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Abstract

This paper generalizes the framework of Hierarchical Kernel Learning (HKL) and illustrates
its utility in the domain of rule learning. HKL involves Multiple Kernel Learning over
a set of given base kernels assumed to be embedded on a directed acyclic graph. This
paper proposes a two-fold generalization of HKL: the first is employing a generic `1/`ρ
block-norm regularizer (ρ ∈ (1, 2]) that alleviates a key limitation of the HKL formulation.
The second, is a generalization to the case of multi-class, multi-label and more generally,
multi-task applications. The main technical contribution of this work is the derivation of a
highly specialized partial dual of the proposed generalized HKL formulation and an efficient
mirror descent based active set algorithm for solving it. Importantly, the generic regularizer
enables the proposed formulation to be employed in the Rule Ensemble Learning (REL)
where the goal is to construct an ensemble of conjunctive propositional rules. Experiments
on benchmark REL datasets illustrate the efficacy of the proposed generalizations.

Keywords: Multiple Kernel Learning, Mixed-norm Regularization, Multi-task Learning,
Rule Ensemble Learning, Active set method

1. Introduction

A Multiple Kernel Learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004) framework for
construction of sparse linear combinations of base kernels embedded on a directed acyclic
graph (DAG) was recently proposed by Bach (2008). Since the DAG induces hierarchical
relations between the base kernels, this framework is more commonly known as Hierarchical
Kernel Learning (HKL). It has been established that HKL provides a powerful algorithm
for task specific non-linear feature selection. HKL employs a carefully designed `1/`2 block-
norm regularizer: `1-norm across some predefined components associated with the DAG
and `2-norm within each such component. However, the sparsity pattern of kernel (feature)
selection induced by this regularizer is somewhat restricted: a kernel is selected only if the
kernels associated with all its ancestors in the DAG are selected. In addition, it can be
proved that the weight of the kernel associated with a (selected) node will always be greater
than the weight of the kernels associated with its descendants. Such a restricted selection
pattern and weight bias may limit the applicability of HKL in real world problems.

This paper proposes a two-fold generalization of HKL. The first is employing a `1/`ρ, ρ ∈
(1, 2), block-norm regularizer that mitigates the above discussed weight and selection bias
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among the kernels, henceforth termed as gHKL. Note that for the special case of ρ = 2,
gHKL renders the HKL regularizer. Further, gHKL is generalized to the paradigm of Multi-
task Learning (MTL), where multiple related tasks need to be learnt jointly. We consider
the MTL setup where the given learning tasks share a common sparse feature space (Lounici
et al., 2009; Jawanpuria and Nath, 2011; Obozinski et al., 2011). Our goal is to construct a
shared sparse feature representation that is suitable for all the given related tasks. We pose
the problem of learning this shared feature space as that of learning a shared kernel, common
across all the tasks. The proposed generalization is henceforth referred to as gHKLMT. In
addition to learning a common feature representation, gHKLMT is generic enough to model
additional correlations existing among the given tasks.

Though employing a `1/`ρ, ρ ∈ (1, 2), regularizer is an incremental modification to the
HKL formulation, devising an algorithm for solving it is not straight forward. The projected
gradient descent employed in the active set algorithm for solving HKL (Bach, 2008) can no
longer be employed for solving gHKL as projections onto `ρ-norm balls are known to be
significantly more challenging than those onto `1-norm balls (Liu and Ye, 2010). Hence naive
extensions of the existing HKL algorithm will not scale well. Further, the computational
challenge is compounded with the generalization for learning multiple tasks jointly. The key
technical contribution of this work is the derivation of a highly specialized partial dual of
the gHKL/gHKLMT formulations and an efficient mirror descent (Ben-Tal and Nemirovski,
2001) based active set algorithm for solving it. The dual presented here is an elegant
convex optimization problem with a Lipschitz continuous objective and constrained over a
simplex. Moreover, the gradient of the objective can be obtained by solving a known and
well-studied variant of the MKL formulation. This motivates employing the mirror descent
algorithm that is known to solve such problems efficiently. Further efficiency is brought in
by employing an active set method similar in spirit to that in Bach (2008).

A significant portion of this paper focuses on the application of Rule Ensemble Learn-
ing (REL) (Dembczyński et al., 2010, 2008), where HKL has not been previously explored.
Given a set of basic propositional features describing the data, the goal in REL is to con-
struct a compact ensemble of conjunctions with the given propositional features that gen-
eralizes well for the problem at hand. Such ensembles are expected to achieve a good
trade-off between interpretability and generalization ability. REL approaches (Cohen and
Singer, 1999; Friedman and Popescu, 2008; Dembczyński et al., 2010) have additionally
addressed the problem of learning a compact set of rules that generalize well in order to
maintain their readability. One way to construct a compact ensemble is to consider a linear
model involving all possible conjunctions of the basic propositional features and then per-
forming a `1-norm regularized empirical risk minimization (Friedman and Popescu, 2008;
Dembczyński et al., 2010). Since this is a computationally infeasible problem, even with
moderate number of basic propositions, the existing methods either approximate such a
regularized solution using strategies such as shrinkage (Friedman and Popescu, 2008; Dem-
bczyński et al., 2010, 2008) or resort to post-pruning (Cohen and Singer, 1999). This work
proposes to solve a variant of this regularized empirical risk minimization problem optimally
using the framework of gHKL. The key idea is to define kernels representing every possible
conjunction and arranging them on a DAG. The proposed gHKL regularizer is applied on
this DAG of kernels, leading to a sparse combination of promising conjunctions. Note that
with such a setup, the size of the gHKL optimization problem is exponential in the number
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of basic propositional features. However, a key result in the paper shows that the proposed
gHKL algorithm is guaranteed to solve this exponentially large problem with a complexity
polynomial in the final active set1 size. Simulations on benchmark binary (and multiclass)
classification datasets show that gHKL (and gHKLMT) indeed constructs a compact en-
semble that on several occasions outperforms state-of-the-art REL algorithms in terms of
generalization ability. These results also illustrate the benefits of the proposed generaliza-
tions over HKL: i) the ensembles constructed with gHKL (with low ρ values) involve fewer
number of rules than with HKL; though the accuracies are comparable ii) gHKLMT can
learn rule ensemble on multiclass problems; whereas HKL is limited to two-class problems.

The rest of the paper2 is organized as follows. Section 2 introduces the classical Multi-
ple Kernel Learning setup, briefly reviews the HKL framework and summarizes the existing
works in Multi-task Learning. In Section 3, we present the proposed gHKL and gHKLMT

formulations. The key technical derivations of the specialized dual is also presented in this
section. The proposed mirror descent based active set algorithm for solving gHKL/gHKLMT

formulations is discussed in Section 4. In Section 5, we propose to solve the REL problem
by employing the gHKL formulation and discuss its details. In Section 6, we report em-
pirical evaluations of gHKL and gHKLMT formulations for REL on benchmark binary and
multiclass datasets respectively. Section 7 concludes the paper.

2. Related Works

This section provides a brief introduction to the Multiple Kernel Learning (MKL) frame-
work, the HKL setup and formulation (Bach, 2008, 2009) as well as the existing works in
Multi-task Learning.

2.1 Multiple Kernel Learning Framework

We begin by discussing the regularized risk minimization framework (Vapnik, 1998), which
will be employed in the formulations proposed in this work.

Consider a learning problem like classification or regression and let its training data be
denoted by D = {(xi, yi), i = 1, . . . ,m | xi ∈ X , yi ∈ R ∀i}, (xi, yi) representing the ith

input-output pair. The aim is to learn an affine prediction function F (x) that generalize
well on unseen data. Given a positive definite kernel k that induces a feature map φk(·), the
prediction function can be written as: F (x) = 〈f, φk(x)〉Hk−b. Here Hk is the Reproducing
Kernel Hilbert Space (RKHS) (Schölkopf and Smola, 2002) associated with the kernel k,
endowed with an inner product 〈·, ·〉Hk , and f ∈ Hk, b ∈ R are the model parameters to
be learnt. A popular framework to learn these model parameters is the regularized risk
minimization (Vapnik, 1998), which considers the following problem

min
f∈Hk,b∈R

1

2
Ω(f)2 + C

m∑
i=1

`(yi, F (xi)) (1)

1. Roughly, this is the number of selected conjunctions and is potentially far less than the total number of
conjunctions.

2. Preliminary results in this paper also appear in Jawanpuria et al. (2011).
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where Ω(·) is a norm based regularizer, ` : R × R → R+ is a suitable convex loss func-
tion and C is a regularization parameter. As an example, the support vector machine
(SVM) (Vapnik, 1998) employs Ω(f) = ‖f‖Hk . From the representer theorem (Schölkopf
and Smola, 2002), we know that the optimal f has the following form f(·) =

∑m
i αik(·,xi)

where α = (αi)
m
i=1 is a vector of coefficients to be learnt.

It can be observed from above that the kernel definition plays a crucial role in defining
the quality of the solution obtained by solving (1). Hence learning a kernel suitable to the
problem at hand has been an active area of research over the past few years. One way
to learn kernels is via the Multiple Kernel Learning (MKL) framework (Lanckriet et al.,
2004; Bach et al., 2004). Lanckriet et al. (2004) proposed to learn the kernel k as a conic
combination of the given base kernels k1, . . . , kl: k =

∑l
i=1 ηiki, ηi ≥ 0 ∀ i. Here η = (ηi)

l
i=1

is a coefficient vector to be (additionally) learnt in the optimization problem (1). In this
setting, the feature map with respect to the kernel k is given by φk = (

√
ηiφki)

l
i=1 (see

Rakotomamonjy et al., 2008, for details). It is a weighted concatenation of feature maps
induced by the individual base kernels. Hence, sparse kernel weights will result in a low
dimensional φk. Some of the additional constraints on η explored in the existing MKL
works are: `1-norm constraint (Bach et al., 2004; Rakotomamonjy et al., 2008), `p-norm
constraint (p > 1) (Kloft et al., 2011; Vishwanathan et al., 2010), etc.

2.2 Review of Hierarchical Kernel Learning

Hierarchical Kernel Learning (HKL) (Bach, 2008) is a generalization of MKL and assumes
a hierarchy over the given base kernels. The base kernels are embedded on a DAG and a
carefully designed `1/`2 block-norm regularization over the associated RKHS is proposed
to induce a specific sparsity pattern over the selected base kernels. We begin by discussing
its kernel setup.

Let G(V, E) be the given DAG with V denoting the set of vertices and E denoting
the set of edges. The DAG structure entails relationships like parent, child, ancestor and
descendant (Cormen et al., 2009). Let D(v) and A(v) represent the set of descendants and
ancestors of the node v in the G. It is assumed that both D(v) and A(v) include the node
v. For any subset of nodes W ⊂ V, the hull and sources of W are defined as:

hull(W) =
⋃
w∈W

A(w), sources(W) = {w ∈ W | A(w) ∩W = {w}} .

