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Chapter 1

Abstractions and Paradigms: Course
Overview

The goal of this course is to take the first steps towards becoming a professional programmer.
Professional programmers write programs for use by other people – this means they must
be more reliable and able to serve the needs and tastes of many people, i.e. they should
have good user interfaces. And these programs will typically be very complex; else the
users may themselves write them. Examples of such programs are compilers, editors (e.g.
text, graphics, sound ...), simulators (e.g. circuit simulator, railway system simulator, flight
simulator), programming environments (including specialized environments such as those
for accessing databases or for modelling and solving complex mathematical and engineering
problems).

Although we will develop toy examples of some of these programs during the course, our
goal will of course be to study techniques which can be used for reliably developing programs
that do complex jobs. Many paradigms1 have evolved for this purpose, and we will study
them.

The process of developing programs has evolved substantially over the years. Fifty years
ago, when computers were very expensive and very slow, it was important to write programs
that executed as fast as possible. Today, the circumstances are very different: computers
are very fast and very cheap. Further, computers are pervasive – millions of people use
them for a very wide range of purposes. Thus, the program development process of today
gives less importance to speed of execution and more importance to reliability and ease of
use of programs. Since programmer effort has become more expensive (in relative terms), a
programming process that improves programmer productivity (possibly at a cost of execution
speed) is becoming more important.

How do we write programs that are more reliable, easier to understand, easier to modify,
easier to extend? Can we develop programming systems in which programs can be written
with minimal effort? These are some of the questions to be studied in the course.

1We use this term in the sense of “school of thought”, or a “system of beliefs/philosophies”.

5



1.1 The Paradigms

Usually, there is no single obvious method for doing any complex job, including that of
writing a program, or writing a book, painting a picture, designing a building and so on.
Typically, there are a number of different approaches, or schools of thought, or paradigms
which contain words of wisdom as to how the job can be done. So for example there can be
an Impressionist paradigm in Painting2 or a Magical Realism paradigm in Literature3.

We use the word paradigm in the sense of “school of thought”, or “set of beliefs”.
We will study four programming paradigms, or approaches to developing programs, in

this course. These are Imperative Programming, Functional Programming, Object Oriented
Programming, and Logic Programming. We will mostly concentrate on the last three (since
the first is fairly familiar through earlier courses), and even in these we will focus only
on some of the major ideas. Many, many details (even some important ones) will be left
undiscussed.

Imperative Programming:

In this, a program is thought of as a sequence of instructions to be given to the computer. This
paradigm inspired the development of languages such as Fortran and C, although more recent
versions of these languages support non-imperative programming styles to some extent. The
main virtue of the paradigm is speed. Since the programmer more directly influences the
actions of the computer (as compared to the other paradigms), a good programmer can write
programs that execute fast. This is also a disadvantage – the programmer is expected to
worry a lot about managing the computer in addition to modelling the application that is
being programmed.

Functional Programming:

In this style program execution is thought of as function application in mathematics. A
program is simply a map (in the sense of a mathematical function) from the set of possible
input instance to the desired output values. The task of programming is simply to define
these functions, and this is accomplished by defining functions from scratch or composing
predefined functions into new functions. Typically, programs written in a functional pro-
gramming style are slower for the same job than their imperative counterparts; however
they are often immensely more readable, elegant and easier to understand. The improved
understandability is very important today.

Object-oriented programming:

This is really a sub-paradigm of the Imperative paradigm. One of the major ideas in it
concerns program organization. In conventional programming languages it is customary to
think of a program as consisting of data structure declarations and code. The OO paradigm
encourages programmers to treat each data structure together with code for accessing it as
a separate unit. Each such unit is called an object, and hence the name. OO programs are

2Popularized in the works of artists such as Claude Monet
3Popularized in the work of Gabriel Garcia Marquez or Salman Rushdie.
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considered easier to modify and extend; this is because typically a modification will need
changes to only one-two objects in the entire program. It is believed that OO programs are
easier to design because the objects constituting a program usually have a natural corre-
spondence with the objects constituting the real-life system that is being modelled in the
program. For example, in a program concerned with circuits, there may be an object for
each transistor.

Logic Programming:

This style is becoming popular for solving problems in Artificial Intelligence, or optimization
problems. It is perhaps the easiest style for the programmer! It only requires the programmer
to state formally and to full detail the (optimization) problem to be solved. The Logic
Programming system (which is some kind of an expert system) attempts to find a solution
the problem using general techniques. A logic programming system may attempt to reduce
the user specified problem to problems from some class that it knows how to solve; or it
might use brute force methods (e.g. trial and error) to solve the problem. With advances in
theoretical computer science, more and more powerful logic programming systems are being
developed. For the foreseeable future, it is expected that programs written in this style will
be substantially slower in execution than those in the other styles. However, it will also be
much easier for the programmer to write programs in this style.

1.2 Course Overview

This course will study the paradigms described above. Each paradigm is the basis for several
programming languages, e.g. the language ML is said to be based on the functional paradigm,
the language Prolog on the logic programming paradigm, the languages C++ and Java on
the Object Oriented Paradigm, and languages such as Fortran and C on the Imperative (non
object oriented) paradigm. The most natural way to study the paradigms is to study these
languages.

Instead, in this course we will study the Scheme language in which all the four paradigms
can be embedded. This is because Scheme is an unusually flexible language which can take
on the features of different paradigms as needed. Scheme also has several other advantages
including its ability to easily process non-numerical data. Learning the Scheme language
(and how it can be extended as needed) will also be a part of the course.

During the course we will use examples from a variety of subfields in Computer Science
such as Computer Graphics, Databases, Compilers, Circuit Design, Symbolic Algebra, Op-
timization and Artificial Intelligence. In other words, the course will also be a mini-survey
of Computer Science.
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Chapter 2

Introduction to Scheme

Scheme is a dialect of the programming language LISP–(1955)(LISt Processing language).
Scheme has been chosen for our course because of a number of reasons. You can embed
other languages into it quite easily. It allows easy symbol manipulation. Scheme and Lisp
are interpreted languages (ie. there is no intermediate object file).

This chapter will provide a brief introduction to scheme. We will begin with a very
simple session with the scheme interpreter. Then we will describe the general structure of
the scheme commands. Finally we will describe some commonly used scheme commands.

2.1 Simple Scheme Session

The scheme interpreter can be started by typeing “scheme” to the unix command shell.
After that you can typein commands, which are executed by the interpreter. You can end
the session by typeing CTRL-d.

After the scheme interpreter is invoked, the user must type commands through the key-
board which the interpreter then executes. The most common command is an expression
which has the form “(command-name argument . . . )”. Simplest expressions are formed using
the arithmetic operators. Thus you may type

(+ 10 35)

To which scheme will reply by printing out 45, which is the result of adding 10 to 35. Scheme
uses prefix notation for expressions eg 10+35 is written as (+ 10 35). Commands can be
nested. For example, you may type

(+ 35 (* 2 10))

which scheme will interprete as “add the 35 to the result of multiplying 2 and 10. Trigono-
metric functions can also serve as command names. As in most languages, trigonometric
functions expect the arguments in radians. Thus here is a scheme expression to compute the
trigonometric sine of 30 degrees:

(sin (/ (* 30 3.14 ) 180 ))

You can define names as follows:

8



(define pi 3.14159 )

This tells the Scheme interpreter to use 3.14 whenever pi is encountered subsequently. So
following this definition we could just write

(sin (/ (* 30 pi) 180 ))

for computing the sine of 30 degrees. Thus pi could be used in place of 3.14 in previous
expression. Previously defined names can be used to define new names, e.g.

(define twopi (* pi 2 ) )

You can also define new commands. Here is a command to calculate the volume of a cylinder:

(define (cylinder-volume r h) ;; procedure definition

(* pi r r h) ;; procedure body

) ;; end of procedure definition

The text following a ; is a comment, and is ignored by the Scheme interpreter. It is assumed
in the above definition that pi has been defined earlier. The above procedure could be
invoked as follows:

(cylinder-volume 10 20) ;; procedure invocation

The numbers 10, 20 in the invocation are called the arguments, and the corresponding names
r and h in the definition of the procedure cylinder-volume are called formal parameters of
the procedure. When the invocation is executed, the values of r and h are set to respectively
10 and 20, and the procedure body is executed. The body will cause the multiplication
3.14 × 10 × 10 × 20, and the result, 6280, will be returned. This is what Scheme will print
as the value of the invocation. Scheme procedures can invoke other procedures, or even
themselves, i.e. procedures can be recursive.

