≤ C,
∑m
i=1 yiαi =

0}. It turns out that at optimality: ΩS(f)2 =∑
w∈V δw(γ, λ)α>Kwα (this can be realized from

the KKT conditions associated with this primal-dual
pair). We state and prove another lemma which will
be used for proving the next theorem.
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Lemma 4.2. At optimality, the objective value of
partial-dual obtained in (6) is also given by:

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
α∈S(y,C)

G(γ, λ, α) =

max
α∈S(y,C)

min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ, λ, α)

Proof. By a change of variable given by πvw =
γvλvw, ∀w ∈ D(v), ∀v ∈ V (for e.g., (Szafranski
et al., 2008)). Then the constraints over γ and λ can
be jointly written, in terms of π as:∑

v∈V

∑
w∈D(v)

(πvw)
ρ̂

= 1

Overloading the functions of (γ, λ), δw and G, by cor-
responding π variables, we get G(π, α) =

∑m
i=1 αi −

1
2α
> (∑

w∈V δw(π)Kw

)
α with G(π, α) = G(γ, λ, α).

Note that G(π, α) is concave in α and convex in π
(proof of convexity similar to lemma 10 in (Bach,
2009)). Also the feasibility sets involved are convex
and compact. Using the Sion-Kakutani minmax the-
orem (Sion, 1958), we have that the min and max
can be interchanged leading to: minπ maxαG(π, α) =
maxα minπ G(π, α) (with constraints over π and α
as stated before). We revert back to the original

variables (γ, λ) by taking γv =
∑
w∈D(v) (πvw)

ρ̂
and

λvw = πvw

(γv)
1
ρ̂

, which gives us the equivalent

max
α∈S(y,C)

min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ, λ, α) (7)

We now note the following key theorem which provides
a sufficient condition for optimality of the reduced so-
lution:

Theorem 1. Suppose the active set W is such that
W = hull(W). Let the reduced solution with this W
be (fW , bW , ξW) and the corresponding dual variables
be (γW , λW , αW). The reduced solution is a solution
of (2) with a duality gap less than ε if:

max
t∈sources(Wc)

‖βt‖ρ̄ ≤ (ΩS(fW))
2

+ 2(ε− εW) (8)

where βt is the vector with |D(t)| number of entries
and the wth (w ∈ D(t)) entry being αWKwαW

(
∑
v∈A(w)∩D(t) dv)

2 ,

ρ̄ = ρ
2(ρ−1) and εW is a duality gap term associated

with the computation of the reduced solution.

Proof. From Lemma 4.2, the duality gap with a given
triplet (γ, λ, α) is given by ((f , b, ξ) representing the

associated primal solution):

= max
α̂∈S(y,C)

G(γ, λ, α̂) −

min
γ̂∈∆|V |,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈V

G(γ̂, λ̂, α) (9)

≤ 1

2
ΩS(f)2 + C

m∑
i=1

ξi −

min
γ̂∈∆|V |,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈V

G(γ̂, λ̂, α) (10)

=

Gap in solving the problem with fixed (γ,λ)︷ ︸︸ ︷
ΩS(f)2 + C

m∑
i=1

ξi −
m∑
i=1

αi −

1

2

(
max

γ̂∈∆|V |,1
max

λ̂v∈∆|D(v)|,ρ̂∀v∈V
HV − ΩS(f)2

)
︸ ︷︷ ︸

Gap in solving the problem with fixed α

(11)

where HV =
∑
w∈V δw(γ̂, λ̂)α>Kwα in (11). With

this upper bound on duality gap, it is easy to see that
the following condition is sufficient for the reduced so-
lution with W having a duality gap less than ε:

max
γ∈∆|V |,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>WKwαW ≤

ΩS(fW)2 + 2(ε− εW)

where εW is the gap5 associated with the computation
of the αW . In the following we obtain an upper bound
on the maximization term (wrt. (γ, λ)) leading to the
result (5) in this theorem. We have:

max
γ∈∆|V |,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>Kwα

= max
λv∈∆|D(v)|,ρ̂∀v∈V

min
κ∈L

max
v∈V

∑
w∈D(v)

κ2
vwλvwα

>Kwα

d2
v

(Lagrange dual wrt. γ)

= min
κ∈L

max
v∈V

max
λv∈∆|D(v)|,ρ̂

∑
w∈D(v)

κ2
vwλvwα

>Kwα

d2
v

(By Sion-Kakutani theorem)

= min
κ∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
κ2
vwα

>Kwα
)ρ̄ 1

ρ̄

(12)

(By Lemma (4.1))

where, L = {κ ∈ R|V|×|V| | κ ≥ 0,
∑
v∈A(w) κvw =

1,
∑
v∈A(w)c κvw = 0 ∀ w ∈ V}.