Let |W| andWc denote the size and the complement ofW respectively. Let kv : X ×X → R
be the positive definite kernel associated with the vertex v ∈ V. Let Hkv be its associated
RKHS, and φkv be the feature map induced by it. Given this, HKL employs the following
prediction function:

F (x) =
∑
v∈V
〈fv, φkv(x)〉Hkv − b,

which is an affine model parametrized by f = (fv) v∈V , the tuple with entries as fv ∈
Hkv(v ∈ V) and b ∈ R. Some more notations follow: for any subset of nodes W ⊂ V, fW
and φW denote the tuples fW = (fv)v∈W and φW = (φv)v∈W respectively. In general, the
entries in a vector are referred to using an appropriate subscript, i.e., entries in u ∈ Rd
are denoted by u1, . . . , ud etc. The kernels are denoted by the lower case ‘k’ and the
corresponding kernel matrices are denoted by the upper case ‘K’.
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HKL formulates the problem of learning the optimal prediction function F as the fol-
lowing regularized risk minimization problem:

min
fv∈Hkv∀v∈V,b∈R

1

2

(∑
v∈V

dv‖fD(v)‖2

)2

+ C

m∑
i=1

` (yi, F (xi)) (2)

where ‖fD(v)‖2 =
(∑

w∈D(v) ‖fw‖2
) 1

2 ∀ v ∈ V, ` : R × R → R+ is a suitable convex loss

function and (dv)v∈V are non-negative user-specified parameters.
As is clear from (2), HKL employs a `1/`2 block-norm regularizer, which is known

for promoting group sparsity (Yuan and Lin, 2006). Its implications are discussed in the
following. For most of v ∈ V, ‖fD(v)‖2 = 0 at optimality due to the sparsity inducing nature
of the `1-norm. Moreover (‖fD(v)‖2 = 0)⇒ (fw = 0 ∀ w ∈ D(v)). Thus it is expected that
most of the fv will be zero at optimality. This implies that the optimal prediction function
involves very few kernels. Under mild conditions on the kernels (being strictly positive),
it can be shown that this hierarchical penalization induces the following sparsity pattern:
(fw 6= 0) ⇒ (fv 6= 0 ∀ v ∈ A(w)). In other words, if the prediction function employs a
kernel kw then it has to employ all the kernels kv, where v ∈ A(w).

Bach (2008) proposes to solve the following equivalent variational formulation:

min
γ∈∆|V|,1

min
fv∈Hkv∀v∈V,b∈R

1

2

∑
w∈V

δw(γ)−1‖fw‖2 + C

m∑
i=1

` (yi, F (xi)) , (3)

where ∆n,r = {η ∈ Rn | η ≥ 0,
∑n

i=1 η
r
i ≤ 1} and δw(γ)−1 =

∑
v∈A(w)

d2
v
γv

. From the repre-
senter theorem (Schölkopf and Smola, 2002), it follows that the effective kernel employed
in the HKL is: k =

∑
v∈V δv(γ)kv. Since the optimization problem (3) has a `1-norm

constraint over γ variables, the value of most γv at optimality are expected to be zero.
Moreover the kernel weight δv(γ) is zero whenever γw = 0 for any w ∈ A(v). Thus, the
HKL performs a sparse selection of the base kernels and can be understood as a generaliza-
tion of the classical MKL framework. However, the sparsity pattern for the kernels has the
following restriction: if a kernel is not selected then none of the kernels associated with its
descendants are selected, as (γv = 0) ⇒ (δw(γ) = 0 ∀ w ∈ D(v)). For the case of strictly
positive kernels, it follows that a kernel is selected only if all the kernels associated with
its ancestors are selected. In addition, the following relationship holds among the kernels
weights: δv(γ) ≥ δw(γ) ∀ w ∈ D(v) (strict inequality holds if δw(γ) > 0). Hence, the weight
of the kernel associated with a (selected) node will always be greater than the weight of the
kernels associated with its descendants.

Since the size of γ is same as that of V and since the optimal γ is known to be sparse, Bach
(2008) proposes an active set algorithm (Lee et al., 2007) for solving (3). At each iteration
of the active set algorithm, the minimization problem in (3) is solved with respect to only
those variables in the active set using the projected gradient descent algorithm.

The key advantage of HKL, as presented in Bach (2008), is that in performing non-
linear feature selection. For example, consider the case where the input space is X = Rn
and let I be power set of {1, . . . , n}. Consider the following 2n kernels arranged on the
usual subset lattice: ki(x,x

′) = Πj∈ixjx
′
j ∀ i ∈ I. Now, HKL can be applied in this setup
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to select the promising sub-products of the input features over all possible sub-products.
Please refer to Bach (2008) for more such pragmatic examples of kernels and corresponding
DAGs. The most interesting result in Bach (2008) is that, in all these examples where
the size of the DAG is exponentially large, the computational complexity of the active set
algorithm is polynomial in the training set dimensions and the active set size. Importantly,
the complexity is independent of |V|!

Though encouraging, the above discussed weight bias (in favor of the kernels towards the
top of the DAG) and restricted kernel selection pattern may limit the applicability of HKL
in real world problems. For instance, in case of the sub-product kernel example mentioned
above, the following is true: a sub-product is selected only if all the products including it
are selected. This clearly may lead to selection of many redundant sub-products (features).
In Section 3, we present the proposed generalization that provides a more flexible kernel
selection pattern by employing a `1/`ρ, ρ ∈ (1, 2), regularizer. A key result of this paper
(refer corollary 6) is that for all the example cases discussed in Bach (2008), the proposed
mirror descent based active set algorithm for solving the generalization has a computational
complexity that is still polynomial in the training set dimensions and the active set size.
In other words, the proposed generalization does not adversely effect the computational
feasibility of the problem and hence is an interesting result in itself.

2.3 Multi-task Learning

Multi-task Learning (Caruana, 1997; Baxter, 2000) focuses on learning several prediction
tasks simultaneously. This is in contrast with the usual approach of learning each task
separately and independently. The key underlying idea behind MTL is that an appropriate
sharing of information while learning related tasks will help in obtaining better prediction
models. Various definitions of task-relatedness have been explored over the past few years
like proximity of task parameters (Baxter, 2000; Evgeniou and Pontil, 2004; Xue et al.,
2007; Jacob et al., 2008) or sharing common feature space (Ando and Zhang, 2005; Ben-
David and Schuller, 2008; Argyriou et al., 2008; Lounici et al., 2009; Obozinski et al., 2011).
Many learning settings like multiclass classification, multi-label classification or learning
vector-valued function may be viewed as a special case of multi-task learning.

In this work, we consider the common setting in which the task parameters share a si-
multaneously sparse structure: only a small number of input features are relevant for each of
the tasks and the set of such relevant features is common across all the tasks (Turlach et al.,
2005; Lounici et al., 2009). Existing works in this setting typically employ a group lasso
penalty on tasks parameters: `1/`2 block-norm (Lounici et al., 2009; Obozinski et al., 2011)
or the `1/`∞ block-norm (Turlach et al., 2005; Negahban and Wainwright, 2009). Thus,

they propose a multi-task regularizer of the form: Ω(f1, . . . , fT ) =
∑d

i=1

(∑T
t=1 |fti|q

) 1
q

where q = {2,∞}, the input feature space is assumed to be d dimensional, ft is the task
parameter of the tth task and ft = (fti)i=1,...,d. Note that in addition to (sparse) shared
feature selection, the `1/`∞ block-norm penalty also promote proximity among the task
parameters.

We pose the problem of learning the shared features as that of learning a shared ker-
nel, whose induced feature space is common across all the tasks. The shared kernel is
constructed as a sparse combination of the given base kernels. A hierarchical relationship
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exists over the given kernels (feature spaces). We employ a graph based `1/`ρ block-norm
regularization over the task parameters that enable non-linear feature selection for multiple
tasks simultaneously. The details of the proposed MTL formulation are discussed in the
next section.

3. Generalized Hierarchical Kernel Learning

In this section, we present the proposed generalizations over HKL. As discussed earlier, the
first generalization aims at mitigating the weight bias problem as well as the restrictions
imposed on the kernel selection pattern of HKL, and is termed as gHKL. The gHKL formu-
lation is then further generalized to the paradigm of MTL, the proposed formulation being
termed as gHKLMT. We begin by introducing gHKL formulation.

3.1 gHKL Primal Formulation

Recall that HKL employs a `1/`2 block norm regularizer. As we shall understand in more
detail later, a key reason for the kernel weight bias problem and the restricted sparsity
pattern in HKL is the `2-norm regularization. One way to mitigate these is by employing
the following generic regularizer:

ΩS(f) =
∑
v∈V

dv‖fD(v)‖ρ (4)

where f = (fv)v∈V , ‖fD(v)‖ρ =
(∑

w∈D(v) ‖fw‖ρ
) 1
ρ

and ρ ∈ (1, 2]. The implications of the

`1/`ρ block-norm regularization are discussed in the following. Since the `1-norm promotes
sparsity, it follows that ‖fD(v)‖ρ = 0 (fw = 0 ∀ w ∈ D(v)) for most v ∈ V. This phenomenon
is similar as in the HKL. But now, even in cases where ‖fD(v)‖ρ is not forced to zero by the
`1-norm, many components of fD(v) tend to zero3 (i.e., fw → 0 for many w ∈ D(v)) as the
value of ρ tends to unity. Also note that ρ = 2 renders the HKL regularizer. To summarize,
the proposed gHKL formulation is:

min
fv∈Hkv∀v∈V,b∈R

1

2
(ΩS(f))2 + C

m∑
i=1

` (yi, F (xi)) (5)

We next present the gHKLMT formulation, which further generalizes gHKL to MTL paradigm.

3.2 gHKLMT Primal Formulation

We begin by introducing some notations applicable in multi-task learning setup. Let T
be the number of tasks and let the training data for the tth task be denoted by Dt =
{(xti, yti), i = 1, . . . ,m | xti ∈ X , yti ∈ R ∀i}, where (xti, yti) represents the ith input/output
pair of the tth task. For the sake of notational simplicity, it is assumed that the number

3. Note that as `ρ-norm (ρ > 1) is differentiable, it rarely induce sparsity (Szafranski et al., 2010). However,
as ρ → 1, they promote only a few leading terms due to the high curvatures of such norms (Szafranski
et al., 2007). In order to obtain a sparse solution in such cases, thresholding is a common strategy
employed by previous `p-MKL (ρ > 1) algorithms (Vishwanathan et al., 2010; Orabona et al., 2010;
Orabona and Jie, 2011; Jain et al., 2012). We employed thresholding in our experiments.
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of training examples is the same for all the tasks. The prediction function for the tth task
is of the form: Ft(x) =

∑
v∈V〈ftv, φkv(x)〉Hkv − bt, where ft = (ftv)v∈V and bt are the

task parameters to be learnt for all the tasks. We propose the following regularized risk
minimization problem for estimating these task parameters and term it as gHKLMT:

min
ft,bt∀t

1

2


∑
v∈V

dv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 1
ρ

︸ ︷︷ ︸
ΩT (f1,...,fT )


2

+ C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)), (6)

where ρ ∈ (1, 2] and Qw(f1, . . . , fT ) is a norm-based multi-task regularizer on the task
parameters ftw ∀ t . In the following, we discuss the effect of the above regularization.
Firstly, there is a `1-norm regularization over each group of nodes (feature spaces) and a
`ρ-norm regularization within each group. This `1/`ρ block-norm regularization is same as
that of gHKL and will have the same effect on the sparsity pattern of the selected feature
spaces (kernels). Hence, only a few nodes (feature spaces) will be selected by the gHKLMT

regularizer ΩT (f1, . . . , fT ). Secondly, nature of the task relatedness within each (selected)
feature space is governed by the Qw(f1, . . . , fT ) regularizer.