Besides expressions, scheme commands can be just references to a name: it is possible to
type a name to the scheme interpreter, in this case the interpreter simply returns its value.
So for example if you type

pi

then the scheme interpreter would respond by typing 3.14. If you type

cylinder-volume

most scheme interpreters would respond with a message saying that cylinder-volume is a
procedure.
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2.2 Names and values

In Scheme, names do not have an associated type as in Fortran or C; so there are no type
declaration statements. A name can be associated with any kind of data. This is done
using define statements. For example, the statement (define pi 3.14) causes pi to be
associated with the number 3.14. It is also customary to say that the value of pi is 3.14.

Names can also be associated with procedures, for example, cylinder-volume as defined
earlier is a name associated with the procedure for computing the volume of a cylinder, as
defined using (define (cylinder-volume r h) (* pi r r h)). In fact it is acceptable
to ask what the value of cylinder-volume is– in Scheme it is appropriate to say that the
procedure to compute the cylinder volume is the value of cylinder-volume1

Scheme does have a command that changes the value of a name; we will look at this
command later.

2.3 Commands and values

The term command suggests a phrase that causes some action to happen. Scheme commands
can cause actions to happen, but in addition, many Scheme commands also represent values.
For example, a command such as (* 3.14 10 10) not only causes the numbers 3.14, 10, 10
to be multiplied, but it also represents the resulting value, i.e. the number 314. This means
that the entire command can be nested inside another command, in any place where a value
is allowed. For example we may write (+ 1 (* 3.14 10 10)). The value of this command,
of course, is 315.

Nesting one command inside another is allowed in most languages. However, Scheme
allows much more interesting kinds of nesting. This is because almost every statement in
Scheme has a value (see for example, the if statement described below), hence it can be
written wherever a value is allowed.

We describe some selected commands below.

2.3.1 Arithmetic and Logic commands

Scheme has built-in commands for addition, subtraction, multiplication, division, and a host
of other operations. The syntax is prefix, i.e. to compute 35/47, we would write (/ 35 47).
Prefix syntax is also used for comparisons. For example (> a b) would return true if a > b
and false otherwise. This will typically be used while writing an if statement as discussed
below.

2.3.2 Graphics Commands

Scheme offers users a graphical interface to create and draw pictures. For this you need to
execute the following command which loads the necessary file:

(load "~ranade/public/graphics.scm")

1Do not mistake this with the value of the expression (cylinder-volume 10 20) – the value of this is
the number 6280 assuming pi is defined as 3.14.
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A window containing a screen for graphics should come up after this.
The following commands are available:

1. (gr:reset) : Clears the graphics screen and resets the graphics system.

2. (gr:write x y "string") : Writes the given string at position (x,y)

3. (line x1y1x2y2) : Draws the line between the specified points.

4. (point x1y1) : Plots the specified point.

5. (trans dx dy <commands>) : Translates the origin to (dx,dy) and evaluates the com-
mands.

6. (rotate cos(x) sin(x) <commands>) : Rotates axes by an angle x and evaluates the
commands.

7. (scale sx sy <commands>) : Multiplies scale of axes by sx, sy respectively.

None of the graphics commands returns a value.

2.3.3 The if command

The general form is:

(if condition-expression

then-command

else-command)

The condition-expression is first evaluated. If this evaluates to true, then the then-command

is evaluated and its value (if any) is returned as the result of the if statement. Otherwise,
the else-command is evaluated and its value (if any) is returned as the result. Suppose we
wish to set y to have the absolute value of x then we could write:

(define y (if (> x 0)

x

(- x))

)

This should not be read as “If x>0 then set y to x, else set y to -x”. Instead, it should be
read as “Set y to the value returned by the if statement; the if statement evaluates to x if
x>0, else it evaluates to -x.”. The difference between the two should become more obvious if
you consider the following statement:

(define z (* 2 (if (> x 0)

x

(- x)))

)

11



You will see that it is not possible to nest IF statements of FORTRAN inside arithmetic
expressions. Scheme is very flexible in comparison. Other statements e.g. the do statement
which is analogous to the FORTRAN DO statement also is associated with a value, and can
hence be nested in contexts where values are expected.

The Scheme if can be used in a more conventional manner as well. For example, the
following will produce a horizontal line or a vertical line depending upon whether a is 0 or
not.

(if (= a 0)

(line 0 0 0 1) ;; vertical line

(line 0 0 1 0) ;; horizontal line

)

Note that the line commands do not return a value, so the enclosing if will not return a
value either. So it doesnt make sense to use such if statements in places where a value is
expected.

2.3.4 Examples

Here is a procedure for drawing a square:

(define (square)

(line 0 0 0 1)

(line 0 1 1 1)

(line 1 1 1 0)

(line 1 0 0 0)

)

This can be invoked using (square). It will draw a unit square in the positive quadrant.
This define statement used above deserves a comment. First of all, the body of the

define contains 4 commands (for drawing the 4 lines), unlike the single command in the
procedure cylinder-volume. Scheme in fact allows the body to consist of many commands.
If the body of a procedure definition consists of many commands, then a natural question
is, what is the value returned when the procedure is called? The answer is: the value of the
last command (if any).

For the procedure square, thus the value of (line 1 0 0 0) would be returned. Since
(line 1 0 0 0) has no value, no value would be returned for square either.

2.3.5 Nesting of commands:

In the definition of cylinder-volume we saw that the * command was used inside the define

command – this is called nesting the former inside the latter. Such nesting is not only allowed
but inevitable. Almost anything can be nested inside anything else, for example:

(define p (if (= a 1)

100

(if (= a 2)

12



150

(+ b c))))

This shows one if command nested inside another. The meaning of the definition should be
clear: p is set to 100 if a is 1; to 150 if a is 2, and to the sum of b and c if a is neither 1 nor
2.

Here is a case where nesting is not allowed in Scheme:

(define q (define p 100))

This is illegal because the define special form expects to evaluate its second argument and
discover a value. But a command such as (define p 100) does not have a value and is thus
inappropriate in this place.

2.4 General Remarks on the Scheme Interpreter

The Scheme Interpreter takes commands typed by the user, executes them, and prints the
value returned by the command on the screen.

The simplest kind of Scheme command is a name. The name represents the value asso-
ciated with it by preceding statements. If you type a name to the intepreter, then it simply
returns its value.

The more complex command is an expression, i.e. anything enclosed in parentheses, say
(f a1 ... an). In this, a1 through an could themselves be commands (which are said to
nest inside the outer command). For expressions, the evaluation process is more complicated.
It depends upon whether f is a procedure (such as cylinder-volume), or a special-form such
as define.

If f is a procedure, then Scheme evaluates the commands a1 through an and then f is
called with these values as arguments. The result of applying f to the values of the arguments
is the value of the entire expression (f a1 ... an). Notice that the values evaluated for
commands a1 through an are not printed on the screen, but are simply used as arguments to
the function f. Only the final value of the command typed in by the user to the interpreter
is printed on the screen.

If f is not a procedure, then it is said to be a special form. A special form should
be thought of as a built-in language construct, e.g. like the DO keyword in Fortran. The
commands define and if are examples of special forms. For special forms the arguments a1

through an may or may not be evaluated depending upon the definition of f. Furthermore,
the entire command (f a1 ... an) may or may not be associated with a value. For
example, if the command is (define a1 a2) then a1 is not evaluated; in fact it is the
purpose of the define command to associate a value with a1. Further, the expression
(define a1 a2) itself has no value. Another example is if which is also a special form.
When the command (if c e1 e2) is evaluated, c is first evaluated and then only one out
of e1 and e2 are evaluated depending upon whether c evaluates to true or false. In this case,
a value is returned; the value of (if c e1 e2) is the value of e2 if c evaluated false and the
value of e1 otherwise.2

2This assumes that e1 or e2 respectively do have a value. If not then no value is returned by (if c e1

e2) as well.
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What makes Scheme exciting is that it provides facilities so that new special forms can
also be defined by the user. This is like allowing a user to add new kinds of statements to
FORTRAN or C. It is this flexibility that makes it easy to support many programming styles
within Scheme.