5This is given by the gap associated with the ρ̂-norm
MKL solver employed in the mirror-descent algorithm for
solving the small problem (3).
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Now, we obtain an upper bound by choosing a spe-
cific κ: for all w ∈ W we simply take it to be
the optimal κ obtained by solving the small prob-
lem (3). This is fine because W = hull(W). For all
w ∈ Wc, any suitable κ ∈ L will be an upper bound
on (12). Thus, we solve (12) for ρ = 1 case to ob-

tain κvw = dv

(∑
u∈A(v)∩Wc du

)−1

(also see section

A.5 (Bach, 2009)). With this choice we have that:

max
γ∈∆|V |,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>Kwα

≤ max
{

ΩS(fW)2, B1

}
(∵ Specific choice of κ)

= max
{

ΩS(fW)2, B2

}
(∵W=hull(W))

≤ max
{

ΩS(fW)2, B3

}
(∵

∑
v∈A(w)∩Wc dv≥

∑
v∈A(w)∩D(t) dv)

B1 = max
t∈Wc

(∑
w∈D(t)

(
ᾱKwᾱ

(
∑
v∈A(w)∩Wc dv)

2

)ρ̄) 1
ρ̄

B2 = max
t∈sources(Wc)

(∑
w∈D(t)

(
ᾱKwᾱ

(
∑
v∈A(w)∩Wc dv)

2

)ρ̄) 1
ρ̄

B3 = max
t∈sources(Wc)

(∑
w∈D(t)

(
ᾱKwᾱ

(
∑
v∈A(w)∩D(t) dv)

2

)ρ̄) 1
ρ̄

Employing this upper bound in (12) leads to the result
in Theorem 1.

In the special case ρ̄ = 1 (i.e., ρ = 2), this condition
is same that obtained in Bach (2009) and can be veri-
fied efficiently: size of sources(Wc) is upper-bounded
by p|W| and the sum of the quadratic terms α>Kwα
can be done efficiently as we assumed that the kernels
are easily summable over the descendants. Similarly,
the terms involving the weights dv also do not pose a
problem as long as we choose the dv such that they de-
compose as products. In this case

∑
v∈A(w)∩D(t) dv can

be computed in linear time in p. When ρ ∈ (1, 2) (i.e.,
ρ̄ ∈ (1,∞)), we still insist on maxt∈sources(Wc) ‖βt‖1 ≤
RHS of (8). This will be fine because for any βt,
‖βt‖ρ̄ ≤ ‖βt‖1. At first, this may seem to be a pes-
simistic approach, however, in the context of REL
problems, it is easy to see that each βt will be a highly
sparse vector as the most of the matrices Kw, espe-
cially near the bottom of the lattice, will be (near)
zero-matrices. This is because the larger the conjunc-
tive rule, the fewer are the examples which may satisfy
it. Thus effectively for all ρ ∈ (1, 2] we use the follow-
ing sufficient condition:

max
t∈sources(Wc)

‖βt‖1 ≤ (ΩS(fW))
2

+ 2(ε− εW) (13)

In case the sufficiency criterion is satisfied at an it-
eration, the active set algorithm terminates; else the

nodes in sources(Wc) which violate the condition are
appended to the active set6.

We now focus on the issue of solving the small prob-
lem (3) efficiently. Existing optimization tools like
cvx7 are capable of solving this problem; however our
initial simulations showed that they are not scalable
and impractical to work with real-world REL tasks.
Also the wrapper approaches presented in (Szafranski
et al., 2008; Bach, 2009) cannot be applied either to
the primal form (3) or the dual form (7). The following
important theorem presents a highly specialized dual
of (2) which motivates a simple mirror-descent based
algorithm:

Theorem 2. The following is a dual of (2) and the
objectives of (2), (7) and (14) are equal at optimality:

min
η∈∆|V|,1

g(η) (14)

where g(η) is the optimal objective value of the follow-
ing convex problem:

max
α∈S(y,C)

m∑
i=1

αi −
1

2

(∑
w∈V

ζw(η)
(
α>Kwα

)ρ̄) 1
ρ̄

(15)

where ζw(η) =
(∑

v∈A(w) d
ρ
vη

1−ρ
v

) 1
1−ρ

and Kw is the

m×m matrix with entries as: yiyjkw(xi,xj).