For instance, consider the following definition of Qw(f1, . . . , fT ) (Lounici et al., 2009;
Jawanpuria and Nath, 2011)

Qw(f1, . . . , fT ) =

(
T∑
t=1

‖ftw‖2
) 1

2

(7)

The above regularizer couples the task parameters within each feature space via `2-norm. It
encourages the task parameters within a feature space to be either zero or non-zero across
all the tasks. Therefore, ΩT (f1, . . . , fT ) based on (7) has the following effect: i) all the tasks
will simultaneously select or reject a given feature space, and ii) overall only a few feature
spaces will be selected in the gHKL style sparsity pattern.

Several multi-task regularizations (Evgeniou and Pontil, 2004; Evgeniou et al., 2005;
Jacob et al., 2008) have been proposed to encourage proximity among the task parameters
within a given feature space. This correlation among the tasks may be enforced while
learning a shared sparse feature space by employing the following Qw(f1, . . . , fT ):

Qw(f1, . . . , fT ) =

µ∥∥∥∥∥ 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2

+
T∑
t=1

∥∥∥∥∥ftw − 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2
 1

2

(8)

where µ > 0 is a given parameter. The above Qw(f1, . . . , fT ) consists of two terms: the first
regularizes the mean while the second regularizes the variance of the task parameters in
the feature space induced by kernel kw. The parameter µ controls the degree of proximity
among the task parameters, with lower µ encouraging higher proximity. Note that when
µ =∞, (8) simplifies to (7). The gHKLMT regularizer ΩT (f1, . . . , fT ) based on (8) has the
following effect: i) all the tasks will simultaneously select or reject a given feature space, ii)
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overall only a few feature spaces will be selected in the gHKL style sparsity pattern, and
iii) within each selected feature space, the task parameters ftw ∀ t are in proximity.

Thus, gHKLMT framework provides a mechanism to learn a shared feature space across
the tasks, while preserving task correlation in the learnt feature space. As we shall discuss
in the next section, more generic correlations among task parameters may be also modeled
within the gHKLMT framework.

It is clear that the gHKL optimization problem (5) may be viewed as a special case
of the gHKLMT optimization problem (7), with the number of tasks set to unity. Hence
the rest of the discussion regarding dual derivation and optimization focuses primarily on
gHKLMT formulation.

3.3 gHKLMT Dual Formulation

As mentioned earlier, due to the presence of the `ρ-norm term in gHKLMT formulation,
naive extensions of the projected gradient based active set method in Bach (2008) will
be rendered computationally infeasible on real world datasets. Hence, we first re-write
gHKLMT formulation in an elegant form, which can then be solved efficiently. To this end,
we note the following variational characterization of ΩT (f1, . . . , fT ):

Lemma 1 Given ΩT (f1, . . . , fT ) and Qw(f1, . . . , fT ) as defined in (6) and (8) respectively,
we have

ΩT (f1, . . . , fT )2 = min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)−1Qw(f1, . . . , fT )2 (9)

where δw(γ, λ)−1 =
∑

v∈A(w)
d2
v

γvλvw
, ∆n,r = {z ∈ Rn | z ≥ 0,

∑n
i=1 zri ≤ 1} and ρ̂ = ρ

2−ρ .

Note that ρ ∈ (1, 2)⇒ ρ̂ ∈ (1,∞). Proof of the above lemma is provided in appendix A.2.
In order to keep the notations simple, in the remainder of this section, it is assumed

that the learning tasks at hand are binary classification, i.e., yti ∈ {−1, 1} ∀ t, i and the
loss function is the hinge loss. However, one can easily extend these ideas to other loss
functions and learning problems. Refer appendix A.8 for gHKLMT dual formulation with
general convex loss functions.

Lemma 2 Consider problem (6) with the regularizer term replaced with its variational char-
acterization given in (9) and the loss function as the hinge loss `(y, Ft(x)) = max (0, 1− yFt(x)).
Then the following is a partial dual of it with respect to the variables ft, bt ∀ t:

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
αt∈S(yt,C)∀t

G(γ, λ, α) (10)

where

G(γ, λ, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(γ, λ)Hw

)
Yα

α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤ β ≤ C,

∑m
i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]> ∀ t,

Y is the diagonal matrix corresponding to the vector [y>1 , . . . ,y
>
T ]>, 1 is a mT × 1 vector

with entries as unity, δw(γ, λ)−1 =
∑

v∈A(w)
d2
v

γvλvw
, ∆n,r = {z ∈ Rn | z ≥ 0,

∑n
i=1 zri ≤ 1},

9
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ρ̂ = ρ
2−ρ , and Hw ∈ RmT×mT is the multi-task kernel matrix corresponding to the multi-task

kernel hw ∀ w ∈ V. The kernel hw is defined as follows

hw(xt1i,xt2j) = kw(xt1i,xt2j)B(t1, t2) (11)

where B is a T × T matrix. B = I (identity matrix) when the regularizer (7) is employed
in (6). Alternatively, B = I + 11>/µ (here 1 is a T × 1 vector with entries as unity) in the
case when the regularizer (8) is employed. The prediction function for the task t1 is given
by

Ft1(xt1j) =

T∑
t2=1

m∑
i=1

ᾱt2iyt2i

(∑
w∈V

δw(γ̄, λ̄)kw(xt1i,xt2j)B(t1, t2)

)
where (γ̄, λ̄, ᾱ) is an optimal solution of (10).

Proof The proof follows from the representer theorem (Schölkopf and Smola, 2002). Also
refer to appendix A.3.

This lemma shows that gHKLMT essentially constructs the same prediction function as an
SVM with the effective multi-task kernel as: h =

∑
w∈V δw(γ, λ)hw. Similarly, in the case

of the gHKL, the effective kernel is k =
∑

w∈V δw(γ, λ)kw (since the terms T and B are
unity). Here, as well as in the rest of the paper, we employ the symbols h and H for the
multi-task kernel and the corresponding kernel matrix respectively.

The multi-task kernel (11) consists of two terms: the first term corresponds to the
similarity between two instances xt1i and xt2j in the feature space induced by kernel kw.
The second term corresponds to the correlation between the tasks t1 and t2. In the case of
the regularizer (7), the matrix B simplifies to: B(t1, t2) = 1 if t1 == t2 and B(t1, t2) = 0
if t1 6= t2, thereby making the kernel matrices Hw (w ∈ V) block diagonal. Hence, the
gHKLMT regularizer based on (7) promotes simultaneous sparsity in kernel selection among
the tasks, without enforcing any additional correlations among the tasks.

In general, any T × T positive semi-definite matrix may be employed as B to model
generic correlations among tasks. The multi-task kernel given by (11) will still remain a
valid kernel (Sheldon, 2008; Álvarez et al., 2012). The matrix B is sometimes referred to as
the output kernel in the setting of learning vector-valued functions. It is usually constructed
from the prior domain knowledge.

We now discuss the nature of the optimal solution of (10). Most of the kernel weights
δw(γ, λ) are zero at optimality of (10): δw(γ, λ) = 0 whenever γv = 0 or λvw = 0 for
any v ∈ A(w). The vector γ is sparse due to `1-norm constraint in (10). In addition,
ρ → 1 ⇒ ρ̂ → 1. Hence the vectors λv ∀ v ∈ V get close to becoming sparse as ρ → 1
due to the `ρ̂-norm constraint in (10). The superimposition of these two phenomenon
leads to a flexible4 sparsity pattern in kernel selection. In particular, it may happen that
∃w ∈ V, v ∈ A(w) | δw(γ, λ) > δv(γ, λ). This instance of weighting scheme is not possible
in the HKL.

Note that the problem (10) remains the same whether solved with the original set of
variables (γ, λ) or when solved with only those γv 6= 0 and λvw 6= 0 at optimality (refer

4. The HKL dual formulation (Bach, 2009) is a special case of (10) with ρ = 2, T = 1 and B = 1. When
ρ = 2, ρ̂ = ∞. This implies λvw = 1 ∀ v ∈ A(w), w ∈ V at optimality, resulting in the weight bias
towards kernels embedded in the ancestor nodes and restricted sparsity pattern in kernel selection

10
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Algorithm 1 Active Set Algorithm - Outline

Input: Training data D, the kernels (kv) embedded on the DAG (V), the T × T matrix
B that models task correlations and tolerance ε.
Initialize the active set W with sources(V).
Compute γ, λ, α by solving (12)
while Optimal solution for (10) is NOT obtained do

Add some nodes to W
Recompute η, α by solving (12)

end while
Output: W, γ, λ, α

appendix A.4 for details). However the computational effort required in the latter case can
be significantly lower since it involves low number of variables. This motivates us to explore
an active set algorithm, which is similar in spirit to that in Bach (2008).

An outline of the proposed active set algorithm is presented in Algorithm 1. The algo-
rithm starts with an initial guess for the set of γw that are non-zero at optimality for (10).
This set is called the active set and is denoted by W. Since the kernel weight δw(γ, λ) = 0
whenever γv = 0 for any v ∈ A(w), the active set must contain sources(V), else the problem
has a trivial solution. Hence, the active set is initialized with sources(V). At each iteration,
the problem (10) with variables restricted to those in W is solved:

min
γ∈∆|W|,1

min
λv∈∆|D(v)∩hull(W)|,ρ̂∀v∈W

max
αt∈S(yt,C)∀t

GW(γ, λ, α) (12)

where

GW(γ, λ, α) = 1>α− 1

2
α>Y

(∑
w∈W

δw(γ, λ)Hw

)
Yα

Note that ρ = 2 ⇒ λvw = 1 ∀ v ∈ A(w), w ∈ W at optimality in (12). Hence for
ρ = 2, the minimization problem in (12) can be efficiently solved using a projected gradient
method (Rakotomamonjy et al., 2008; Bach, 2009). However, as established in Liu and Ye
(2010), projection onto the kind of feasibility set in the minimization problem in (12) is
computationally challenging for ρ ∈ (1, 2). Hence, we wish to re-write this problem in a
relatively simpler form that can be solved efficiently. To this end, we present the following
important theorem:

Theorem 3 The following is a dual of (6) considered with the hinge loss function, and the
objectives of (6) (with the hinge loss), (10) and (13) are equal at optimality:

min
η∈∆|V|,1

g(η) (13)

where g(η) is the optimal objective value of the following convex problem:

max
αt∈S(yt,C)∀t

1>α− 1

2

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

(14)

11
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where ζw(η) =
(∑

v∈A(w) d
ρ
vη

1−ρ
v

) 1
1−ρ

, α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤

β ≤ C,
∑m

i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]> ∀ t, Y is the diagonal matrix correspond-
ing to the vector [y>1 , . . . ,y

>
T ]>, 1 is a mT × 1 vector with entries as unity, ∆n,r =

{z ∈ Rn | z ≥ 0,
∑n

i=1 zri ≤ 1}, ρ̄ = ρ̂
ρ̂−1 , ρ̂ = ρ

2−ρ , and Hw ∈ RmT×mT is the multi-task
kernel matrix corresponding to the multi-task kernel (11).

The key idea in the proof of the above theorem is to eliminate the λ variables and the details
are presented in appendix A.5. The expression for the prediction function F , in terms of
the variables η and α, is provided in appendix A.9.

