CS 333: Operating Systems Lab
Autumn 2018

Lab 2: The matter of processes

Goal

The goal of this lab is to use system calls related to process creation and usage. After completing this
lab you will find yourself closer to building multi-process programs.

Before you begin

You must use C for this lab.

A set of system calls that we will use in this lab are listed below. You should look up the appro-
priate man pages for details of each. You may have to use non-default man page sections for some of
these. For example, you need to use man 2 open instead of man open.

fork: This system call is used to create a new process. After the process is created, both parent
and child processes continue execution from the point after fork(). The return value is different
in child and parent processes: zero in the child and the process-id(pid) number of the child in the
parent. In case of error, -1 is returned and new process is not created.

wait: This call makes the calling process wait till a child process terminates and reclaims the
resources associated to it. The return value is the pid of the child process. A variant of this,
waitpid waits for a process with a given pid.

exec: This call is used to run a new executable by replacing calling process’s code with the
executable program’s code. The code after exec() in the original process is executed only if exec
fails. If it succeeds, execution continues from the first line of the executable. Check out the several
variants of this in the man page.

open: This call is used to open a file or create one. The return value is the file descriptor of the
opened file. This call assigns the smallest unused non-negative integer as the file descriptor.

close: This call loses a file descriptor. The resources associated with the open file are freed.

read: This call is used to read a specified number of bytes from a file descriptor into a buffer.
It does not necessarily read the requested number of bytes as the file may have lesser number of
bytes. The number of bytes read is returned.

write: This call is used to write a specified number of bytes from a buffer to a file descriptor. The
number of bytes written is returned

getpid: This returns the process ID of the calling process and other process ID related calls (get
parend pid etc.).

The default first three file descriptors, which are opened and available for every process, are:

0 : Standard input (stdin)

1 : Standard output (stdout)

2 : Standard error (stderr)

While stdin, stdout and stderr are declared as struct FILE# in stdio.h, the system calls for read,
write refer to the file descriptors by an integer index in the per process file descriptor table.

Introduction to processes

A process is a basic unit of execution in an OS. The main job of any OS is to run processes, while
managing their life cycle from creation to termination. Processes are typically created in Unix-like
systems by forking from an existing process.

e Task 1: Baby steps to forking
Write a program p1.c that forks a child and prints the following (in the parent and child process),
Parent : My process ID is: 12345
Parent : The child process ID is: 15644

and the child process prints
Child : My process ID is: 15644
Child : The parent process ID is: 12345.

e Task 2: Write another program p2.c that does exactly same as in previous exercise, but the
parent process prints it’s messages only after the child process has printed its messages and exited.
Parent process waits for the child process to exit, and then prints its messages and a child exit
message,

Parent : The child with process ID 12345 has terminated.

File Descriptors, Fork, and Exec

A file descriptor (a.k.a £d) is an abstract indicator (handle) used to access a file or other input/output
resources, such as a pipes, network sockets, disks, terminals etc. A file descriptor is is referenced as a
non-negative integer index in a descriptor table. When a fork operation occurs, the file descriptor table
is copied for the child process, which allows the child process access to the files opened by the parent
process.

Note: Only file descriptor entries are copied, system wide file information along with current offsets etc.
are common and can be manipulated by each process.

The exec system call is used to load an executable in a process by overwriting the content of the existing
process with contents of the executable. Typically, in Unix systems, as fork is the primary way of
creating processes, a fork+exec combination is used to spawn new programs. In this technique, to run
an executable, the parent process forks a new process and the child process uses exec or it’s variants to
load and run the executable.

e Task 3: A program mycat.c, available as part of this lab, reads input from stdin and writes
output to stdout. Write a program p3.c that executes the binary program mycat (compiled from
mycat.c) as a child proces of p3.

Hint: The program forks a child process, the child process executes mycat binary, and the parent
process waits for the child process to exit.

Also, check what happens when input is redirected to p3.

e Task 4a: Writing to a file without opening it
Write a program p4a.c which takes a file name as command line argument. Parent opens file and
forks a child process. Both processes write to the file, “hello world! I am the parent” and
“hello world! I am the child”. Verify that the child can write to the file without opening it.
The parent process should wait for the child process to exit, and it should display and child exit
message. Refer sample outputs.

e Task 4b: Input file re-direction magic
Write a program p4b. c which takes a file name as a command line argument. The program should
print content of the file to stdout from a child process. The child process should execute the mycat
program.

Cannot use any library functions like printf, scanf, cin, read, write in the parent of child
process.

Hint: close of a file results in it’s descriptor to be reused on a subsequent open.
Note: Do not make any modifications in mycat.c

Orphans and Zombies

A running process becomes an orphan when its parent has finished the execution or terminated. In a
Unix-like operating system any orphaned process will be adopted by a special process, the init process.
init is the first user-level process. A process that has completed its execution or terminated but still has

some state (pid, memory allocation, stack, etc.) in the memory is called a zombie process. Operating
systems cleans up such zombie processes when the parent process executes the wait system call or when
the parent process exits.

e Task 5: Orphan
Write a program p5.c to demonstrate the state of process as an orphan. The program forks a
process, and the parent process prints the the following messages.
Parent : My process ID is: 12345
Parent : The child process ID is: 15644
The child process prints message
Child : My process ID is: 15644
Child : The parent process ID is: 12345
sleeps for few seconds, and it prints the same messages one more time. By the time the child
process wakes from sleep, the parent process should have exited.

e Task 6: Zombie
Write a program p6.c to demonstrate the presence of zombie processes. The programs forks a
process, and the parent process prints the message
Parent : My process ID is: 12345
Parent : The child process ID is: 15644
and the child process prints the message
Child : My process ID is: 15644
Child : The parent process ID is: 12345
After printing the messages, the parent process sleeps for 1 minute, and then waits for the child
process to exit. The child process process waits for some keyboard input from user after displaying
the messages, and then exits.

Display the process state of child process while it was waiting for input and after the input using
ps command.

ps -o pid,stat ——pid <child’s PID>.
Refer man ps for the details of different process states. Reason about the output.

e Task 7.a: Recursive fork
Write a program p7a.c that takes a number n as a command line argument and creates n child
processes recursively, i.e., parent process creates first child, the first child creates second child, and
so on. The child processes should exit in the reverse order of the creation, i.e., the inner most child
exits first, then second inner most, and so on. Print the order of creation of the child process, and
their termination order as shown in sample output.

e Task 7.b: Sequential fork
Write a program p7b.c that takes a number n as command line argument and creates n child
processes sequentially, i.e., the first parent process (p7b) creates all children in a loop without any
delays. Let the child processes sleep for a small random duration (use the urand_r() call, and
print the creation and exit order of the child processes. Note that the random numbers used for
sleep should be different across the child processes.

e Task 7.c:
Write another program p7c.c, that creates n child processes similar to sequential creation of p7b.c.
Further, each child also does the similar sleep action for a random duration.

In the parent process, set it up so that child termination is in the reverse order of sequential
creation.

Submission guidelines

e All submissions via moodle. Name your submissions as: <rollno lab2>.tar.gz

e The tar should contain the following files in the following directory structure:
<roll_number_lab2>/
| taskl-2/
| pl.c
| p2.c
| task3-4/
| p3.c
| pla.c
| péb.c
| task5-6/
| p5.c
| p6.c
| p6-explanation.txt
| task7/
| pTa.c
| pTb.c
|

e Deadline: 23rd July 11.59 PM.
Expected time for completion of lab: 3 hours