2.5 Exercises

1. Write a procedure that returns computes the square of a number.

2. Write a procedure that returns a 1 if the given number is positive, 0 if the number is
0, and -1 if the number is negative.

3. Write a procedure that returns temperature in Centigrade given it in Fahrenheit.

4. Get practice using emacs by doing the emacs tutorial and running scheme from inside
emacs. Emacs has a scheme mode which eases the task of editing scheme files. This
mode is automatically invoked when you edit a file which has a “.scm” extension.
Inside this mode, the TAB key will take you to the correct indentation. Further the
command ctrl-meta-q when typed at the beginning of a function definition will indent
the function properly. It is extremely important to be conversant with these indenting
features. Your programs will be expected to be indented well.

Get familiar with the commands “ctrl-c ctrl-e” with allow text from the file you are
editing in emacs to be submitted to the scheme buffer in emacs. Also the other com-
mands in the scheme mode.

14



Chapter 3

Functional Programming

In some ways Functional Programming is the simplest paradigm of the ones we are going
to study. One may consider it to be minimalist;1 indeed, it is possible to write interesting
functional programs using only two kinds of language statements, e.g. define and if. This
simplicity is very useful, it often leads to programs that are easy to reason about.

In the first part of our study of functional programming, we will define it by what it
lacks rather than what it posseses. Functional programming does not have an assignment
statement using which the value of a variable can be changed. It does have variables – but
the values, once assigned, cannot be changed. Indeed, the term variable is misleading in
functional programming; it is much more appropriate to think in terms of names that are
given to values that arise during the course of program execution.

In a language such as FORTRAN or C, most of program execution happens using loops,
of which there are various varieties. In Functional Programming, we use recursion to do
all the tasks which are done using loops. This might seem complicated, however, you will
soon see that often this makes for shorter and more understandable programs. Recursion
will be an important topic in our study. It should be mentioned that the importance of
recursion goes beyond functional programming; recursion is a very important tool in design
of algorithms. We will also see use of recursion in graphics, this will form an instructive and
pleasant diversion.

In the second part of our study we will take up the question of reasoning about programs.
In fact we will present a strategy for proving the correctness of functional programs as well
as imperative programs. By applying the strategy to programs in the two paradigms solving
the same problem, we will hope to pursuade you that functional programs can indeed be
much easier to reason about.

In the third part we will consider the notion of higher level functions. A higher level
function is simply a function that operates on functions; in programming terms, a high level
function is one that takes another function as argument, or returns a function as result.
Many conventional languages such as FORTRAN and C support some of these features;
however in functional programming it is especially convenient to program using high level
functions.

Our study will not include an important feature of functional programming: lazy evalu-

1Minimalism is a paradigm in Art that stresses simplicity, use of the fewest and barest essentials or
elements be it in painting, music, literature, or design.
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ation. This is a very useful feature, which among other advantages, makes it very easy to
write programs dealing (implicitly) with infinite structures. Lazy evaluation is not supported
in common programming languages such as FORTRAN, C, C++, Java.

In addition, we will also study the list data structure, and consider several problems in
symbolic computing. It will be seen that all this is programmed elegantly in the functional
style.

Although our examples will use the Scheme language, most of the ideas we develop will
be useful while programming in other languages as well. For example, it should become clear
that in the interest of understandablility, it is better to write programs in which the value
of a variable does not change, especially that of a global variable. A clear understanding of
recursion is of course, central to all of Computer Science. Finally, the use of high level func-
tions is an important abstraction which can be, and is often, used in standard programming
languages.
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Chapter 4

Recursion

A fundamental idea in design of programs is problem reduction. We say that a problem A
can be reduced to a problem B, if given the solution to problem B we can (easily) extract
(from the solution to problem B) the solution to problem A. This notion is very common in
Mathematics, where we might say “using the substitution y = x2 + x the quartic equation
(x2 + x + 5)(x2 + x + 9) + 7 = 0 reduces to the quadratic (y + 5)(y + 9) + 7 = 0”. Implicit
in the notion of reduction is that the problem being reduced to be simpler than the problem
which is being reduced. This idea appear in many places: consider the following rules for
differentiation:

d

dx
(u + v) =

d

dx
u +

d

dx
v

d

dx
(uv) = v

d

dx
u + u

d

dx
v

The first rule, for example, states that the problem of differentiating the expression u + v
is the same as that of first differentiating u and v separately, and taking their sum. Here
is an example where the problems that we ended up with after the reduction were of the
same kind as the one we started with (that of differentiating an expression). Such a problem
reduction procedure is said to be recursive.

Of course, a recursive procedure is not of much use if it only specifies how to reduce
problems. Eventually, we must get to problems that can be solved directly, without applying
any additional reduction. These problems that are expected to be solved directly are said to
be the base cases of the recursive procedure. Suppose we wish to compute:

d

dx
(x sin x + x)

Then using the first rule we would ask to compute

d

dx
x sin x +

d

dx
x

Now, the computation of d
dx

x is not done by further reduction, i.e. this is a base case for the
procedure. So in this case we directly write that d

dx
x = 1. To compute d

dx
x sin x we could

use the product rule given above, and we would need to know the base case d
dx

sin x = cos x.
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4.1 Classical Examples of Recursion

Computing factorial.
Computing GCD by Euclid’s algorithm.

4.2 More Examples

1. Computation of sines. Use the identity:

sin(3x) = 3 sin(x) − 4 sin3(x)

and the observation that sin(x) can be approximated by x, for small values of x, say if
x < 0.001.

Solution:

(define (polynomial t)

(- (* 3 t) (* 4 t t t) ) )

(define (sin x)

(if (< (abs x) 0.001)

x

(polynomial (sin (/ x 3) ) ) ) ) }

2. Write a function that computes the square root of x using the following idea : Suppose
yi denotes the estimate of

√
x. Then a better estimate is given by yi+1 = (yi + x/yi)/2.

(define (internalsqrt x y)

(if (> 0.001 (abs (- (* y y ) x) ) )

y

(intsqrt x (/ (+ y (/ x y)) 2) ) ))

(define (sqrt x)

(internalsqrt x 1.0) )

4.3 Recursion vs. loops

Recursion can be used to effectively accomplish the same thing as loops. Suppose you wish
to print the squares of the numbers 1 through n on the screen. Here is how you could do it:

(define (print-square n)

(if (> n 0)

(begin (pp (* n n))

(print-square (- n 1)))))
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This program uses the command pp which stands for “pretty-print”. In general, executing
(pp x) will cause x to be printed in as nice a form as the Scheme Interpreter knows.1

In this procedure we have used the if statement without specifying the else-part. In
such cases, if the condition happens to be false, the value returned will be undefined.

4.4 Recursion in Graphics

Recursion is not limited only to computing; we can use it for drawing pictures as well.
Suppose we wish to draw a tree. Fancifully, we may think of a tree as made up of two

branches, each with a small tree on top. Thus we might write the code for drawing trees as
follows:

(define (tree n)

(if (> n 0)

(begin (line 0 0 0.5 0.5)

(line 0 0 -0.5 0.5)

(trans 0.5 0.5 (scale 0.5 0.5 (tree (- n 1))))

(trans -0.5 0.5 (scale 0.5 0.5 (tree (- n 1))))

)))

The (begin a1 ... an) statement is used for grouping statements together. It simply causes
the commands a1 through an to be evaluated. The value of an is returned as the value of
the begin statement. In the present case, note that the last command inside the begin

command shown, (trans -0.5 ...) does not have a value. Hence the begin statement
itself will not have a value. As a result, the if also will not return a value.

4.5 Clever Recursion

We will now give an example of recursion as an algorithm design technique. This will be
different from the preceding examples in which the algorithm to solve the problem is obvious
and we were only attempting to express it recursively. In this case, the algorithm to solve
the problem is not obvious by any means, and you will see that recursive thinking helps us
discover the algorithm.

The problem we wish to solve is: Given an integer M determine the minimum number
of coins needed to make up M paise, assuming you have an infinite supply of coins of all the
denominations 1, 2, 5, 10, 20, 25 and 50 (i.e. those available for Indian currency). At first
glance you may think that the solution is obvious: keep using the largest possible coin until
the amount drops down to 0. For M = 40 this idea would suggest coins of 25, 10 and 5; the
best solution uses just 2 coins of 20.