This theorem provides some key insights: firstly, we have that (13) is essentially a `1-
norm regularized problem and hence it is expected that most η will be zero at optimality.
Since (ηv = 0) ⇒ (ζw(η) = 0 ∀ w ∈ D(v)), it follows that most nodes in V will not
contribute in the optimization problems (13) and (14). Secondly, in a single task learning
setting (T = 1), the problem in (14) is equivalent to the `ρ̂-norm MKL dual problem (Kloft

et al., 2011) with the base kernels as (ζv(η))
1
ρ̄ kv ∀ v ∈ V 3 ζv(η) 6= 0. The optimization

problem (14) essentially learns an effective kernel of the form h =
∑

v∈V θv (ζv(η))
1
ρ̄ hv,

where the θs are intermediate optimization variables constrained to lie in the feasibility set
∆|V|,ρ̂. The expression for θ in terms of the variables η and α is provided in appendix A.9.

The variable θ influence the nature of the effective kernel h in two important ways: i)
it follows from the expression of θ that

θv (ζv(η))
1
ρ̄ ∝ ζv(η)

(
α>YHvYα

) 1
(ρ̂−1)

The above relation implies that the weight of the kernel hv in the DAG V is not only
dependent on the position5 of the node v, but also on the suitability of the kernel hv to
the problem at hand. This helps in mitigating the kernel weight bias in favour of the nodes
towards the top of the DAG from gHKLMT, but which is present in HKL, and ii) as ρ→ 1
(and hence as ρ̂ → 1), the optimal θ get close to becoming sparse (Szafranski et al., 2007;
Orabona et al., 2010). This superimposed with the sparsity of η promotes a more flexible
sparsity pattern in kernel selection that HKL, especially when ρ→ 1.

Due to the sparsity of η at optimality, we propose to solve problem (13) by an active
set algorithm, based on the outline presented in Algorithm 1. We discuss it in detail in the
next section.

4. Optimization Algorithm

In order to formalize the active set algorithm, we need: i) an efficient algorithm for
solving problem (13) restricted to the active set, i.e., V restricted to W, ii) a condition for
verifying whether a candidate solution is optimal with respect to the optimization problem
(13), and iii) a procedure for building/improving the active set after each iteration.

We begin with the first. We propose to solve the optimization problem (13) restricted
to W using the mirror descent algorithm (Ben-Tal and Nemirovski, 2001). Mirror descent

5. Similar to the δv function in HKL (3), it follows from the definition of ζv that ζv(η) ≥ ζw(η) ∀ w ∈ D(v)
(strict inequality holds if ζw(η) > 0).
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Algorithm 2 Mirror Descent Algorithm for solving (13) restricted to active set W
Input: Kernel matrices Hw (w ∈ W) and the regularization parameter C
Initialize ηW (w ∈ W) such that ηW ∈ ∆|W|,1 (warm-start may be used)
Iteration number: i = 0
while convergence criterion is not met6 do
i = i+ 1
Compute ζw(ηW) ∀ w ∈ W (Theorem 3)

Compute αW (14) using `ρ̂-norm MKL algorithm with kernels as
(

(ζw(ηW))
1
ρ̄ Hw

)
w∈W

Compute ∇g(ηW) as in (24)
Compute step size s =

√
log(|W|)/i·‖∇g(ηW ))‖2∞

Compute ηw = exp (1 + log(ηw)− s · ∇g(ηW)w) ∀ w ∈ W
Normalize ηw = ηw∑

v∈W ηv
∀ w ∈ W

end while
Output: ηW , αW

algorithm is known to efficiently solve convex programs with Lipschitz continuous and dif-
ferentiable objectives constrained over a convex compact set. It achieves a near-optimal
convergence rate whenever the feasibility set is a simplex (which is true in our case). Mirror
descent is close in spirit to the projected gradient descent algorithm and hence assumes that
an oracle for computing the gradient of the objective is available.

Following the common practice of smoothing (Bach, 2009), in the rest of the paper, we
employ ζw((1 − ε)η + ε

|V |) instead7 of ζw(η) in (14) with ε > 0. The following theorem

establishes the applicability of mirror descent for solving (13):

Theorem 4 The function g(η) given by (14) is convex. Also, the expression for the ith

entry in the gradient (∇g(η))i is given in (24). If all the eigen-values of the gram-matrices
Hw are finite and non-zero, then g is Lipschitz continuous.

Proof of the above theorem is technical and is provided in appendix A.6.
Algorithm 2 summarizes the proposed mirror descent based algorithm for solving (13)

with V restricted to W. One of its steps involve computing ∇g(ηW) (expression provided
in (24)), which in turn requires solving (14). As noted before, (14) is similar to the `ρ̂-norm
MKL problem (Kloft et al., 2011) but with a different feasibility set for the optimization vari-
ables α. Hence, (14) can be solved by employing a modified cutting planes algorithm (Kloft
et al., 2011) or a modified sequential minimal optimization (SMO) algorithm (Platt, 1999;
Vishwanathan et al., 2010). Empirically, we observed the SMO based algorithm to be much
faster than the cutting planes algorithm for gHKLMT (and gHKL) with SVM loss functions.
In the special case ρ = 2, T = 1 and B = 1, (14) is simply a regular SVM problem.

Now we turn our attention to the second requirement of the active set algorithm: a
condition to verify the optimality of a candidate solution. We present the following theorem
that provides a sufficient condition for verifying optimality of a candidate solution.

6. Relative objective gap between two successive iteration being less than a given tolerance ε is taken to be
the convergence criterion. Objective here is the value of g(ηW), calculated after `ρ̂-norm MKL step.

7. Note that this is equivalent to smoothing the regularizer ΩT while preserving its sparsity inducing
properties (Bach, 2009).
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Algorithm 3 Active Set Algorithm

Input: Training data D, the kernels (kv) embedded on the DAG (V), the T × T matrix
B that models task correlations and tolerance ε.
Initialize the active set W with sources(V)
Compute η, α by solving (13) using Algorithm 2
while sufficient condition for optimality (15) is not met do

Add those nodes to W that violate (15)
Recompute η, α by solving (13) using Algorithm 2

end while
Output: W, η, α

Theorem 5 Suppose the active set W is such that W = hull(W). Let (ηW , αW) be a εW-
approximate optimal solution for (13) with V restricted to W returned by Algorithm (2).
Then, it is an optimal solution for (13) with a duality gap less than ε if:

max
u∈sources(Wc)

α>WYKuYαW ≤

(∑
w∈W

ζw(ηW)
(
α>WYHwYαW

)ρ̄) 1
ρ̄

+ 2(ε− εW) (15)

where Ku =
∑

w∈D(u)
Hw

(
∑
v∈A(w)∩D(u) dv)

2 .

Proof is provided in appendix A.7 and closely follows that for the case of HKL (Bach, 2008).

The summary of the proposed mirror descent based active set algorithm is presented in
Algorithm 3. At each iteration, Algorithm (3) verifies optimality of the current iterate by
verifying the condition in (15). In case the current iterate does not satisfy this condition, the
nodes in sources(Wc) that violate the condition (15) are included in the active set8. This
takes care of the third requirement of the active set algorithm. The algorithm terminates
if the condition (15) is satisfied by the iterate.

In the following, an estimate of the computational complexity of the active set algorithm
is presented. Let W be the final active set size. The optimization problem (13) restricted
to W needs to be solved at most W times, assuming the worst case scenario of adding
one node per active set iteration. Each such run of the mirror descent algorithm requires
at most O(log(W )) iterations (Ben-Tal and Nemirovski, 2001). A conservative time com-
plexity estimate for computing the gradient ∇g(ηW) (by solving the variant of the `ρ̂-norm
MKL problem (14)) is O(m3T 3W 2). This amounts to O(m3T 3W 3 log(W )). As for the
computational cost of the sufficient condition, let z denote the maximum out-degree of a
node in G, i.e., z is an upper-bound on the the maximum number of children of any node in
G. Then the size of sources(Wc) is upper-bounded by Wz. Hence, a total of O(ωm2T 2Wz)
operations is required for evaluating the matrices K in (15), where ω is the complexity of
computing a single entry in any K. In all the pragmatic examples of kernels and corre-
sponding DAGs provided by Bach (2008), ω is polynomial in the training set dimensions.
Moreover, caching of K usually renders ω to be a constant (Bach, 2009). Further, the total
cost of the quadratic computation in (15) is O(m2T 2W 2z). Thus the overall computational

8. It is easy to see that with this update scheme, W is always equal to hull(W), as required in Theorem 5.
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complexity is: O(m3T 3W 3 log(W ) + ωm2T 2Wz + m2T 2W 2z). More importantly, because
the sufficiency condition for optimality given by Theorem 5 is independent of ρ, we have
the following result:

Corollary 6 In a given input setting, HKL algorithm converges in time polynomial in size
of the active set and the training set dimensions if and only if the proposed mirror descent
based active set algorithm (i.e., gHKLMT algorithm) has a polynomial time convergence in
terms of the active set and training set sizes.

Proof is provided in appendix A.10.
In the next section, we present an application of the proposed formulation that illustrate

the benefits of the proposed generalizations over HKL.

5. Rule Ensemble Learning

In this section, we propose a solution to the problem of learning an ensemble of decision rules,
formally known as Rule Ensemble Learning (REL) (Cohen and Singer, 1999), employing
the gHKL and gHKLMT formulations. For the sake of simplicity, we only discuss the single
task REL setting in this section, i.e., REL as an application of gHKL. Similar ideas can
be applied to perform REL in multi-task learning setting, by employing gHKLMT. In fact,
we present empirical results of REL in both single and multiple task learning settings in
Section 6. We begin with a brief introduction to REL.

If-then decision rules (Rivest, 1987) are one of the most expressive and human readable
representations for learned hypotheses. It is a simple logical pattern of the form: IF condi-
tion THEN decision. The condition consists of a conjunction of a small number of simple
boolean statements (propositions) concerning the values of the individual input variables
while the decision specifies a value of the function being learned. An instance of a decision
rule from Quinlan’s playtennis example (Quinlan, 1986) is:

IF HUMIDITY==normal AND WIND==weak THEN PlayTennis==yes

The dominant paradigm for induction of rule sets, in the form of decision list (DL) models
for classification (Rivest, 1987; Michalski, 1983; Clark and Niblett, 1989), has been a greedy
sequential covering procedure.

REL is a general approach that treats decision rules as base classifiers in an ensemble.
This is in contrast to the more restrictive decision list models that are disjunctive sets of
rules and use only one in the set for each prediction. As pointed out in Cohen and Singer
(1999), boosted rule ensembles are in fact simpler, better-understood formally than other
state-of-the-art rule learners and also produce comparable predictive accuracy.

REL approaches like SLIPPER (Cohen and Singer, 1999), LRI (Weiss and Indurkhya,
2000), RuleFit (Friedman and Popescu, 2008), ENDER/MLRules (Dembczyński et al.,
2008, 2010) have additionally addressed the problem of learning a compact set of rules that
generalize well in order to maintain their readability. Further, a number of rule learners like
RuleFit, LRI encourage shorter rules (i.e., fewer conjunctions in the condition part of the
rule) or rules with a restricted number of conjunctions, again for purposes of interpretability.
We build upon this and define our REL problem as that of learning a small set of simple
rules and their weights that leads to a good generalization over new and unseen data. The
next section introduces the notations and the setup in context of REL.
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5.1 Notations and Setup

Let D = {(x1, y1), . . . , (xm, ym)} be the training data described using p basic propositions,
i.e., xi ∈ {0, 1}p. In case the input features are not boolean, such propositions can be
derived using logical operators such as ==, 6=,≤,≥, etc. over the input features (refer
Friedman and Popescu, 2008; Dembczyński et al., 2008, for details). Let V be an index-
set for all possible conjunctions with the p basic propositions and let φv : Rn 7→ {0, 1}
denote the vth conjunction in V. Let fv ∈ R denote the weight for the conjunction φv.
Then, the rule ensemble to be learnt is the weighted combination of these conjunctive rules:
F (x) =

∑
v∈V fvφv(x)− b, where perhaps many weights (fv) are equal to zero.