Proof. We begin by writing down a dual of (12):
let us denote the optimal value of (12) by O. Con-
sider the following problem which has optimal value
Oρ̄: minκ∈L maxv∈V d

−2ρ̄
v

∑
w∈D(v)

(
κ2
vwα

>Kwα
)ρ̄

.

The Lagrangian is: L(κ,A, η) = A +∑
v∈V ηv

(
d−2ρ̄
v

∑
w∈D(v)

(
κ2
vwα

>Kwα
)ρ̄ −A). Mini-

mization of Lagrangian wrt. A leads to the constraint
η ∈ ∆|V|,1. The minimization problem wrt. κ is given

by: minκ∈L
∑
v∈V

∑
w∈D(v) ηv

(
d−2
v κ2

vwα
>Kwα

)ρ̄
.

Using the special structure of L, we can
re-write this minimization problem as:∑
w∈V

(
α>Kwα

)ρ̄
minκw∈∆|A(w)|,1

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw.

Using Holder’s inequality8, we have that:
minκw∈∆|A(w)|,1

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw = ζw(η) =

6It is easy to see that with this update scheme of the ac-
tive set,W is always equal to hull(W) and hence theorem 1
holds.

7Available at http://cvxr.com/cvx/
8Take vectors u1 and u2 as those with entries

d−1
v η

1
2ρ̄
v κvw and dvη

− 1
2ρ̄

v for all v ∈ A(w) respectively.
The result follows from the Holder’s inequality: u>1 u2 ≤
‖u1‖2ρ̄‖u2‖ρ

http://cvxr.com/cvx/
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v∈A(w) d

ρ
vη

1−ρ
v

) 1
1−ρ

. Hence the dual of (12) is:

max
η∈∆|V|,1

(∑
w∈V

ζw(η)
(
α>Kwα

)ρ̄) 1
ρ̄

(16)

Using the above in (7) and again interchanging the
min-max leads to the result in this theorem9.

Apart from motivating an efficient algorithm for solv-
ing the generalized HKL formulation, the dual (14)
gives some valuable insights into the formulation; since
(14) is essentially a 1-norm regularized problem, it is
expected that most of the η’s will be (near) zero at op-
timality. Also, the weight ζw(η) is zero whenever one
or more of the ηv(v ∈ A(w)) are zero. In the context
of REL, these observations imply that the formulation
(2) discourages selection of kernels near the bottom of
the lattice or equivalently large conjunctive rules.

Interestingly, the problem in (15) is equivalent to the
ρ̂-norm MKL (Kloft et al., 2009) problem with ρ̂ = ρ

2−ρ

and the base kernels are (ζv(η))
1
ρ̄ kv ∀ v ∈ V 3

ζv(η) 6= 0. The ρ̂-norm MKL formulation problem
promotes sparsity in combining the base kernels when-
ever ρ̂ < ∞ (i.e., ρ ∈ (1, 2)) and highly sparse solu-
tions when ρ̂ < 2 (i.e., ρ ∈ (1, 4/3)) (Szafranski et al.,
2008; Kloft et al., 2009). It can also be shown that if
ρ̂ = ∞ (i.e., ρ = 2), then all the base kernels will be
selected10. Consider a node w ∈ V such that none of
the ηv (v ∈ A(w)) are zero — which in turn implies
that none of ζv, v ∈ A(w) is zero. Then the above
MKL interpretation implies that the kernel kw will be
selected if ρ = 2 and may not be selected whenever
ρ ∈ (1, 2). In the context of REL this implies that
conjunctions may be selected regardless of the selec-
tion of its subsets provided ρ ∈ (1, 2). This justifies
our generalized HKL formulation.