How then, can we find the minimum number? The recursive idea is to start by assuming
that we can solve the problem for all integers between 1 and M . Given this assumption, can
we solve the problem for M + 1? This is where we need some cleverness.

1For now, you may wonder whether there can be different ways of printing numbers, but later when x

might be a more complex Scheme structue, this prettiness will be seen to be extremely useful.

19



The first insight is that if we remove any coin of any denomination, say x, from an
optimal set of coins for M + 1 paise, then the coins remaining would also constitute an
optimal solution for M +1−x paise. If not, i.e. if there exists a better solution for M +1−x
paise, we just need to put back the x paise coin and get a better solution for M + 1 paise as
well. This contradicts the idea that we started with the optimal solution for M + 1 paise.

suppose there exists a solution for M + 1 − x paise which requires fewer coins.
some denomination. Suppose the coin removed
we could construct the entire solution! Suppose for example, that the M +1 paise solution

contains at least one 20 paise coin. Then if we remove that from the M + 1 paise solution,
we will get coins adding up to the amount M + 1 − 20 = M − 19. However, these coins must
be an optimal solution for M-19

note that if even one coin is removed from the optimal set needed to make M + 1 paise
– which recursion will not provide you, but thinking recursively might perhaps make it

easier for you to spot the trick.

4.6 Tracing Scheme procedures

It is possible that the Scheme programs you write give answers that you did not expect
(presumably because of a programming error). This could result in the program not termi-
nating, or printing out the wrong values. In such cases it is desirable to know what were the
precise computations carried out by Scheme. For this, scheme provides the facility to trace
a procedure:

(trace procedure)

This asks scheme to display a message everytime procedure is called, showing its arguments,
and also when the function returns, along with the value returned. During debugging, it
is expected that this command will be issued after procedure is defined but before it is
invoked. At any point in time, as many functions as you want can be traced.

For example, before invoking (sin 0.15) but after sin has been defined, if you type
(trace sin), Scheme will show you what happens at each recursive call to sin.

The command:

(untrace procedure)

asks scheme to stop displaying messages i.e. it undoes the effect of (trace procedure).

4.7 Exercises

1. What will the value of a be after the following code is executed?

(define (print-square n)

(if (> n 0)

(block (pp (* n n))

(print-square (- n 1))
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n)

))

(define a (print-square 10))

2. Write a function to draw a regular polygon of unit side-length with center at the origin.
It should take the number of sides as the argument.

3. The call (random x) will return a random integer in the range 0 through x-1, if x is an
integer, or from the interval 0 to x if x is a real number. Use randomness to determine
the number of branches, their length, or their angle (this can be changed by scaling the
x and y coordinates separately) while drawing trees. Try to make your trees resemble
some known tree!

4. Write a function which computes the value of e using n terms of the following series,
with n being taken as an input:

e = 1 +
1

1!
+

2

2!
+

3

3!
+ . . .
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Chapter 5

Proving Program Correctness

Programming errors, or bugs, can cause and already have caused many, many disasters, such
as failures in satellite launches, and car accidents (bugs in the program that performs car
control functions). We are all familiar with operating system or other program releases that
“fix bugs”, and which keep appearing from time to time. If we could some how ensure that
a program will function correctly, before it is released for use, we will avoid much expense,
much wasted effort, and many accidents.

How can we be sure that a program is correct? One way is to test it on several examples:
this is obviously insufficient; however much testing we do we still cannot be sure that the
program will not fail on some instance that we have not tested. A better way is to prove
the program to be correct. A proof of the correctness of a program is in spirit similar to the
proof of a theorem in Euclidean Geometry. In both cases, the proofs consist of a sequence
of assertions, where the assertions must either be postulates, or be implied by preceding
assertions using the so called inference rules. For example, if you know that “A implies B”
and that “A is true”, then you can conclude that “B is true”. By properly employing such
rules of inference if you prove that “The bisectors of the angles of a triangle meet in a point”,
then most people accept this as true. Proofs of correctness of programs are expected to have
similar credibility.

The proof process is substantially different for imperative and functional programming
styles. It will be seen in many examples that the proof of correctness is much easier to write
for functional programs than imperative style programs. The rest of the chapter describes
the proof process with examples.

5.1 Basic ideas in program proving

The first step in proving the correctness of a program is to formulate the problem precisely.
We need to precisely characterize the input to the program, and the output required from
the program. For example, for a program computing the greatest common divisor, the input
characterization would say that the inputs must be positive integers (otherwise the gcd is
undefined), and the output is the largest integer that divides them both without leaving a
remainder. Another example is a sorting program. For this the input could be an array
A of numbers, and the output would be another array B of the same length containing a
permutation of the input such that B[i]≤B[j] if i < j.
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Given that the input to the program satisfies the input characterization (also called
preconditions) the proof must establish (explicitly or implicitly) the following progressively
harder claims:

1. The program terminates, e.g. does not go into any infinite loop.

2. The program terminates but not because of an erroneous operation, e.g. division by
zero, or accessing an array using a subscript that is larger than the length of an array.

3. The value returned by the program is the correct value.

5.1.1 Form of the proof

In general, a proof consists of a sequence of statements, with a justification for each statement
stating how that statement is deduced. Proofs of programs are similar. The statements in
such a proof must however characterize the behaviour of the program. This characterization
will be of the form:

When control arrives at point P in the program, the variable V has value v.

If there are no loops or function calls from the beginning of the program to point P , then
we can reason about the effect of every statement from the beginning to point P and derive
a characterization of the value of V in terms of the values of the program variables at the
beginning. We will call this hand execution, or symbolic execution. Note however, that such
a justification is reliable if we hand execute only over a small number of statements. For
large number of statements, we are likely to make mistakes as we trace the execution.

Thus it would seem at first glance that the idea of hand execution would be useless when
there are loops or function calls between the beginning of the program and the point P ,
or when P is itself inside a loop. However, as will be seen below, with some additional
machinery (induction) we will be able to use hand execution in our proofs.

5.2 Proving correctness of functional programs

We begin with an example. Consider the program for evaluating the factorial of number.

(define (fac n)

(if (= n 0)

1

(* n (fac (- n 1)))

)

)

Program Specification: The function correctly returns n! for all non-negative integers n.

Proof of correctness: The proof is by induction. The induction hypothesis is:

IH(n) : The call (fac n) returns n! provided n is a non-negative integer.
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The base case is n=0, i.e. we are required to prove : IH(0) is true. We do this by hand-
executing the program. When n has the value 0 then the conditional test (= n 0) succeeds,
and the procedure returns 1, which in fact is the correct value 0!

Next we establish the induction. We will assume IH(n-1), i.e. that the program correctly
computes n-1! if n-1 is supplied as the argument. We are then required to prove IH(n), with
n > 0. Again we employ hand-execution. Now in the execution the first check (= n 0) fails,
since we know n > 0. Thus the program now computes (fac (- n 1)) and returns the result
after multiplying it by n. Now, (- n 1) is just n-1, and this must be at least 0 since n > 0.
But IH(n-1) guarantees that factorial of n-1 is correctly computed if n-1 is a nonnegative
integer. Thus the call (fac (- n 1)) returns n-1! – but then the value returned is n * n-1!
which is n! by definition. Thus the correct value is returned, establishing the induction.

It should be noted that in all cases, we hand executed the program only for a small
number of steps.

5.3 Summary of the argument

Proving the correctness of functional programs consists of the following:

Write down the specifications. These consists of preconditions which the inputs to the
program must satisfy, and a claim regarding the output that will be produced. In the
factorial example, the precondition was that the input n being supplied was a nonnegative
integer. The claim then was that the value of n! would be correctly returned. Notice that
the specifications may leave unsaid what happens if the program is executed without the
input specifying the preconditions.

Use induction to prove the specifications. For this, it is necessary to precisely write
down an induction hypothesis (this is usually nothing else but the specifications themselves)
and identifying a variable or variables for the induction. This variable over which the in-
duction is supposed to be is usually the something representative of the size of the problem
being solved. In the case of factorial, the variable was the input n.