One way to learn the weights is by performing a `1-norm regularized risk minimization in
order to select few promising conjunctive rules (Friedman and Popescu, 2008; Dembczyński
et al., 2008, 2010). However, to the best of our knowledge, rule ensemble learners that iden-
tify the need for sparse f , either approximate such a regularized solution using strategies
such as shrinkage (Rulefit, ENDER/MLRules) or resort to post-pruning (SLIPPER). This
is because the size of the minimization problem is exponential in the number of basic propo-
sitions and hence the problem becomes computationally intractable with even moderately
sized datasets. Secondly, conjunctive rules involving large number of propositions might be
selected. However, such conjunctions adversely effect the interpretability. We present an
approach based on the gHKL framework that addresses these issues.

We begin by noting that 〈V,⊆〉 is a subset-lattice; hereafter this will be referred to
as the conjunction lattice. In a conjunction lattice, ∀ v1, v2 ∈ V, v1 ⊆ v2 if and only if
the set of propositions in conjunction v1 is a subset of those in conjunction v2. As an
example, (HUMIDITY==normal) is considered to be a subset of (HUMIDITY==normal
AND WIND==weak). The top node of this lattice is a node with no conjunctions and is
also sources(V). Its children, the second level nodes, are all the basic propositions, p in
number. The third level nodes, children of these basic propositions, are the conjunctions
of length two and so on. The bottom node at (p+ 1)th level is the conjunction of all basic
propositions. Figure (1) shows a conjunction lattice with all it nodes when p = 4.

We now discuss how the proposed gHKL regularizer (5) provides an efficient and optimal
solution to a regularized empirical risk minimization formulation for REL.

5.2 Rule Ensemble Learning using gHKL

The key idea is to employ gHKL formulation (5) with the DAG as the conjunction lattice
and the kernels as kv(xi,xj) = φv(xi)φv(xj) for learning an ensemble of rules. Note that
with such a setup, the `1/`ρ -norm regularizer in gHKL (ΩS(f) =

∑
v∈V dv‖fD(v)‖ρ) implies:

1) for most v ∈ V, fv = 0, and 2) for most v ∈ V, fw = 0 ∀ w ∈ D(v). In the context of
the REL problem, the former statement is equivalent to saying: selection of a compact set
of conjunctions is promoted, while the second reads as: selection of conjunctive rules with
small number of propositions is encouraged. Thus, gHKL formulation constructs a compact
ensemble of simple conjunctive rules. In addition, we choose dv = a|Sv | (a > 1), where
Sv is the set of basic propositions involved in the conjunction φv. Such a choice further
encourages selection of short conjunctions and leads to the following elegant computational
result:
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Figure 1: Example of a conjunction lattice with 4 basic propositions: (x1 = a), (x2 6= b),
(x3 ≥ c) and (x4 ≤ d). Here x1, x2, x3 and x4 belong to the input space.

Theorem 7 The complexity of the proposed gHKL algorithm in solving the REL problem,
with the DAG, the base kernels and the parameters dv as defined above, is polynomial in the
size of the active set and the training set dimensions. In particular, if the final active set
size is W , then its complexity is given by O(m3W 3 log(W ) +m2W 2p).

Proof is provided in appendix A.11.

We end this section by noting the advantage of the generic regularizer in gHKL formu-
lation over the that in HKL formulation in the context of REL application. Recall that the
sparsity pattern allowed by HKL has the following consequence: a conjunction is selected
only after selecting all the conjunctions which are subsets of it. This, particularly in the con-
text of REL, is psycho-visually redundant, because a rule with k propositional statements,
if included in the result, will necessarily entail the inclusion of (2k−1) more general rules in
the result. This violates the important requirement for a small set (Friedman and Popescu,
2008; Dembczyński et al., 2008, 2010) of human-readable rules. The gHKL regularizer,
with ρ ∈ (1, 2), alleviates this restriction by promoting additional sparsity in selecting the
conjunctions.

We empirically evaluate the proposed gHKL based solution for REL application in the
next section.

6. Experimental Results

In this section, we report the results of simulation in REL on several benchmark binary and
multiclass classification datasets from the UCI repository (Blake and Lichman, 2013). The
goal is to compare various rule ensemble learners on the basis of: (a) generalization, which
is measured by the predictive performance on unseen test data, and (b) ability to provide
compact set of simple rules to facilitate their readability and interpretability (Friedman and
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Popescu, 2008; Dembczyński et al., 2010; Cohen and Singer, 1999). This is judged using i)
average number of rules selected, and ii) average number of propositions employed per rule.
The following REL approaches were compared.

RuleFit: Rule ensemble learning algorithm proposed by Friedman and Popescu (2008).
All the parameters were set to the default values mentioned by the authors. In particular,
the model was set in the mixed linear-rule mode, average tree size was set 4 and maximum
number of trees were kept as 500. The same configuration was also used by Dembczyński
et al. (2008, 2010) in their simulations. This REL system cannot handle multi-class datasets
and hence is limited to the simulations on binary classification datasets. Its code is available
at www-stat.stanford.edu/~jhf/R-RuleFit.html.

SLI: The SLIPPER algorithm proposed by Cohen and Singer (1999). Following Dem-
bczyński et al. (2008, 2010), all parameters were set to their defaults. We retained the
internal cross-validation for selecting the optimal number of rules.

ENDER: State-of-the-art rule ensemble learning algorithm (Dembczyński et al., 2010).
For classification setting, ENDER is same as MLRules (Dembczyński et al., 2008). The pa-
rameters were set to the default values suggested by the authors. The second order heuristic
was used for minimization. Its code is available at www.cs.put.poznan.pl/wkotlowski.

HKL-`1-MKL: A two-stage rule ensemble learning approach. In the first stage, HKL
is employed to prune the exponentially large search space of all possible conjunctive rules
and select a set of candidate rules (kernels). The rule ensemble is learnt by employing `1-
MKL over the candidate set of rules. In both the stages, a 3-fold cross validation procedure
was employed to tune the C parameter with values in {10−3, 10−2, . . . , 103}.

gHKLρ: The proposed gHKL based REL formulation for binary classification problem.
We considered three different values of ρ: 2, 1.5 and 1.1. Note that for binary classification,
ρ = 2 renders the HKL formulation (Bach, 2008). In each case, a 3-fold cross validation
procedure was employed to tune the C parameter with values in {10−3, 10−2, . . . , 103}. As
mentioned earlier, the parameters dv = 2|v|.

gHKLMT−ρ: The proposed gHKLMT based REL formulation for multiclass classification
problem. For each class, a 1-vs-rest binary classification task is created. Since we did
not have any prior knowledge about the correlation among the classes in the datasets,
we employed the multi-task regularizer (7) in the gHKLMT primal formulation (6). Cor-
respondingly, the B matrix in the gHKLMT dual formulation (13) is set to the identity
matrix. We considered three different values of ρ: 2, 1.5 and 1.1. Its parameters and cross
validation details are same as that of gHKLρ. The codes of gHKLρ and gHKLMT−ρ are available
at http://www.cse.iitb.ac.in/~pratik.j/ghkl.

Note that the above methods differ in the way they control the number of rules (M)
in the ensemble. In the case of gHKLρ (gHKLMT−ρ), M depends on the parameters: ρ, C
and dv. SLI has a parameter for maximum number of rules Mmax and M is decided via a
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Dataset # of Examples Bias p |V| Dataset # of Examples Bias p |V|
TIC-TAC-TOE 958 1.89 54 ≈ 1016 HEARTSTAT 270 0.8 76 ≈ 1022

B-CANCER-W 699 0.53 72 ≈ 1021 MONK-3 554 1.08 30 ≈ 109

DIABETES 768 0.54 64 ≈ 1019 VOTE 232 0.87 32 ≈ 109

HABERMAN 306 0.36 40 ≈ 1012 B-CANCER 277 0.41 76 ≈ 1022

HEARTC 296 0.85 78 ≈ 1023 MAM. MASS 829 0.94 46 ≈ 1013

BLOOD TRANS 748 3.20 32 ≈ 109 LIVER 345 1.38 48 ≈ 1014

Table 1: Datasets used for binary REL classification. Bias denotes the ratio of # of +ve
and −ve instances. p denotes the number of basic propositions. For each numerical input
feature, 8 basic propositions were derived.

Dataset RuleFit SLI ENDER HKL-`1-MKL
gHKLρ

ρ = 2 ρ = 1.5 ρ = 1.1

TIC-TAC-TOE 0.517± 0.092 0.665± 0.053 0.668± 0.032 0.749± 0.040 0.889± 0.093 0.897± 0.093 0.905± 0.096∗

(57.7, 2.74) (10.3, 1.96) (187, 3.17) (74.8, 1.89) (161.7, 1.72) (186.6, 1.76) (157.6, 1.72)

B-CANCER-W 0.879± 0.025 0.928± 0.018 0.900± 0.041 0.925± 0.032 0.923± 0.032 0.924± 0.032 0.925± 0.032
(17.5, 2.03) (4.4, 1.15) (21, 1.56) (27,1.03) (30.9, 1) (20, 1.03) (20.4, 1.02)

DIABETES 0.428± 0.052 0.659± 0.027 0.656± 0.027 0.658± 0.028 0.661± 0.018 0.663± 0.017 0.661± 0.023
(32.9, 2.66) (4.9, 1.42) (74.0, 2.65) (47.6, 1.40) (83.2, 1.31) (73.2, 1.17) (62.6, 1.27)

HABERMAN 0.175± 0.079 0.483± 0.057 0.474± 0.057 0.506± 0.048 0.523± 0.062 0.521± 0.060 0.521± 0.060
(7.5, 1) (2.1, 1) (52, 3.59) (45.6, 1.48) (112.1, 1.366) (51.2, 1.235) (17.1, 1.142)

HEARTC 0.581± 0.047 0.727± 0.05 0.724± 0.032 0.750± 0.038 0.743± 0.038 0.735± 0.058 0.736± 0.055
(8.8, 1) (3.2, 1.23) (32, 2.05) (32.9, 1.09) (46.7, 1.06) (23.9, 1) (32, 1.09)

BLOOD TRANS 0.163± 0.088 0.476± 0.057 0.433± 0 0.572± 0.029 0.586± 0.029 0.587± 0.028 0.588± 0.027
(40.7, 2.26) (2.0, 1) (63, 1.97) (175.9, 2.13) (229.7, 1.98) (62.8, 1.79) (19, 1.29)

HEARTSTAT 0.582± 0.040 0.721± 0.065 0.713± 0.055 0.752± 0.036 0.747± 0.031 0.746± 0.028 0.747± 0.028
(9.3, 1) (3.5, 1.07) (25, 2.02) (24.6, 1.06) (34.7, 1.02) (25, 1.02) (24.4, 1.03)