The small problem (3) can be solved efficiently by solv-
ing the dual problem given by theorem 2 (i.e., problem
(14) with V restricted to W). In the following we pro-
pose to employ the mirror-descent algorithm (Ben-Tal
& Nemirovski, 2001) for solving (14). Mirror-descent
is a variant of the projected (sub)gradient-descent al-
gorithm and can be employed to solve any problem of
the form: minx∈X h(x), where h is a convex, Lipschitz
continuous function and X is a convex compact set. It

9From the proof it is clear that if α is obtained by solv-
ing the dual (7), then it also is an optimal α in the context
of (4) and hence can be directly employed for verifying the
sufficiency condition (6).

10This requires that all gram-matrices with each kv are
positive definite and is hence consistent with the theorem
6 in Bach (2009).

is assumed that there exists an oracle which computes
the (sub)gradient of h at any given x ∈ X. Mirror-
descent algorithms are known to efficiently solve such
problems, especially those with feasibility set being a
simplex. We note the following theorem which justifies
the applicability of mirror-descent for solving (14):

Theorem 3. The function g(η) given by (15) is con-
vex. Also, the ith entry in the sub-gradient (∇g(η))i =

−
d
ρ
i
η
−ρ
i

2ρ̄ (∑
w∈V ζw(η)(ᾱ>Kwᾱ)

ρ̄
)

1
ρ̄
−1

(∑
w∈D(i) ζw(η)ρ(ᾱ>Kwᾱ)

ρ̄
)

where ᾱ is an optimal solution of problem (15) with
that η where the sub-gradient is to be computed. If all
the eigen-values of the gram-matrices Kw are finite
and non-zero, then g is Lipschitz continuous.

Proof. We begin by noting that ζv(η) is a concave
function of η for all v (this is because when ρ ∈ (1, 2],
ζv is a weighted q-norm in η, where q ∈ [−1, 0) and
hence is concave in the first quadrant). By simple ob-
servations regarding operations preserving convexity
we have that the objective in (15) is a convex func-
tion of η for a fixed value of α. Hence g(η), which is
a point-wise maximum over convex functions, is itself
convex. The sub-gradient follows from the Danskin’s
theorem (prop. B.25 in Bertsekas (1999)).

We show that g is Lipschitz continuous by showing
that the sub-gradient is bounded. Since ρ̄ ∈ [1,∞),
we have that |T1| ≤ 1/2. Let the maximum and min-
imum eigenvalues over all Kw be µ, σ respectively.
Then, we have that µ‖ᾱ‖2 ≤ ᾱ>Kwᾱ ≤ σ‖ᾱ‖2.

Using this, we obtain:
∑
w∈V ζw(η)

(
ᾱ>Kwᾱ

)ρ̄ ≥
µρ̄‖ᾱ‖2ρ̄

∑
w∈V ζw(η). Note that ζw is zero whenever

any ηv = 0, v ∈ A(w). Hence, by (16) it is clear that
the set of non-zero η is such that it is equal to its
hull. Also, since η ∈ ∆|V |,1, we must have that atleast

one ηu ≥ 1
|V | . This gives us that

∑
w∈V ζw(η) ≥

d
ρ/(1−ρ)
max /|V | where dmax is the maximum of dv, v ∈
V. Thus we obtain: T2 ≤

(
µ‖ᾱ‖2/|V |1/ρ̄

)1−ρ̄
d
ρ−2
1−ρ
max.

Now, it is easy to see that: η−ρi ζw(η)ρ ≤ d
ρ2/(1−ρ)
min .

Hence T3 ≤ |V |σρ̄‖ᾱ‖2ρ̄dρmaxd
ρ2/(1−ρ)
min . Also, because

0 ≤ ᾱ ≤ C, we have that ‖ᾱ‖ ≤
√
mC. Summariz-

ing these finding we obtain the following bound on the
sub-gradient:

‖∇g(η)‖1 ≤
mC2

2
µ1−ρ̄σρ̄|V |

2
ρ d

ρ−2
1−ρ+ρ
max d

ρ2

1−ρ
min

It is clear from the above theorem that computing
the gradient of h involves solving (15) which is, as
noted before, equivalent to solving a ρ̂-norm MKL
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problem. This can be done using cutting planes algo-
rithms (Kloft et al., 2009). In the special case ρ = 2,
(15) is simply a regular SVM problem.