1. Identify and prove the base case. The base case is often the smallest problem size
possible. In case of factorial, we used the base case n=0. The base case is established
by “hand executing” the program with the input fixed to the base case.

2. Establish the induction. For this we assume that the induction hypothesis holds for
a certain problem size n and prove it holds for the next larger problem size n+1. We
may in fact assume that the induction hypothesis actually holds for all problem sizes
no larger than n, and then prove it holds for problem size n+1. The induction is
established by hand execution as well.

5.3.1 Euclid’s Algorithm

Theorem 1 If u, v > 0 and u, v are integers then if v divides u then gcd(u, v) = v, else
gcd(u, v) = gcd(v, u mod v)
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Our program is based on the above theorem and is as follows:

(define (gcd u v)

(if (= (remainder u v) 0)

v

(gcd v (remainder u v))

)

)

We will use gcd(u, v) to denote the gcd of u and v, and (gcd u v) the value returned by
program.

Specification: Precondition: inputs u,v must be positive integers. Claim: (gcd u v) =
gcd(u,v).

Inductive Hypothesis: The input size can be thought of as the magnitudes of the input
numbers. The program can be proved correct by considering an induction over the values
taken by either u or v; it is more convenient to use the values taken by v, and so we use that
here. The inductive hypothesis is:

IH(n) : (gcd u v) = gcd(u, v) for u having any positive integer as value and v having the
value n.

Base Case: n = 1. Thus v takes the value 1. By hand execution of the program, (gcd u 1)
= 1 = gcd(u,1) for all u.

Induction: We will assume IH(1),IH(2),...,IH(n-1) and prove IH(n). So consider an execu-
tion in which v takes the value n. Let x = (remainder u n). Clearly x < n. There are two
cases to consider.

CASE 1: x = 0. In this case the function returns n, which is in fact gcd(u, n) for any u.
CASE 2: x > 0. Then the function calls (gcd n x). Since x > 0, the precondition of

IH(x) is satisfied. Since x < n, IH(x) is a part of what we have assumed. Thus we know
that this call will return gcd(n,x) = gcd(n, (remainder u n)). But by the theorem above we
know gcd(n, (remainder u n)) = gcd(u,n). But this is in fact what we want to return. Hence
proved.

5.4 Proof Strategy for Imperative programs

We again begin with the example of computing factorials. Here is a simple program

1. integer function fac(n)

2. fac = 1

3. do i=1,n

4. fac = fac*i

5. end do

6. return fac
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The specification for this program is the same as that for the functional version. The
structure of the proof is very different, however. For imperative programs, the proof proceeds
by characterizing the values taken by the program variables as the program executes. If the
program does not have loops, then this is very easy. In case of programs with loops, we need
to characterize what happens to the variables in each iteration. For this we need the notion
of a loop invariant. This is simply an assertion that holds for every iteration of the loop.
The assertion is proved by induction over the number of iterations of the loop. An example
is given below. Let xk denote the value of any variable x after statement 4 has been executed
in the kth iteration.

Loop invariant: fack = k!, ik = k
We could have written that fac=i! instead of the bringing in k; however we do this in

order to keep a distinction between variables and the values they take.

Proof of invariant: We use induction over k. The base case is k = 1, i.e. the first time
statement 4 is encountered. At the beginning of the first iteration the variable fac has the
value 1, since that is what it was initialized to in statement 2. In the first iteration the
variable i has the value 1. Thus i1 = 1, which is part of what is claimed in the invariant.
Further, statement 4 multiplies the current value of i (which is 1) and the current value of
fac (which is 1) and sets fac to that. Thus fac1 = 1 × 1 = 1 = 1! establishing the base case.

The induction step is as follows. We will assume that fack−1 = k − 1!, ik−1 = k − 1 and
then prove that fack = k!, ik = k. Clearly, in the kth iteration ik = k. At the beginning of
the kth iteration, fac must have the same value as it did at the end of the k − 1th iteration,
i.e. fack−1 = k − 1!. But in statement 4, we set fac to be its current value (i.e. k-1!) times
the value of i (i.e. k). Thus after statement 4 of kth iteration, fac must have the value
k − 1! × k = k!. Thus fack = k!, completing the proof.

Proof of correctness: Given the invariant proved above, the function is easily proved to
be correct. First, we should observe that the function must terminate. This is because the
loop will execute only n times if n is a positive integer, or once if n is zero.1 Note that
we dont need to consider the case of n having a negative value because of the precondition
in the specification. Note that since we do not have any operations such as division that
can cause erroneous termination, so we can be assured that there are no runtime errors. In
summary we know that after a finite number of iterations the program will terminate. The
value returned by the program is the value of the variable fac. There are 2 cases depending
upon the value of n:

n = 0 Loop is executed once, the value of fac at the end is 1, which is returned. This is
correct since 0!=1.

n > 0 In this case the loop is executed n times, and the value of the fac at the end of the n
th iteration, i.e. facn is returned. But we know from the invariant that facn = n!.
Thus the current value is returned in this case too.

1Here we are not making the distinction between the variable n and its value, because n doesnt change
during the program.
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5.4.1 Structure of proofs of Imperative Programs:

Let us assume for simplicity that our programs have only a single loop. In this case, the
general strategy is to write down a loop invariant that characterizes how the values evolve as
the loop executes. The loop invariant is proved by induction over the number of iterations
of the loop. To establish the inductive step, we assume that the invariant holds during some
k − 1th iteration, then hand execute the program and keep track of what happens to the
variables and show that the values taken by the variables will be such that the invariant is
satisfied even in the kth iteration. The base case is established by hand execution from the
beginning of the program to the first iteration of the loop.2

Proving the invariant is the key step. After this, we need to establish first that the loop
executes only a finite number of steps, and there are no errors during execution. In the above
program this was easy since the loop executed n times by the definition of the DO statement
in Fortran. In other cases, more ingenuinity might be necessary. Given that the program
does not go into an “infinite loop” and there are no errors we need to characterize the value
that will be returned. This can be done using the invariant for the last loop iteration.

5.4.2 Euclid’s algorithm for computing GCD

An imperative style program for computing the gcd is as follows.

1. integer function fgcd(u, v)

2. integer u,v,temp

3. while( mod(u,v) != 0)

4. do

5. temp = u

6. u = v

7. v = mod(temp,v)

8. end do

9. return v

We will use the expression gcd(u,v) to denote the greatest common divisor of u and v;
in contrast fgcd(u,v) is the value (if any) returned by the function above.

The specification is the same as that for the functional program. We will also need the
theorem stated there.

Invariant: Let uk, vk denote the values of the variables u, v when control reaches statement
3 for the k th time. Then the claims are:

1. uk, vk > 0

2. gcd(uk, vk) = gcd(u1, v1) i.e. the gcd of the values in u and v is the same as that when
the program started execution.

2In every case, we hand execute only for 1 iteration, i.e. a small number of steps.
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Proof of the invariant: The proof is by induction over k. The base case is k = 1. When
statement 3 is visited for k = 1st time, the values of u,v are u1, v1. But because of the
precondition we know that u1, v1 > 0. Since k = 1 clearly gcd(uk, vk) = gcd(u1, v1). Thus
the base case is established.

Assume that the invariant holds at the time of the k − 1th visit to statement 3, i.e.
uk−1, vk−1 > 0, gcd(uk−1, vk−1) = gcd(u1, v1). Now do a hand execution of the k − 1th
iteration. Since we know that statement 3 is reached for the kth time, the test in statement
3 must have succeeded, i.e. it must be that uk−1 mod vk−1 > 0. Continuing the execution
we see that when statement 5 is executed, temp gets the value uk−1. When statement 6 is
executed variable u gets the value vk−1. Finally in statement 7 the variable v gets the value
uk−1 mod vk−1. For this operation to be legal we need that vk−1 > 0, but we have that from
the inductive hypothesis. After this, the control returns to statement 3 for the kth time.
The values of u, v at this time are vk−1, uk−1 mod vk−1, and we have established that both of
these are positive earlier. Thus uk = vk−1 > 0 and vk = uk−1 mod vk−1 > 0. Finally, using
the theorem stated earlier gcd(uk−1, vk−1) = gcd(vk−1, uk−1 mod vk−1) = gcd(uk, vk). But
from the inductive hypothesis we know that gcd(uk−1, vk−1) = gcd(u1, v1). Thus we have
gcd(uk, vk) = gcd(u1, v1). This completes the proof of the invariant.