MONK-3 0.947 0.802 0.972 0.972 0.972 0.972 0.972
(52, 2.88) (1, 3) (93, 1.96) (17, 1.88) (200, 2.07) (93, 1.84) (7, 1.43)

VOTE 0.913± 0.047 0.935± 0.055 0.951± 0.035 0.927± 0.045 0.93± 0.042 0.929± 0.043 0.934± 0.038
(2.7, 1) (1.3, 1.15) (9, 1.07) (23.5, 1.17) (39, 1.11) (8.2, 1) (6.4, 1)

B-CANCER 0.254± 0.089 0.476± 0.086 0.452± 0.079 0.588± 0.057 0.565± 0.059 0.563± 0.061 0.569± 0.063
(8.1, 1) (1.2, 1) (31, 2.93) (33.6, 1.17) (39.6, 1.15) (30.2, 1.07) (29.4, 1.17)

MAM. MASS 0.668± 0.032 0.808± 0.022 0.816± 0.018 0.805± 0.028 0.796± 0.026 0.796± 0.026 0.797± 0.024
(26.4, 2.68) (5.3, 1.43) (48, 2.53) (38.7, 1.32) (92.2, 1.27) (47.6, 1.24) (40.5, 1.25)

LIVER 0.357± 0.016 0.445± 0.083 0.563± 0.058 0.585± 0.071 0.594± 0.046 0.595± 0.048 0.588± 0.049
(10, 1) (1.5, 1) (59, 2.35) (43.4, 1.56) (242.5, 1.42) (58.2, 1.32) (45.7, 1.36)

Table 2: Results on binary REL classification. F1-score along with standard deviation, the
number of rules and the length of rules averaged over 10 splits are shown. ‘*’ symbol denote
statistically significant improvement.

internal cross-validation such that M ≤Mmax. For the sake of fairness in comparison with
gHKLρ, we set Mmax = max(M1.5,M1.1), where Mρ is the average number of rules obtained
with gHKLρ (gHKLMT−ρ). ENDER has an explicit parameter for the number of rules, which is
also set to max(M1.5,M1.1). In case of RuleFit, the number of rules in the ensemble is
determined internally and is not changed by us.

6.1 Binary Classification in REL

This section summarizes the simulations with binary classification datasets. Table 1 pro-
vides the details of the binary classification datasets. For every dataset, we created 10 ran-
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Dataset # of Examples c p |V| Dataset # of Examples c p |V|
BALANCE 625 3 32 ≈ 109 IRIS 150 3 50 ≈ 1015

CAR 1728 4 42 ≈ 1012 LYMPH 146 3 86 ≈ 1025

C.M.C. 1473 3 54 ≈ 1016 T.A.E. 151 3 114 ≈ 1034

ECOLI 332 6 42 ≈ 1012 YEAST 1484 10 54 ≈ 1016

GLASS 214 6 72 ≈ 1021 ZOO 101 7 42 ≈ 1012

Table 3: Datasets used for multiclass REL classification. c denotes the number of classes.

dom train-test splits with 10% train data9. Since many datasets were highly unbalanced,
we report10 the average F1-score (with standard deviation). The results are presented in
Table 2. The best result, in terms of the average F1-score, for each dataset is highlighted.
Additionally if the best result achieves a statistically significant improvement over its near-
est competitor, it is marked with a ‘*’. Statistical significance test is performed using the
paired t-test at 99% confidence. We also report the average number of rules produced per
split and the average length of the rules, specified below each F1-score as: (average number
of rules, average length of rules). As discussed earlier, it is desirable that REL algorithms
achieve high F1-score with a compact set of simple rules.

We can observe from Table 2 that gHKLρ obtains better generalization performance than
state-of-the-art ENDER in most of the datasets with the additional advantage of having rules
with smaller number of conjunctions. In fact, when averaged over the datasets, gHKL1.1

and gHKL1.5 output the shortest rules among all the methods. gHKL1.1 obtains statistically
significant performance in TIC-TAC-TOE dataset. Though the generalization obtained by
gHKL2 (HKL), gHKL1.5 and gHKL1.1 are similar, the number of rules selected by gHKL2 is
generally higher than gHKL1.1 (by 5 to 25 times in some cases), hampering its interpretability.

6.2 Multiclass Classification in REL

This section summarizes the simulations with multiclass classification datasets. The details
of the multiclass datasets11 are provided in Table 3. The results, averaged over 10 random
train-test splits with 10% train data, are presented in Table 4. Following Dembczyński
et al. (2008, 2010), we report the accuracy to compare generalization performance among
the algorithms. The number of rules as well as the average length of the rules is also reported
to judge the interpretability of the output.

Note that gHKLMT−ρ obtains the best generalization performance in 7 datasets, out of
which 4 results are statistically significant. Moreover, gHKLMT−1.5 and gHKLMT−1.1 usually
select the shortest rules among all the methods. As in the case of binary classification, the
number of rules as well as the average rule length in case of gHKLMT−2 is generally very large
compared to gHKLMT−1.5 and gHKLMT−1.1. This again shows the efficacy of the proposed `1/`ρ
regularizer in obtaining a compact set of simple rules.

9. For monk-3, a single train-test split of 122−432 instances respectively was given in UCI repository itself.
10. Table 5 in appendix A.12 reports the average AUC.
11. Classes within a dataset with too little number of instances (< 3) are not considered for simulations.

This is because we perform a 3-fold cross validation for hyper-parameter selection.
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Dataset SLI ENDER
gHKLMT−ρ

ρ = 2 ρ = 1.5 ρ = 1.1

BALANCE 0.758± 0.025 0.795± 0.034 0.817± 0.028 0.808± 0.032 0.807± 0.034
(10.4, 1.7) (112, 2.4) (2468.9, 2.84) (112, 1.64) (85, 1.61)

CAR 0.823± 0.029 0.835± 0.024 0.864± 0.020 0.86± 0.028 0.875± 0.029∗

(18.3, 2.93) (270, 3.05) (9571.2, 3.14) (220.3, 1.64) (269.3, 1.85)

C.M.C. 0.446± 0.016 0.485± 0.015∗ 0.472± 0.014 0.463± 0.017 0.465± 0.016
(21.1, 1.9) (513, 4.36) (10299.3, 2.85) (512.9, 1.95) (396.4, 1.88)

ECOLI 0.726± 0.042 0.636± 0.028 0.779± 0.057 0.784± 0.045∗ 0.778± 0.054
(7.8, 1.34) (35, 2.15) (4790.2, 2.99) (34.3, 1.05) (32.4, 1.16)

GLASS 0.43± 0.061 0.465± 0.052 0.501± 0.049 0.525± 0.043∗ 0.524± 0.046
(7.4, 1.41) (70, 3.21) (5663.7, 2.40) (69.1, 1.15) (54.6, 1.04)

IRIS 0.766± 0.189 0.835± 0.093 0.913± 0.083 0.927± 0.024∗ 0.893± 0.091
(2.2, 1.02) (10, 1.34) (567, 2.44) (9.8, 1) (8.6, 1)

LYMPH 0.61± 0.066 0.706± 0.058 0.709± 0.061 0.724± 0.078 0.722± 0.078
(2.7, 1) (34, 2.2) (4683.8, 2.30) (33.7, 1.01) (33, 1.01)

T.A.E. 0.334± 0.035 0.41± 0.065 0.418± 0.049 0.399± 0.049 0.402± 0.046
(1.1, 1) (39, 1.86) (5707.4, 2.25) (38.3, 1.00) (38.1, 1.05)

YEAST 0.478± 0.035 0.497± 0.015 0.487± 0.021 0.485± 0.022 0.486± 0.021
(23.4, 1.63) (218, 5.78) (8153.6, 2.85) (217.8, 1.80) (179.6, 1.73)

ZOO 0.556± 0.062 0.938± 0.033 0.877± 0.06 0.928± 0.037 0.927± 0.039
(7.1, 1.24) (33, 1.29) (3322.2, 2.70) (32.3, 1.00) (31.9, 1.01)

Table 4: Results on multiclass REL classification. Accuracy along with standard deviation,
the number of rules and the length of rules averaged over 10 splits are shown. ‘*’ symbol
denote statistically significant improvement.

7. Summary

This paper generalizes the HKL framework in two ways. First, a generic `1/`ρ block-norm
regularizer is employed that provides a more flexible kernel selection pattern than HKL by
mitigating the weight bias among the kernels. Secondly, the framework is further generalized
to the setup of learning a shared feature representation across multiple tasks. We pose the
problem of learning shared features across the tasks as that of learning a shared kernel.
An interesting computational result is that the generalized formulations (gHKL/gHKLMT)
can be solved in time polynomial in the active set and training set sizes whenever the
HKL formulation can be solved in polynomial time. The other important contribution in
this paper is the application of the proposed gHKL/gHKLMT formulations in the learning
setting of Rule Ensemble Learning (REL), where HKL has not been previously explored.
Empirical results on both binary and multiclass classification for REL illustrate the efficacy
of the proposed generalizations.

Appendix A.

The appendix section covers the proofs of theorems/lemmas referred to in the main paper.
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A.1 Lemma 26 of Micchelli and Pontil (2005)

Let ai ≥ 0, i = 1, . . . , d and 1 ≤ r <∞. Then, for ∆d,r =
{
η ∈ Rd | η ≥ 0,

∑d
i=1 η

r
i ≤ 1

}

min
η∈∆d,r

d∑
i=1

ai
ηi

=

(
d∑
i=1

a
r
r+1

i

)1+ 1
r

and the minimum is attained at

ηi =
a

1
r+1

i(∑d
j=1 a

r
r+1

j

) 1
r

∀ i = 1, . . . , d.

The proof follows from Holder’s inequality.

A.2 Proof of Lemma 1

Proof Applying the above lemma (appendix A.1) on the outermost `1-norm of ΩT (f1, . . . , fT )2

(6), we have

ΩT (f1, . . . , fT )2 == min
γ∈∆|V |,1

∑
v∈V

d2
v

γv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 2
ρ

Reapply the above lemma on the individual terms of the above summation, we get ∑
w∈D(v)

(Qw(f1, . . . , fT )2)
ρ
2

 2
ρ

= min
λv∈∆|D(v)|,ρ̂

∑
w∈D(v)

Qw(f1, . . . , fT )2

λvw

Using the above two results and regrouping the terms will complete the proof.

A.3 Re-parameterization of the Multi-task Regularizer (8)

The gHKLMT dual formulation (10) follows from the representer theorem (Schölkopf and
Smola, 2002) after employing the following reparameterization in (8).

Define f0w = 1
T+µ

∑T
t=1 ftw and f tw = ftw−f0w. Then, Qw(f1, . . . , fT ) may be rewritten

as:

Qw(f1, . . . , fT ) =

(
µ‖f0w‖2 +

T∑
t=1

‖f tw‖2
) 1

2

Further, construct the following feature map (Evgeniou and Pontil, 2004)

Φw(x, t) = (
φw(x)
√
µ
, 0, . . . ,0︸ ︷︷ ︸

for tasks before t

, φw(x), 0, . . . ,0︸ ︷︷ ︸
for tasks after t

) (16)
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and define fw = (
√
µf0w, f1w, . . . , fTw).