In the following text, the computational complexity
of the active set algorithm is estimated assuming R
is the final active set size. We need to solve (14)
O(R) times. Each mirror descent run takes log(R)
iterations (Ben-Tal & Nemirovski, 2001) with domi-
nant computation at each iteration being that of solv-
ing ρ̂-norm MKL whose conservative complexity esti-
mate is O(m3R2). This amounts to O(m3R3 log(R)).
The cost for computing gram-matrices is O(m2Rp);
whereas that of verifying the sufficient conditions is
O(m2R2p). Thus the overall computational complex-
ity is: O(m3R3 log(R) +m2Rp+m2R2p).

5. Experimental Results

In this section, we report the results of our simulations
on classification datasets from the UCI repository.The
goal is to compare various rule ensemble learners on
the basis of (a) generalization — measured by the
predictive performance on unseen test data (b) inter-
pretability — measured using i) number of conjunctive
rules employed ii) average number of propositions per
rule.

The following methods were compared.

HKLρ: The proposed REL algorithms described
in Sections 3 & 4. We consider three different values
of ρ : 2, 1.5 and 1.1. Note that with ρ = 2, the for-
mulation is the same as (Bach, 2009). In each case, a
3-fold cross validation procedure was employed to tune
the C parameter with values in {10−3, 10−2, . . . , 103}.
Weight parameters dv increased exponentially with
the depth of the node v. Such a scheme of weights is
consistent with our policy of discouraging selection of
large conjunctions. For each numerical input feature
(j), the number of critical values nj was chosen to be
4 with critical values distributed uniformly. Code is
available at http://www.cse.iitb.ac.in/~pratik.

j/REL-HKL.tar.gz.

ENDERM : State-of-the-art rule ensemble al-
gorithm (Dembczyński et al., 2010). Note that
for a classification problem, ENDER is same as
MLRules (Dembczyński et al., 2008)11. The param-
eters were set to default values mentioned by the
authors, in particular, the number of rules (say,
denoted by M) was set to 500. Additionally, to enable

11Code available at www.cs.put.poznan.pl/
wkotlowski.

comparisons between ENDER and the proposed meth-
ods, we also considered M = θ = max(N1.5, N1.1),
where Nρ is the number of rules computed by HKLρ).
The Newton method was used for minimization.

SLI: The SLIPPER algorithm (Cohen & Singer,
1999). Following Dembczyński et al. (2010), the limit
on maximum number of iterations (Tmax) was set to
500 and internal cross-validation for selecting the best
Imax was performed.

RuleFit: Rule ensemble algorithm as in Fried-
man & Popescu (2008)12. The parameter settings
were the same as those specified by the authors.

We experimented with the following bench-
mark datasets from the UCI repository13:
tic-tac-toe, balance, haberman, car, blood

transfusion, cmc, monks-3, vote, breast

cancer, mammographic mass. In case of multi-
class datasets, we picked the two most populated
classes for binary classification.

For each dataset, we created 5 random train-test splits
with 10% train data14. Since most datasets were
highly unbalanced, we report the average F1-score
(with standard deviation) for each dataset in Table 1.
We also report the number of rules produced and the
average length (number of propositions) of the rules15.
It is desirable that REL algorithms achieve high F1-
score with a small set of simple rules i.e., compact set
of rules. In order to be comparable with other REL
works we also report the corresponding error percent-
age obtained in Table 2.

We observe in Table 1 that the generalization of
the proposed HKLρ is atleast as good as that of
state-of-the-art, with the additional advantage that
HKLρ learns rules with small number of conjunctions.
More interestingly, HKL1.1 yields extremely small to
medium-sized accurate rule sets. Wilcoxon sign rank
test shows that there is only a small evidence (proba-
bilities of 0.027, 0.049 and 0.02 respectively) in favour
of the null hypotheses that the median F1-score with
HKL1.1 is the same as those with RuleFit, SLI and
ENDERθ. Some observations from the table are note-
worthy. For instance, HKL1.1 benefits from its opti-
mal search and chooses a moderate sized ruleset for
the tic-tac-toe dataset leading to substantial gain in
F1-score. Whereas, in cases like monk-3, vote and