Proof Of Proper Termination: Note that because of the invariant, when control reaches
statement 3 the variable v is guaranteed to be positive. Thus the mod operation is legal, and
so there are no abnormal terminations. Next note that the value of the variable v strictly
decreases in each iteration, and the invariant above ensures that it is always positive. Thus
the loop must only execute a finite number of steps.

Proof that correct value is returned: Suppose the control reaches the return statement
(and we know this happens because of the proof of correctness) after visiting statement 3 k
times. At this visit the test in statement 3 must have failed (otherwise the loop must have
executed at least one more time). Thus we know that uk mod vk = 0. Thus vk = gcd(uk, vk).
But by the invariant gcd(uk, vk) = gcd(u1, v1). Thus the value vk returned is indeed the
correct value.

5.5 Proving programs involving several functions

Consider the following alternative code for computing the factorial of a number:

(define (fact n)

(fact2 n 1))

(define (fact2 n f)

(if (>= n 1)

f

(fact2 (- n 1) (* f n))))

In this case the function fact is very simple; clearly, its correctness depends upon what
fact2 does. We must prove that the factorial of n is returned for the call (fact2 n 1). If
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we can prove this (see Exercises), then that is adequate. Then we can conclude that (fact

n) must return n! since (fact n) returns (fact2 n 1) which we proved is n!.
In general, once we write down and prove the specifications for a given procedure f, we

can use these specifications in proofs of other procedures which call f.

5.6 Conclusions

It should be obvious that the recursive versions are far easier to prove correct. One of the
reasons for this simplicity is that each variable has only one value in a functional program.
Thus we dont have to worry about “value of variable at time t”, or “how the variable
decreases”. Second, the functional programs are also more compact and pretty much follow
the statement of the mathematical ideas on which they are based; notice that the functional
program for gcd is very similar to the statement of Theorem 1. There is a reason for this:
induction is a very fundamental mathematical proof techniue, and because recursion is very
related to induction, it turns out that recursive programs are usually easier to write and
prove correct.

On the debit side, functional (recursive) programs often require more memory and run
slightly slower than their imperative counterparts.

In these days when program readability and correctness are very important, it is recom-
mended that functional programming (recursion, no reassignment to values of variables) be
used wherever possible.

5.7 Exercises

1. Write a function (digits n) which returns the number of digits in a number n. Write
a proof of correctness. Clearly write down the mathematical property on which your
program is based.

2. Write the invariant necessary to prove the correctness of the following gcd program.

integer function gcd1(u, v)

integer u,v,w;

w=mod(u,v)

while(w > 0)

u=v

v=w

w=mod(u,v)

end do

return v

Prove the program correct.

3. Consider the code given below computing nCk:
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integer function choose(n,k)

integer n,k,c,i

c=1

do i=1,k

c=c*(n-i+1)/i

end do

return c

Write an invariant for the do loop, i.e. state what you know about the different variables
at the end of the jth iteration of the loop.

4. Write down the specifications for the function fact2 of Section 5.5.

Verify that the specification implies that (fact2 n 1) correctly computes n!. Prove
that the call (fact2 n 1) correctly computes n!. (Hint: Although the first call will
always have the second argument to be 1, this may not be the case in the subsequent
recursive calls. Hence the proof will actually involve proving the entire specification,
i.e. for arbitrary value of the second argument as well.)

5. Write a scheme function (isqrt n) that returns ⌈√
n⌉. Use a simple algorithms such

as trying out the numbers 1, 2, . . . as candidate square roots and checking until the
right conditions are satisfied. You may use additional functions if necessary. State the
mathematical property on which your program is based. Write a proof of correctness
(include a proof for the additional functions you used, if any).
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Chapter 6

More on Scheme Statements

6.1 The “begin” Statement

If a number of statements have to be grouped together then they are put in a block. This
feature is usually used to group statements causing side-effects. A block is constructed using
the “begin” statement.

Syntax:

(begin

(stmt 1)

(stmt 2)

.

.

.

(stmt n)

)

Example:

(if (< n 1)

(begin

(line 0 0 0.5 0.5)

(line 0 0 0 0.5)

(line 0 0 0.5 0)

)

)

The begin statement returns the value of the last statement in the block.

6.2 The “cond” statement

The if statement is basically a two way branch. To implement multi-way branching one can
use nested if statements but Scheme provides a more elegant way of doing the same - the
“cond” statement.

Syntax:
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(cond (t1 stmt-11 stmt-12 stmt-13 ....)

(t2 stmt-21 stmt-22 stmt-23 ....)

.

.

.

(tn stmt-n1 stmt-n2 stmt-n3 ....)

(else stmt-e1 stmt-e2 stmt-e3 ....)

)

The evaluation proceeds stepwise:- First t1 is evaluated, and if true stmt11....stmt1m are
evaluated, and if false , only then t2 is evaluated and so on. The else statement is a catch-all
which is true even if t1....tn are false. Note that the else statement must be provided when
the cond statement is used to return a value but it may be omitted when side-effects are to
be caused.

6.3 The “let” stetement

Consider the sine function:-

(define (sine x)

(if (< x 0.0001)

x

(- (* 3 (sine (/ x 3))) (* 4 (sine (/ x 3)) (sine (/ x 3)) (sine (/ x 3))))

)

)

Notice that not only is the expression clumsy but is also wasteful, since the same statement
(sine (/ x 3)) is evaluated 4 times. To deal with such situations Scheme provides the “let”
statement.

Syntax:

(let ((v1 value exp.)

(v2 value exp.)

.

.

.

(vn value exp.)

)

(stmt 1)

(stmt 2)

.

.

.

(stmt m)

)
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The value expressions are evaluated only once and the names v1....vn are associated with
the value expressions. Now these names can be used in stmt1....stmtm. For example, the
sine program can be modified to

(define (sine x)

(if (< x 0.0001)

x

(let ((s (sine (/ x 3))))

(- (* 3 s) (* 4 s s s))

)

)

)

As is usual in Scheme, the value of the last statement evaluated in the block is returned as
the value returned by let. A point to be noted is that v1....vn are available only in the let
block. They are undefined outside.
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Chapter 7

Higher Order Functions

One of the most powerful ideas in functional programming is that programmers should be
allowed to manipulate functions just as they manipulate data. For example, functional
programming languages allow functions to be passed to other functions as arguments, or be
returned as arguments. A function which manipulates other functions in this manner is said
to be a higher order function.

Higher order functions turn out to be extremely powerful in many ways:

• Help in writing programs in a modular manner. An important question in programming
is how to develop pieces of a program as independent parts or modules which can then
be combined conveniently to make full programs.

• Make programs more intuitive and concise.

• Can be used to build data structures. This may sound strange, but is actually true!
Read on.

7.1 Functions as parameters to other functions

The ability to pass functions as parameters to other functions can be used to make programs
modular. We will describe two examples of this.

7.1.1 Generalized Root Finder

Consider first, a program that finds the square root of 2. This parameters xneg and xpos

denote the upper and lower ends of an interval in which the square root of two must be
guaranteed to lie. Then the program finds the midpoint xmid of the interval [xneg, xpos]

and simply determines in which of the two subintervals [xneg, xmid] and [xmid, xpos]

the square root must lie. Then the program recurses with that interval. The recursion stops
when the size of the interval becomes small enough (smaller than 0.01 in particular).

(define (sqrt2 xneg xpos)

(if (< (abs (- xneg xpos)) 0.01)

xneg
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(let ((xmid (/ (+ xneg xpos) 2)))

(if (< (* xmid xmid) 2)

(sqrt2 xmid xpos)

(sqrt2 xneg xmid)))))

This program will yield the square root of 2 for the call (sqrt2 1.0 2.0), for example.
You may observe, that the basic logic of bisecting the interval and recursing on the

appropriate subinterval is useful for many other calculations. In particular, for writing a
general program for finding the roots of any function f. By passing f as a parameter, we
may write a general root finder as follows.