With the above definitions, it can be observed thatQw(f1, . . . , fT )2 = ‖fw‖2 and Ft(x) =∑
w∈V〈fw,Φw(x, t)〉 − bt ∀ t. It follows from Lemma 1 that the gHKLMT primal problem

based on (8) is equivalent to:

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

min
f,b

1

2

∑
w∈V

δw(γ, λ)−1‖fw‖2 + C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)) (17)

where f = (fw)w∈V and b = [b1, . . . , bT ].

A.4 Min-max interchange

Claim: The problem (10) remains the same whether solved with the original set of variables
(γ, λ) or when solved with only those γv 6= 0 and λvw 6= 0 at optimality.
Proof: It follows from the following arguments: a) variables γ and λ owe their presence
in (10) only via δ(γ, λ) functions, b) (γv = 0) ⇒ (δw(γ, λ) = 0 ∀w ∈ D(v)) and (∃v ∈
A(w)|λvw = 0) ⇒ (δw(γ, λ) = 0), and c) min-max interchange in (10) yields an equivalent
formulation. Its proof is provided in the following lemma.

Lemma 8 The following min-max interchange is equivalent

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
αt∈S(yt,C)∀t

G(γ, λ, α) = max
αt∈S(yt,C)∀t

min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ, λ, α)

where G(γ, λ, α) is as defined in (10).

Proof We proceed by applying a change of variables. Note that γv = 0 implies that the
variables λvw (∀w ∈ D(v)) do not influence the objective of optimization problem (10). This
follows from the definition of the δ(γ, λ) function. Hence, we define βvw = γvλvw, ∀w ∈ D(v)
as it is a one-to-one transformation for γv 6= 0 (see also Szafranski et al., 2010). The gHKL
dual (10) (the L.H.S. of the proposed lemma) can be equivalently rewritten as

min
βvw≥0 ∀w∈D(v),v∈V∑

v ‖βvD(v)‖ρ̂≤1

max
αt∈S(yt,C)∀t

G(β, α) where βvD(v) = (βvw)w∈D(v),

G(β, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(β)Hw

)
Yα and δw(β)−1 =

∑
v∈A(w)

d2
v

βvw

Note that δw(β) is a concave function of β (in the given feasibility set) and hence G(β, α)
is convex-concave function with convex and compact feasibility sets. Therefore, applying the
Sion-Kakutani minmax theorem (Sion, 1958), we have minβ maxαG(β, α) = maxα minβ G(β, α)
(with constraints over β and α as stated above). Finally, we revert to the original variables

(γ, λ): γv = (
∑

w∈D(v) (βvw)ρ̂)
1
ρ̂ ∀ v ∈ V and λvw = βvw

γv
∀ w ∈ D(v), ∀ v ∈ V s.t. γv 6= 0.

This gives us the equivalent

max
αt∈S(yt,C)∀t

min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ, λ, α)
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A.5 Proof of Theorem 3

Before stating the proof of Theorem 3, we first prove the following results that will be
employed therein (also see Proposition 11 of Bach (2009)).

Lemma 9 Let ai > 0 ∀ i = 1, . . . , d, 1 < r <∞ and ∆d,1 =
{

z ∈ Rd | z ≥ 0,
∑d

i=1 zi ≤ 1
}

.

Then

min
z∈∆d,1

d∑
i=1

aiz
r
i =

(
d∑
i=1

a
1

1−r
i

)1−r

and the minimum is attained at

zi = a
1

1−r
i

 d∑
j=1

a
1

1−r
i

−1

∀ i = 1, . . . , d.

Proof Take vectors u1 and u2 as those with entries a
1
r
i zi and a

− 1
r

i ∀ i = 1, . . . , d respectively.
The result follows from the Holder’s inequality: u>1 u2 ≤ ‖u1‖r‖u2‖ r

r−1
. Note that if any

ai = 0, then the optimal value of the above optimization problem is zero.

Proposition 10 The following convex optimization problems are dual to each other, and
there is no duality gap:

max
γ∈∆|V|,1

∑
w∈V

δw(γ, λ)Mw, (18)

min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

(19)

where L = {κ ∈ R|V|×|V| | κ ≥ 0,
∑

v∈A(w) κvw = 1, κvw = 0 ∀ v ∈ A(w)c, ∀ w ∈ V},
∆n,r = {z ∈ Rn | z ≥ 0,

∑n
i=1 zri ≤ 1} and Mw ≥ 0 ∀ w ∈ V.

Proof The optimization problem (19) may be equivalently rewritten as:

min
κ∈L

min
A
A subject to A ≥

∑
w∈D(u)

κ2
uwλuwMw

d2
u

∀ u ∈ V

= min
κ∈L

max
γ∈∆|V|,1

∑
u∈V

∑
w∈D(u)

γuκ
2
uwλuwMw

d2
u

(Lagrangian dual with respect to A)

= max
γ∈∆|V|,1

min
κ∈L

∑
w∈V

 ∑
u∈A(w)

κ2
uw

γuλuw
d2
u

Mw (min-max interchange and rearranging terms)

= max
γ∈∆|V|,1

∑
w∈V

 ∑
u∈A(w)

(
γuλuw
d2
u

)−1
−1

Mw (Lemma 9 with respect to variables κ)

= max
γ∈∆|V|,1

∑
w∈V

δw(γ, λ)Mw �
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We now begin with the proof of Theorem 3.

Proof From Lemma 8, the gHKL dual (10) can be equivalently written as

max
α∈S(y,C)

1>α− 1

2
max

γ∈∆|V|,1
max

λv∈∆|D(v)|,ρ̂∀v∈V

(∑
w∈V

δw(γ, λ)α>YHwYα

)
︸ ︷︷ ︸

O

(20)

Here ρ̂ = ρ
2−ρ . In the following, we equivalently rewrite the second part of the above

formulation

O = max
λv∈∆|D(v)|,ρ̂∀v∈V

max
γ∈∆|V|,1

∑
w∈V

δw(γ, λ)α>YHwYα︸ ︷︷ ︸
Mw

= max
λv∈∆|D(v)|,ρ̂∀v∈V

min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

(Proposition 10)

= max
λv∈∆|D(v)|,ρ̂∀v∈V

min
κ∈L

min
A

A (Eliminating u)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀ v ∈ V

= min
κ∈L

min
A

max
λv∈∆|D(v)|,ρ̂∀v∈V

A (Sion-Kakutani theorem)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀ v ∈ V

= min
κ∈L

min
A

A (Holder’s inequality, ρ̄= ρ̂
ρ̂−1

)

s.t. A ≥ d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

∀ v ∈ V

= min
κ∈L

max
u∈V

d−2
u

 ∑
w∈D(u)

(
κ2
uwMw

)ρ̄ 1
ρ̄

(Eliminating A) (21)

Now consider the problem Oρ̄ = minκ∈L maxu∈V d
−2ρ̄
u

∑
w∈D(u)

(
κ2
uwMw

)ρ̄
. Its lagrangian is

L(κ,A, η) = A+
∑
v∈V

ηv

d−2ρ̄
v

∑
w∈D(v)

(
κ2
vwMw

)ρ̄ −A


Minimization of L with respect to A leads to the constraint η ∈ ∆|V|,1. Hence

Oρ̄ = max
η∈∆|V|,1

min
κ∈L

∑
v∈V

∑
w∈D(v)

ηv
(
d−2
v κ2

vwMw

)ρ̄
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Using the special structure of L, the above can be rewritten as:

Oρ̄ = max
η∈∆|V|,1

∑
w∈V

(Mw)ρ̄

 min
κw∈∆|A(w)|,1

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw


Applying Lemma 9 with respect to variables κ, we have that

min
κw∈∆|A(w)|,1

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw = ζw(η) =

 ∑
v∈A(w)

dρvη
1−ρ
v

 1
1−ρ

(22)

From the above two results, we obtain the following equivalent dual of (21)

O = max
η∈∆|V|,1

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

(23)

Substituting O in (20) by the above (23) and again interchanging the min-max completes
the proof.

A.6 Proof of Theorem 4

Proof We begin by noting that ζv(η) (v ∈ V) is a concave function of η for all v (this is
because when ρ ∈ (1, 2], ζv is a weighted q-norm in η, where q ∈ [−1, 0) and hence is concave
in the first quadrant). By simple observations regarding operations preserving convexity we
have that the objective in (14) is a convex function of η for a fixed value of α. Hence g(η),
which is a point-wise maximum over convex functions, is itself convex. The expression for
∇g(η) is computed by employing the Danskin’s theorem (prop. B.25 in Bertsekas (1999))
and is as follows:

(∇g(η))i =− (1− ε)
2ρ̄

×

P1︷ ︸︸ ︷ ∑
u∈D(i)

dρi

(
(1− ε)ηi +

ε

|V|

)−ρ
ζsu(η)ρ

(
ᾱ>YHuYᾱ

)ρ̄ (24)

×

(∑
w∈V

ζsw(η)
(
ᾱ>YHwYᾱ

)ρ̄) 1
ρ̄
−1

︸ ︷︷ ︸
P2

where ρ̄ = ρ
2(ρ−1) , ζsw(η) = ζw((1− ε)η + ε

|V|), i.e., the smoothed ζw(η) and ᾱ is an optimal

solution of problem (14) with that η where the gradient is to be computed.
Next, we show that g is Lipschitz continuous by showing that its gradient is bounded.

Firstly, ρ ∈ (1, 2] and hence ρ̄ ∈ [1,∞). Next, let the minimum and maximum eigenvalues
over all Hw (w ∈ V) be θ and σ respectively. Then we have θ‖ᾱ‖2 ≤ ᾱ>YHwYᾱ ≤
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σ‖ᾱ‖2. Using this, we obtain:
∑

w∈V ζ
s
w(η)

(
ᾱ>YHwYᾱ

)ρ̄ ≥ θρ̄‖ᾱ‖2ρ̄
∑

w∈V ζ
s
w(η). Note

that
∑

w∈V ζ
s
w(η) ≥ ζsr (η) where r ∈ sources(V) and ζsr (η) ≥ d

ρ/(1−ρ)
max

ε
|V| where dmax is the

maximum of dv (v ∈ V). Thus we obtain: P2 ≤
(
θρ̄‖ᾱ‖2ρ̄ε/|V|

) 1
ρ̄
−1
d

2−ρ
ρ−1
max.

Now, it is easy to see that ∀ u ∈ D(i), dρi ((1 − ε)ηi + ε
|V|)
−ρζu(η)ρ ≤ d

ρ
1−ρ
i ≤ d

ρ
1−ρ
min,

where dmin is the minimum of dv (v ∈ V). Hence P1 ≤ |V|σρ̄‖ᾱ‖2ρ̄d
ρ

1−ρ
min. In addition, since

0 ≤ ᾱ ≤ C, we have ‖ᾱ‖ ≤
√
mTC. Summarizing these findings, we obtain the following

bound on the gradient:

‖∇g(η)‖1 ≤
(1− ε)

2ρ̄
mTC2θ1−ρ̄σρ̄ε

1−ρ̄
ρ̄ |V|

2
ρ

+1
d

ρ
1−ρ
mind

2−ρ
ρ−1
max

Proof will be similar for the gHKLMT formulations in other learning settings.