12Code available at www-stat.stanford.edu/~jhf
13http://archive.ics.uci.edu/ml/
14Except for monk-3 where train-test split was given.
15Specified below each F1-score as: (number of rules,

average length of rules)

http://www.cse.iitb.ac.in/~pratik.j/REL-HKL.tar.gz
http://www.cse.iitb.ac.in/~pratik.j/REL-HKL.tar.gz
www.cs.put.poznan.pl/wkotlowski
www.cs.put.poznan.pl/wkotlowski
www-stat.stanford.edu/~jhf
http://archive.ics.uci.edu/ml/
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Table 1. F-score, number of rules and average length of rules

Dataset RuleFit SLI
ENDERM HKLρ

M = 500 M = θ ρ = 2 ρ = 1.5 ρ = 1.1

TIC-TAC-TOE 0.652± 0.068 0.747± 0.026 0.678± 0.014 0.633± 0.011 0.889± 0.029 0.904± 0.039 0.935± 0.043
(40, 2.51) (59, 2.35) (500, 2.67) (111, 2.46) (129, 1.85) (111, 1.83) (79, 1.77)

BALANCE 0.835± 0.034 0.856± 0.027 0.893± 0.017 0.827± 0.013 0.893± 0.027 0.899± 0.022 0.899± 0.023
(17, 2.18) (25, 1.88) (500, 2.00) (64, 1.99) (65, 1.65) (64, 1.62) (28, 1.23)

HABERMAN 0.512± 0.072 0.565± 0.066 0.585± 0.016 0.424± 0.000 0.594± 0.056 0.594± 0.056 0.594± 0.056
(6, 1.68) (8, 1.14) (500, 1.84) (18, 1.87) (32, 1.27) (18, 1.24) (12, 1.20)

CAR 0.913± 0.033 0.895± 0.024 0.908± 0.019 0.755± 0.028 0.943± 0.024 0.937± 0.033 0.935± 0.036
(34, 3.12) (141, 2.27) (500, 2.67) (80, 1.85) (87, 1.78) (80, 1.77) (50, 1.68)

BLOOD TRANS. 0.549± 0.092 0.559± 0.100 0.616± 0.059 0.489± 0.054 0.594± 0.009 0.593± 0.011 0.593± 0.011
(18, 1.99) (6, 1.07) (500, 1.73) (58, 1.5) (242, 1.64) (58, 1.76) (7, 1.40)

CMC 0.632± 0.013 0.601± 0.041 0.651± 0.014 0.644± 0.026 0.656± 0.014 0.652± 0.023 0.659± 0.008
(39, 2.41) (13, 2.13) (500, 2.90) (74, 2.65) (217, 1.96) (74, 1.77) (43, 1.70)

MONK-3 0.330 0.910 0.972 0.972 0.972 0.972 0.972
(8, 1) (20, 2.12) (500, 2.57) (7, 1.57) (18, 1) (7, 1) (2, 1)

VOTE 0.940± 0.060 0.970± 0.003 0.953± 0.030 0.970± 0.003 0.969± 0.003 0.969± 0.003 0.969± 0.003
(12, 1.5) (3, 1) (500, 1.12) (8, 1) (39, 1.25) (8, 1.16) (3, 1)

BREAST-C 0.550± 0.049 0.550± 0.088 0.548± 0.040 0.414± 0.000 0.529± 0.048 0.529± 0.048 0.515± 0.049
(10, 1.82) (7, 1.33) (500, 1.87) (18, 1.83) (27, 1.15) (18, 1.16) (14, 1)

MAM. MASS 0.834± 0.010 0.827± 0.010 0.832± 0.005 0.830± 0.015 0.815± 0.007 0.815± 0.007 0.815± 0.007
(8, 1.98) (4, 1) (500, 2.15) (12, 1.9) (17, 1.49) (12, 1.53) (5, 1.18)

Table 2. Error percentage, number of rules and average length of rules

Dataset RuleFit SLI
ENDERM HKLρ

M = 500 M = θ ρ = 2 ρ = 1.5 ρ = 1.1

TIC-TAC-TOE 28.58± 3.78 21.62± 2.43 28.03± 1.29 30.23± 1.43 10.49± 2.63 8.65± 3.50 5.89± 3.87
(40, 2.51) (59, 2.35) (500, 2.67) (111, 2.46) (129, 1.85) (111, 1.83) (79, 1.77)