(define (root f xneg xpos)

(if (< (abs (- xneg xpos)) 0.01)

xneg

(let ((xmid (/ (+ xneg xpos) 2)))

(if (> 0 (f xmid))

(root f xmid xpos)

(root f xneg xmid)))))

Once we have such a function root defined, we may use it to find the square root of 2 by
writing:

(define (f x) (- (* x x) 2.0))

(root f 1.0 2.0)

Of course, we can use it to get an approximate root of any function provided we know an
interval in which a root lies. For example, the function g(x) = x − cos(x) has g(0) = −1 and
g(1) > 0. Thus we can find its root by writing:

(define (g x) (- x (cos x)))

(root g 0.0 1.0)

Exercise

Our condition for the error being small enough was |f(x)| < 0.01. Some users might want
the constant to be something other than 0.01, or might want to ensure for example that
|f(x)2| < 0.01. Extend root so that it takes an additional function close-enough which
can be used to determine whether the approximation is good-enough, i.e. assume that
(close-enough x) is true only when x is close enough to the root.

7.1.2 Animation

Even in our primitive graphics system, it is possible to make objects move. Well, they dont
actually move, but we can create this illusion by first drawing them in one position, erasing
them, and then drawing them in the next position. Erasing does not need anything special
– we simply draw the object in the same colour as the background.

There are 3 basic tasks in doing our simple animation:
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1. Definition of the shape of the object.

2. The basic operation of drawing and erasing the object.

3. Movement of the object, i.e. the description of the trajectory.

It is desirable that the code for each of the tasks above is written as independently as possible,
and be combined only when needed. That way, it would be easy to do the animation for
many shapes, or along many trajectories. We can do so by using a function for each task,
and by using higher order functions to combine the functions. Here is how it might be done.
The main procedure is move-shape shown below. It does the work of drawing and erasing
the shape; the precise shape to be drawn is passed to it using the function parameter shape.
The trajectory along which to move the shape is specified parametrically using the function
parameters x and y.

(define (move-shape t dt tf shape x y)

(if (< t tf)

(begin (trans (x t) (y t) (shape)

(colour "white" (shape)))

(move-shape (+ t dt) dt tf shape x y))

(trans (x t) (y t) (shape))))

To use procedure move-shape we must define the functions for the shape and the trajec-
tory, and pass them as parameters. So we could write:

(define (square)

(line -0.02 -0.02 -0.02 0.02)

(line -0.02 -0.02 0.02 -0.02)

(line 0.02 0.02 -0.02 0.02)

(line 0.02 0.02 0.02 -0.02))

(define (xcirc t) (* 0.5 (cos t)))

(define (ycirc t) (* 0.5 (sin t)))

(move-shape -3.14 0.01 1.57 square xcirc ycirc)

Exercises

Extend the move-shape code to handle the following cases.

1. Suppose the shape must not only move, but must also rotate so that it is always at
the same angle with its trajectory. This will look nice if the shape is an aeroplane, for
example.

2. Suppose the shape internally consists of several shapes, e.g. a moon circling the earth.

3. Suppose there are several independent shapes to be moved.
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4. Suppose it is better to erase the shape at (x(t), y(t)) only after the drawing the next
one, i.e. at (x(t + dt), y(t + dt)).

Other extensions are also possible, e.g. the shape should move in response to a field that
could be defined by the user. Or the shape should bounce of walls in the picture.

7.2 Function Expressions

So far we have seen only identifiers in the first position of any expression, Scheme actually
allows expressions to be present here too — it is necessary, however, that these expressions
evaluate to functions, and then these functions are applied to the remaining arguments. For
example, we can write:

((if (= x y)

+

*)

10 20)

which will either add the numbers 10 and 20 or multiply them depending upon whether or
not x was equal to y.

7.2.1 Unnamed Functions

It is convenient to be able to construct functions without having to give them names. This
is done using the general form

(lambda arguement-list body)

Thus the expression

(lambda (x) (* x x ))

returns a function that takes a single argument and returns its square. We can use such
expressions1 in any place wherever a function can be used, e.g.

(define g (lambda (x) (* x x)))

((lambda (x) (* x x)) 5) ;; returns 25.

(root (lambda (x) (- x (cos x))) 0.0 1.0) ;; root defined earlier

(move-shape -3.14 0.01 1.57 ;; move-shape defined earlier

(lambda () ;; square drawing function

(line -0.02 -0.02 -0.02 0.02)

(line -0.02 -0.02 0.02 -0.02)

(line 0.02 0.02 -0.02 0.02)

(line 0.02 0.02 0.02 -0.02))

(lambda (t) (* 0.5 (cos t))) ;; xcirc equivalent

(lambda (t) (* 0.5 (sin t))) ;; ycirc equivalent

)

1The body argument can be several commands, the value of the function is the value of the last command.
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The last two commands show how the functions root and move-shape defined earlier
can be called without separately defining the function parameters needed.

It would have been better if the Scheme language had used a more descriptive term like
“make-function”, instead of the term “lambda”. The term “lambda” comes from a system
called “lambda calculus” developed by a Alonzo Church, for analysis of functional programs.

7.3 Functions returning functions

The ability to return functions as a result of a function call is a programming convenience;
in addition it provides some unexpected power: the ability to simulate data structures.

We give a simple example first. Here is a function genquad which takes arguments a,b,c
and returns a function which may be used to evaluate the quadratic ax2 + bx + c. Genquad
may be invoked several times with different parameters to generate different quadratics.

(define (genquad a b c)

(define (f x)

(+ (* a x x) (* b x) c)) ;; A

f)

(define g (genquad 1 2 3)) ;; B

(define h (genquad 4 5 6)) ;; C

(g 7) ;; D

(h 8) ;; E

Lines B and C store functions in variables g and h. Note however, that the function f returned
by genquad makes a reference to variables a,b,c which are not the formal parameters of f.
What values do these variables take, when the functions g and h are evaluated on lines D
and E?

The rule used in Scheme is that the variables inside the body of a returned function will
be the same variables as would have been used if the function had been invoked in the same
environment in which it was created. Thus, g got defined using the call (genquad 1 2 3) –
the function f returned as a result was defined in an environment in which the variables a,b,c
had the values 1,2,3 respectively. Thus when (g 7) is executed, we will have x=7, and a,b,c
will be 1,2,3 respectively. Similarly, (h 8) will execute f with values of a,b,c,x being 4,5,6,8
respectively.

7.3.1 Simulation of Data Structures

We can simulate lists using high order functions.

(define (make-pair a b)

(define (f command)

(cond ((eq? command ’car) a)

((eq? command ’cdr) b)

))

f)
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Now consider the two statements:

(define x (make-pair 6

(make-pair 7 (make-pair 8 (make-pair 9 ’empty-list)))))

(define y (cons 6 (cons 7 (cons 8 (cons 9 ’())))))

Both the statements could be thought of as creating a list of the numbers 6,7,8,9. The means
of accessing the lists are not the same, but we can surely access the elements from x just as
well as we can from them. So to access the third element we would write

(car (cdr (cdr y)))

(((x ’cdr) ’cdr) ’car)

As you can see, both will yield the value 8 of the third element of the list. The above code
represents the empty list by the symbol ’empty-list, but this is not necessary; ’() could have
been used as well. In any case, the conclusion is:

Given Higher Order Functions, the language need not separately provide data structure;
data structures can be constructed out of higher order functions!!

7.3.2 Simulating let command using functions

Suppose we have a let statement:

(let ((a 1)

(b (* c d)))

body

)

It can be verified that its effect is the same as the following statement which instead uses a
lambda.

((lambda (a b)

body)

1 (* c d))

Since the lambda form is called with arguments 1 and (* c d), the formal parameters a and
b acquire these values, and the body gets executed. The value of the form is the value of
the last line of the body. But this is in fact exactly what would happen if we used a let as
above!

7.3.3 Simulating do commands using functions

Implementation of DO LOOPS using lambda is done as a lab exercise.
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7.4 Unnamed recursive functions

The question considered here is: can we use lambda expressions to define unnamed recursive
functions? Note that named recursive functions are easily defined using lambda. For example,
it is perfectly acceptable to write

(define fact (lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

This definition is equivalent to the standard one. However, it does define the name fact.
Can this be avoided? At first glance, it would seem impossible, because in the body of the
lambda when we make the recursive call, we would need to name the function. So we would
need to define the name explicitly.