A.7 Proof of Theorem 5

Proof Given a triplet (γ, λ, α = [α>1 , . . . , α
>
T ]>) (with associated primal (f = (f1, . . . , fT ), b, ξ)),

the duality gap (∆) between the two variational formulations in lemma 8 is given by

∆ = max
α̂t∈S(yt,C)∀t

G(γ, λ, α̂) − min
γ̂∈∆|V|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈V

G(γ̂, λ̂, α)

≤ 1

2
ΩT (f)2 + C1>ξ − min

γ̂∈∆|V|,1
min

λ̂v∈∆|D(v)|,ρ̂∀v∈V
G(γ̂, λ̂, α)

=

Gap in solving with fixed (γ,λ)︷ ︸︸ ︷
ΩT (f)2 + C1>ξ − 1>α +

1

2

Gap in solving with fixed α︷ ︸︸ ︷(
max

γ̂∈∆|V|,1
max

λ̂v∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ̂, λ̂)α>YHwYα− ΩT (f)2

)

With this upper bound on duality gap, it is easy to see that the following condition is
sufficient for the reduced solution with active set W having ∆ ≤ ε:

max
γ∈∆|V|,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>WYHwYαW ≤ ΩS(fW)2 + 2(ε− εW) (25)

where εW is the gap12 associated with the computation of the αW . Here as well as in the rest
of the proof, the subscript ·W implies the value of the variable obtained when the gHKLMT

formulation is solved with V restricted to active set W. In appendix A.5, we proved that
the L.H.S. of the above inequality is equal to the R.H.S. of (21), i.e.,

max
γ∈∆|V|,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)Mw = min
κ∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

(26)

where Mw = α>WYHwYαW .

12. This is given by the gap associated with the ρ̂-norm MKL solver employed in the mirror descent algorithm
for solving the small problem (12).
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Next, we obtain an upper bound of the above by substituting any κ ∈ L in the R.H.S
of (26). In particular, we employ the following: the value of κvw v, w ∈ W is taken to be
that obtained by solving the small13 problem (12). This is fine because W = hull(W). For
v ∈ Wc and w ∈ W , by definition of L and W, we have κvw = 0. Next, κvw is set to
zero ∀ v ∈ W, w ∈ Wc. For the remaining κvw, v ∈ Wc and w ∈ Wc, we use the value

of κ obtained by solve (21) for ρ = 1 case, κvw = dv

(∑
u∈A(v)∩Wc du

)−1
(also see Section

A.5 Bach, 2009). Note that the above constructed value of κ is feasible in set L. With this
choice of κ substituted in the R.H.S. of (26), we have the following inequalities

max
γ∈∆|V|,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>WYHwYαW

≤ max

ΩT (fW)2, max
u∈Wc

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄

 (Specific choice of κ)

= max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄

 (∵ W=hull(W))

≤ max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2


ρ̄

1
ρ̄


(∵

∑
v∈A(w)∩Wc dv≥

∑
v∈A(w)∩D(u) dv)

≤ max

ΩT (fW)2, max
u∈sources(Wc)

∑
w∈D(u)

α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2

 (∵ ‖β‖1≥‖β‖ρ̄ ∀ ρ̄≥1)

Employing this upper bound in (25) leads to the result in Theorem 5. Note that in prac-
tice, the last upper bound is not loose for REL application. This is because most of the
matrices, especially near the bottom of the lattice, will be (near) zero-matrices – larger the
conjunctive rule, the fewer are the examples which may satisfy it.

A.8 Extending gHKLMT to General Convex Loss Functions

Here we present extension of the proposed algorithm to other settings like regression. We
begin with the gHKLMT formulation for a general convex loss function ` (for example, the
hinge loss, the square loss, the huber loss, etc.).

13. κvw (∀ v, w ∈ W) obtained in this manner satisfy the constraint set L restricted to W, i.e., LW = {κ ∈
R|W|×|W| | κ ≥ 0,

∑
v∈A(w) κvw = 1, κvw = 0 ∀ v ∈ A(w)c ∩W, ∀ w ∈ W}
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Equation (6) presented the primal gHKLMT with a general convex loss function `. The
specialized dual formulation corresponding to (6) is given by

min
η∈∆|V|,1

max
αt∈Rm,1>αt=0 ∀t

−C
T∑
t=1

m∑
i=1

`∗
(
−αti
C
, yti

)
− 1

2

(∑
w∈V

ζw(η)
(
α>Hwα

)ρ̄) 1
ρ̄

where α = [α>1 , . . . , α
>
T ]>, ζw(η) =

(∑
v∈A(w) d

ρ
vη

1−ρ
v

) 1
1−ρ

(refer Theorem 3 for details) and

`∗ denotes the Fenchel conjugate14 function (Boyd and Vandenberghe, 2004) of `.

A.9 Prediction function for gHKLMT with the hinge loss function

Let the final active set be W and (η̄W , ᾱW) be the optimal solution of (13). Then the
prediction function for an instance xtj belonging to the tth task is given by

Ft(x) = (ᾱW � y)>

(∑
w∈W

θ̄w(ζw(η̄W))
1
ρ̄Hw(·,xtj)

)
(27)

where symbol � denote element-wise product, Hw is the kernel matrix corresponding to the
multi-task kernel (11), Hw(·,xtj) = ((Hw(xt′i,xtj))

m
i=1)Tt′=1 and

θ̄w =

 (ζw(η̄W))
1
ρ̄ ᾱ>WYHwYᾱW(∑

w∈W

(
(ζw(η̄W))

1
ρ̄ ᾱ>WYHwYᾱW

)ρ̄) 1
ρ̄


1
ρ̂−1

A.10 Proof of Corollary 6

Note that proving the computational complexity of the matrix Ku (u ∈ sources(Wc)) in
(15) to be polynomial time in size of the active set and the training set dimensions suffices
to prove the corollary. This is because all the other steps in Algorithms 3 and 2 are of
polynomial time complexity (discussed in Section 4).

We begin the proof by introducing some indexing notations related to the multi-task
matrices. Let the entries in Hw, the mT ×mT multi-task kernel matrix, be arranged in the
following form: the entry corresponding to the input pair (xt1i,xt2j) be in the ((t1 − 1) ∗
m+ i)th row and ((t2 − 1) ∗m+ j)th column of Hw.

Next we observe that the expression for Ku in Theorem 5 may be rewritten as

Ku =

 ∑
w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2


︸ ︷︷ ︸

Tu

�KT

14. Fenchel conjugate ϕ∗(z) of a convex function ϕ(u) is given by ϕ∗(z) = supu z
>u−ϕ(u). As an example,

for hinge loss `(u, y) = max(0, 1− uy), `∗(z, y) =

{
zy if zy ∈ [−1, 0]
∞ otherwise
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where: i) Kw is a mT ×mT matrix corresponding to the base kernel kw and constructed
from the inputs from all the tasks, ii) KT is a mT ×mT such that the entry corresponding
to the ((t1 − 1) ∗ m + i)th row and ((t2 − 1) ∗ m + j)th column (1 ≤ i, j ≤ m) of KT is
B(t1, t2), and iii) � is the symbol for element-wise product (Hadamard product).

In the above expression, Ku is computable in polynomial time if and only if Tu is
computable in polynomial time. The proof of the corollary follows from observing the
expression of the sufficiency condition for optimality of the HKL (refer to Equation 21
in Bach (2009)), which also involves the term Tu.

A.11 Proof of Theorem 7

Given an active set W of size W , proving that the computational complexity of the verifi-
cation of the sufficient condition of optimality (15) is polynomial in terms of the active set
and the training set sizes suffices to prove Theorem 7. This is because all the other steps
in Algorithms 3 and 2 are of polynomial time complexity (Section 4).

In the REL setup, the DAG is the conjunction lattice and the embedded kernels kv v ∈ V
can be rewritten as

kv(xi,xj) = φv(xi) · φv(xj) =

(∏
c∈Sv

φc(xi)

)
·

(∏
c∈Sv

φc(xj)

)
=
⊙
c∈Sv

kc(xi,xj)

where Sv is the set of basic propositions involved in the conjunction φv and � is the symbol
for element-wise product (Hadamard product). The kernels corresponding to the basic
propositions are in fact the base kernels embedded in the second level nodes of the lattice
V. Employing the above, the matrices Ku (in L.H.S. of (15)) can be computed as

Ku =
∑

w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2 =

(⊙
c∈Su

Kc

a2

)
�

 ⊙
c∈B/Su

(
Kc

(1 + a)2
+ 11>

)
where Kc is the kernel matrix corresponding to the basic proposition φc, B is the set of all
basic propositions and the parameters dv (v ∈ V) are defined as dv = a|Sv | (a > 0).

It is obvious that Ku (u ∈ V) can be computed in O(pm2). In practice, by caching the
matrix Ku associated with a node u, the corresponding matrix Kw associated with any child
w of u can be computed in O(m2). For illustration, suppose Ku1 needs to be computed,
given that Ku0 is cached and u0 is a parent of u1. Let the extra basic proposition contained
in φu1 (with respect to φu0) be φe. Then Ku1 can be calculated as follows:

Ku1 = Ku0 �
(
Ke

a2

)
�
(

Ke

(1 + a)2
+ 11>

)
where � is the symbol for element-wise division of matrices.

Hence, plugging the REL specific values in the runtime complexity of the gHKL algo-
rithm, ω =constant and z = p, the runtime complexity of the gHKL based REL algorithm
is O(m3W 3 log(W ) +m2W 2p).
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A.12 REL Binary Classification Results in AUC

Dataset RuleFit SLI ENDER HKL-`1-MKL
gHKLρ

ρ = 2 ρ = 1.5 ρ = 1.1

TIC-TAC-TOE 0.736± 0.05 0.482± 0.21 0.783± 0.036 0.836± 0.024 0.967± 0.023 0.973± 0.02 0.975± 0.018

B-CANCER-W 0.941± 0.011 0.917± 0.051 0.958± 0.039 0.981± 0.008 0.984± 0.005 0.93± 0.099 0.93± 0.099

DIABETES 0.67± 0.027 0.576± 0.115 0.761± 0.02 0.746± 0.050 0.766± 0.046 0.733± 0.058 0.636± 0.118

HABERMAN 0.537± 0.054 0.17± 0.155 0.575± 0.039 0.524± 0.078 0.556± 0.07 0.482± 0.11 0.383± 0.166

HEARTC 0.764± 0.03 0.541± 0.215 0.805± 0.031 0.802± 0.085 0.837± 0.035 0.763± 0.12 0.753± 0.118

BLOOD TRANS. 0.546± 0.06 0.175± 0.256 0.68± 0.028 0.660± 0.025 0.667± 0.034 0.634± 0.028 0.519± 0.079

HEARTSTAT 0.765± 0.028 0.712± 0.085 0.801± 0.022 0.825± 0.032 0.849± 0.021 0.83± 0.027 0.811± 0.056

MONK-3 0.972 0.632 0.998 0.995 1 0.998 0.957

VOTE 0.955± 0.022 0.919± 0.048 0.965± 0.014 0.977± 0.009 0.972± 0.016 0.948± 0.015 0.945± 0.016

B-CANCER 0.578± 0.05 0.469± 0.078 0.622± 0.043 0.627± 0.063 0.637± 0.055 0.576± 0.089 0.513± 0.124

MAM. MASS 0.818± 0.02 0.763± 0.08 0.887± 0.006 0.866± 0.028 0.882± 0.023 0.85± 0.032 0.839± 0.03

LIVER 0.607± 0.017 0.093± 0.168 0.619± 0.038 0.619± 0.074 0.623± 0.038 0.583± 0.11 0.565± 0.109

Table 5: Results on binary REL classification. AUC along with standard deviation averaged
over 10 splits is shown.
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