BALANCE 16.45± 3.39 14.44± 2.69 10.70± 1.70 17.30± 1.32 10.66± 2.63 10.12± 2.24 10.12± 2.30
(17, 2.18) (25, 1.88) (500, 2.00) (64, 1.99) (65, 1.65) (64, 1.62) (28, 1.23)

HABERMAN 26.69± 1.16 30.40± 3.49 27.35± 3.88 26.55± 0 32.07± 5.94 32.15± 6.09 31.13± 6.81
(6, 1.68) (8, 1.14) (500, 1.84) (18, 1.87) (32, 1.27) (18, 1.24) (12, 1.20)

CAR 6.41± 2.40 7.41± 1.65 6.63± 1.25 15.07± 0.71 4.26± 1.82 4.70± 2.50 4.88± 2.73
(34, 3.12) (141, 2.27) (500, 2.67) (80, 1.85) (87, 1.78) (80, 1.77) (50, 1.68)

BLOOD TRANS. 24.55± 2.26 23.66± 0.99 23.39± 1.57 23.24± 0.58 23.77± 0 23.77± 0 23.77± 0
(18, 1.99) (6, 1.07) (500, 1.73) (58, 1.5) (242, 1.64) (58, 1.76) (7, 1.40)

CMC 36.37± 1.30 37.56± 1.33 34.60± 1.13 34.72± 1.85 34.37± 1.44 34.72± 2.25 34.09± 0.77
(39, 2.41) (13, 2.13) (500, 2.90) (74, 2.65) (217, 1.96) (74, 1.77) (43, 1.70)

MONK-3 2.78 9.03 2.78 2.78 2.78 2.78 2.78
(8, 1) (20, 2.12) (500, 2.57) (7, 1.57) (18, 1) (7, 1) (2, 1)

VOTE 6.32± 6.42 3.06± 0.26 4.69± 0.30 3.06± 0.26 3.06± 0.26 3.06± 0.26 3.06± 0.26
(12, 1.5) (3, 1) (500, 1.12) (8, 1) (39, 1.25) (8, 1.16) (3, 1)

BREAST-C 29.64± 3.25 32.45± 3.39 32.21± 3.75 29.32± 0.00 42.89± 15.72 42.89± 15.72 42.89± 15.72
(10, 1.82) (7, 1.33) (500, 1.87) (18, 1.83) (27, 1.15) (18, 1.16) (14, 1)

MAM. MASS 16.51± 0.96 17.21± 0.90 16.73± 0.50 16.84± 1.36 18.18± 0.62 18.18± 0.62 18.18± 0.62
(8, 1.98) (4, 1) (500, 2.15) (12, 1.9) (17, 1.49) (12, 1.53) (5, 1.18)

blood trans. HKL1.1 selects extremely compact rule-
sets while performing comparably or marginally better
in terms of F1-score. As expected, the compactness
in the ruleset rapidly increases as ρ decreases while
sometimes even improving on the F1-score. In fact we
observed that the percentage of non-selected rules in
the final hull for different HKL methods are: HKL2

0%, HKL1.5 48.1% and HKL1.1 86.8% — which sub-
stantiates our intuition behind generalizing HKL. It is

also interesting to note that HKL1.1 generalizes better
even with the default configuration in ENDER which
allows it to learn up to 500 rules.

In Table 2, which shows the corresponding error per-
centage, we see a similar trend with HKLρ perform-
ing well especially in tic-tac-toe, balance, car

datasets. Result from only haberman dataset devi-
ated from what we observed in Table 1. Moreover we
also see that in bcancer dataset, the error percentage
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of HKLρ is much higher that the rest. The latter is
because HKLρ did not performed well on one of the
splits (in which all test examples were assigned to mi-
nor class). It is worth noting that these two were higly
imbalanced datasets, with only around 25% data be-
longing to one class and hence none of the methods
were able to overcome a trivial baseline of assigning
all test examples to the major class.

6. Conclusions

We posed the problem of learning compact rule en-
sembles as a hierarchical kernel learning problem. In
order to overcome the redundancies in the rule-set in-
duced by HKL, we generalized the 1-norm in HKL to
ρ-norm. We developed an efficient algorithm to op-
timally solve this generalization. This generalization
of HKL could prove useful in other machine learning
applications as well. Experimental results clearly il-
lustrate that the generalized HKL can indeed learn a
small set of simple and accurate rules.
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