
CS 333: Operating Systems Lab
Autumn 2018

Lab 3: morse code and turtles

Goal
In this lab you will learn about handling signals and to build a simple interactive shell of your own.

Before you begin
• You must use C for this lab. You may use C++ for the string-handling parts of the assignment.

• System calls of interest: fork, exec, wait, kill, signal, chdir and their variants.

morse code
In this part we will work with writing custom signal handlers of different types.

0. Read about signals and processes.
man signal, man 7 signal,
http://www.alexonlinux.com/signal-handling-in-linux
http://www.cs.princeton.edu/courses/archive/spr06/cos217/lectures/23signals.pdf

Refer to the sample output folder for the format of outputs for each of the tasks.

1.a Write a program (p1a.c) to handle the SIGINT and SIGTERM signals. The process should print a
custom message asking a question about whether the program should really exit, and exit only on
confirmation. Look up accompanying files for sample outputs.

1.b Write a program (p1b.c) that spawns a number of child processes, using the following command:
./p1b <n>
where n is the number of child processes. Each child process sleeps for a random duration and
exits. Override the SIGCHLD signal handler in the parent process and print the sequence of exits of
the child processes.

1.c What would happen if a child process forked another (grand) child process, which eventually ter-
minated. Recreate this situation (p1c.c), check for output and reason about it. Two situations
to test—when the grandchild process terminates before the child and when the child terminates
before the grandchild. Write your observations and reasoning as part of the submission. (Note
that this requires handling the SIGCHILD signal.)

turtles (and shells)
Write a program turtle.c that implements a simple command shell for Linux. Sample code make_tokens.c
is provided to tokenize strings (to deal with user commands); you may reuse this as part of your shell.
Use any creative message as a prompt of the shell waiting for user commands. Below are the the com-
mands you need to implement in the shell, and the expected behavior of the shell for that command.

Note: You must use the fork and exec system calls to implement the shell. The idea is for the
main program to act as a parent process that accepts and parses commands and then instantiates child
processes to execute the desired commands.

You must not use the system function provided by the C-library. Also, you must execute Linux
system programs wherever possible, instead of re-implementing functionality. For example: Given the
following command
echo "India has a gold medal in a track event at the World Athletics Championship"
you should use the echo binary available rather than implementing echo.

The following functionality should be supported:

1

http://www.alexonlinux.com/signal-handling-in-linux
http://www.cs.princeton.edu/courses/archive/spr06/cos217/lectures/23signals.pdf


• cd directory-name must cause the shell process to change its working directory. This command
should take one and only one argument; an incorrect number of arguments (e.g., commands such
as cd, cd dir1 dir2 etc.) should print an error in the shell. cd should also return an error if the
change directory command cannot be executed (e.g., because the directory does not exist). For
this, and all commands below, incorrect number of arguments or incorrect command format should
print an error in the shell. After such errors are printed by the shell, the shell should not crash. It
must simply move on and prompt the user for the next command.

• All simple standalone built-in commands of Linux e.g., (ls, cat, echo, sleep) should be executed,
as they would be in a regular shell. All such commands should execute in the foreground, and the
shell should wait for the command to finish before prompting the user for the next command. Any
errors returned during the execution of these commands must be displayed in the shell.

• Any simple Linux command followed by the output redirector ’>’ (e.g., echo hi > hi.txt) should
cause the output of the command to be redirected to the specified output file. The command should
execute in the foreground. An incorrect command format must print an error and prompt for the
next command.
Note: This can achieved by manipulating the sequence of file open and close actions, and/or using
the dup system call.

• Any list of simple Linux commands separated by “;;” (e.g., sleep 100 ;; echo hi ;; ls -l)
should all be executed in the foreground and sequentially one after the other. The shell should
start the execution of the first command, and proceed to the next one only after the previous
command completes (successfully or unsuccessfully). The shell should prompt the user for the next
input only after all the commands have finished execution. An error in one of the commands should
simply cause the shell to move on to the next command in the sequence. An incorrect command
format must print an error and prompt for the next command.

Important Guidelines:
• When a process completes its execution, all of the memory and resources associated with it are

de-allocated so they can be used by other processes. This cleanup has to be done by the parent
of the process and is called reaping the child process.The shell must also carefully reap all its
children that have terminated. For commands that must run in the foreground, the shell must
wait for and reap its terminated foreground child processes before it prompts the user for the next
input.

• By carefully reaping all children (foreground and background), the shell must ensure that it does
not leave behind any zombies or orphans when it exits.

• You must implement all the commands above in your shell. Test your shell using several test cases,
and record observations and reasoning in your report.

Tips
• You are given a sample code make-tokens.c that takes a string of input, and “tokenizes” it (i.e.,

separates it into space-separated commands). You may find it useful to split the user’s input string
into individual commands.

• You may assume that the input command has no more than 1024 characters, and no more than 64
“tokens”. Further, you may assume that each token is no longer than 64 characters.

• You may want to build a simple shell that runs simple Linux built-in commands first, before you
go on to tackle the more complicated cases.

• You will find the dup system call and its variants useful in implementing I/O redirection and pipes.
When you dup a file descriptor, be careful to close all unused, extra copies of the file descriptor.
Also recall that child processes will inherit copies of the parent file descriptors, so be careful and
close extra copies of inherited file descriptors also. Otherwise, your I/O redirection and pipe
implementations will not work correctly.

2



• You must catch the SIGINT signal in your shell and handle it correctly, so that your shell does not
terminate on a Ctrl+C, but only on receiving the exit command.

• You will find the chdir system call useful to implement the cd command.

• Carefully handle all error cases listed above for each command. For example, an incorrect command
string should always print an error.

Submission Guidelines
• All submissions via moodle. Name your submission as: <rollno_lab3>.tar.gz

• The tar should contain the following files in the following directory structure:

<roll_number_lab3>/
|__morse-code/
|____p1a.c
|____p1b.c
|____p1c.c
|____p1c.txt
|__turtles/
|____turtle.c
|____report.txt
|____output.txt

• Your code (turtle.c) should be well commented, indented and easily readable.

• The report.txt should explain briefly how you built the shell

• The README contains test-cases (some with expected outputs and some not). You should try all
the test-cases using your own shell. The file output.txt should show results for sample runs of
your code using the test-cases mentioned as well as your own test-cases.

• We will evaluate your submission by reading through your code, executing it over several test cases,
and by reading your report.

• Deadline:
Monday 30th July 2017 5.00 PM via moodle.

self-study of pipes
• pipe is a system call to create an object for inter process communication via a pair of files descrip-

tors. One of the descriptors (file descriptor #0) is the read end and the other descriptor is the
write end (file descriptor to be used for writes).

• dup is a system call to create a copy of a file descriptor. It uses the lowest unused descriptor in the
per process file descriptor table for the new process. dup2 is a variant of dup system call.

• man 2 pipe, man 2 dup

• pipes.c and dup.c are sample programs as part of the lab for self study.

Study it and look up other examples and usages of these two system calls.

• No submission required.

3