It turns out however, that lambda expressions can be used to define unnamed recursive
functions as well; how to do it is slightly complex, but very elegant. It also exposes some
hidden power of the lambda form. Hence we will discuss it. It is good to understand
this section if you wish to make certain that you really understand the lambda command.
However be warned that some mental gymnastics are involved.

Here is how the fact function must be expressed:

(lambda (n f)

(if (= n 0)

1

(* n (f (- n 1) f))))

The first important idea is already in the expression above: the function contains an extra
argument f in addition to n. Thus this lambda expression is a higher order function. Now
comes the second idea. When we wish to apply this function to a number, e.g. 5 (to compute
5!) we need to supply the second argument as well. So in this case we supply itself! This
completes the construction. More precisely, 5! could be computed by writing:

((lambda (n f)

(if (= n 0)

1

(* n (f (- n 1) f))))

5

(lambda (n f)

(if (= n 0)

1

(* n (f (- n 1) f)))))

This is only slightly different from how we call an ordinary unnamed function. For example
if we wish to evaluate the polynomial x2 + 3x + 10 and x = 5 we would write

((lambda (x)

(+ (* x x) (* 3 x) 10))

5

)
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This story has two morals. First, if you allow functions to take other functions as param-
eters, then you dont need to explicitly allow functions to be recursive. The second moral is
that with the above construction it is possible to entirely eliminate define statements from
any program!

7.4.1 Exercise

1. What is the result of executing the following?

((lambda (n f)

(f n f))

5

(lambda (n f)

(if (= n 0)

1

(* n (f (- n 1) f)))))

2. Show how an unnamed function could be constructed for constructing gcd. Here is the
standard gcd for reference.

(define (gcd x y)

(if (= (remainder x y) 0)

y

(gcd y (remainder x y))))

Show how you would use your unnamed function to compute the gcd of 119 and 34.
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Chapter 8

Lists

A lists is an ordered collection of objects. You can construct a list by using the function list
that takes the objects you want put into the list. For example, (list 1 2 3 4 5) will return
the a list of the numbers 1,2,3,4 and 5 in that order. This list can be assigned to a variable,
as in:

(define a (list 1 2 3 4 5))

list is a function, and it can be given more complicated arguments. For example, the
following code will make a list of the first 3 multiples of pi:

(define pi 3.14)

(define b (list pi (* 2 pi) (* 3 pi)))

This would cause b to become the list containing 3.14, 6.28 and 9.42 in that order.
The various elements of the list can be accessed using the functions car and cdr (pro-

nounced “could er”). Car of a list gives the first element of the list, while cdr gives the whole
list except the first element.

(car a) => 1

(cdr a) => (list 2 3 4 5)

Scheme allows us to write cadr which means the car of the cdr, and so on. Thus

(cadr a )

=>2

(caddr a)

=>3

The function cons (short for “construct”) takes an element and inserts it at the front
of the list, and returns the list thus formed. The function append appends the given lists
together. Thus

(cons 0 a) => (list 0 1 2 3 4 5) ;; a is not changed however.

(append a a) => (list 1 2 3 4 5 1 2 3 4 5)

(define c (append b a))
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The last command would set c to be the list with the first 3 elements being the multiples of
pi, and the remaining 5 being the numbers 1 through 5. In any case, the values of a and b
will not change.

(list? expr) returns true if expr evaluates to a list, and false otherwise.
(null? expr) returns true if expr evaluates to the empty list (written as ’()), and true

otherwise.

Quote notation

A shortform has been provided for constructing lists out of constants. Thus the definition
of a could be written as:

(define a ’(1 2 3 4 5))

This has the same effect as the earlier definition. Scheme recognizes the character (’) to
mean that the expression following it should not be evaluated, but be treated as a list. It is
acceptable to write

(define d ’(1 (2 3) 4))

This is equivalent to saying (define d (list 1 (list 2 3) 4)). When using the quoted form note
that the single quote at the beginning is sufficient, while the corresponding expression using
the list function needs the function to be specified more often as above.

There is another important difference between using quotes and the function list. For
example, if we write

(define pi 3.14)

(define e ’(pi (* 2 pi) (* 3 pi)))

This would not set e to be a list containing 3.14, 6.28 and 9.42; instead e would become a
list containing symbols; this will be explained in the chapter on symbols.

Note of course that a command such as

(define f (1 2 3 4 5))

is erroneous – scheme expects the first term after a “(” to be a function, and it will give an
error because 1 is not a function.

8.1 Program Example

(define (length l)

(if (null? l)

0

(+ 1 (length (cdr l)))))

The above program gives the length of the list l.
The program below takes two lists of numbers as the input and returns a list whose ith

element is the sum of the ith elements of the input lists. It is necessary that the input lists
be of the same length.
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(define (sum a b)

(if (null? a )

’() ;; the empty list.

(cons (+ (car a) (car b))

(sum (cdr a) (cdr b)))))

It will be seen that both the programs are based on the idea that a list is recursively
structured. Thus a list may be thought of as the first element followed by a list of the
remaining elements. Thus procedures operating on lists are often recursive; they explicitly
operate on the first element and recurse on the remaining elements (the cdr of the list). The
base case for the recursion is the empty list.

8.2 Proving correctness of programs involving lists

As an example, we will give a proof of correctness of the function sum.

Specification: Let a, b be two lists of numbers, both having the same length n. Let the
elements be denoted by a1, . . . , an and b1, . . . , bn. Then the call (sum a b) returns a list
with elements a1 + b1, . . . , an + bn. If n = 0 then the result should be the empty list.

Note that the specification includes the preconditions that the lists have the same length
and contain only numbers. No claims are made if sum is called with unequally long lists.

Inductive Hypothesis IH(n): (sum a b) works correctly for lists of length n, assuming
the preconditions are satisfied.

Proof of base case IH(0): If the lists are empty, then by hand execution it is clear that
the empty list is returned. But this is what is expected, hence proved.

Proof of IH(n+1) assuming IH(n): Consider a and b of length n + 1. Then hand
execution shows that the value returned is (cons (+ (car a) (car b)) (sum (cdr a)

(cdr b))). Now if a is a1, . . . , an+1 and similarly b, then (+ (car a) (car b)) is just
a1 + b1. Also (cdr a) and (cdr b) must have length n since a,b had length n + 1, and
must respectively contain a2, . . . , an+1 and b2, . . . , bn+1. Thus the call (sum (cdr a) (cdr

b)) satisfies IH(n) and the preconditions in the specification, and hence a list containing
a2 + b2, . . . , an+1 + bn+1 is returned. Thus what is returned is the cons of a1 + b1 with this
list, i.e. the list a1 +b1, . . . , an+1 +bn+1. But this is precisely what is expected, hence proved.

8.3 More List Operations

With the basic operations car, cdr and cons defined on lists, we can now implement more
complex list manipulations. Some of these are predefined in Scheme.

1. Write a function to access the ith element of a list.

Solution :
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(define (list-ref list i)

(if (null? list)

()

(if (= i 0)

(car list)

(list-ref (cdr list) (- i 1)))))

2. Write a function to return only the even-indexed elements of a list.

Solution :-

(define (even-list list)

(if (or (null? list) (null? (cdr list)))

list

(cons (car list) (even-list (cddr list)))))

3. Write a function to return the sum of the elements of a list

Solution :-

(define (list-sum list)

(if (null? list)

0

(+ (car list) (list-sum (cdr list)))))

4. Write a function to filter out an element i from a list, if it exists. Here, the objective
is to return a list identical to the original in all respects except that all occurences of
the element i will be missing.

Solution :-

(define (filter list i)

(if (= (car list) i)

(filter (cdr list) i)

(cons (car list) (filter (cdr list) i))))

5. Write a function to merge two lists, given that the two lists are arranged in ascending
order.

Solution :-

(define (merge list1 list2)

(cond ((null? list1) list2)

((null? list2) list1)

((> (car list1) (car list2))

(cons (car list1) (merge (cdr list1) list2)))

(else

(cons (car list2) (merge list1 (cdr list2))))))
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8.4 Applications of Lists:

1. Lists can represent sets of objects. Thus, we can use lists to represent a set of numbers,
or the students of a class.

2. Lists can be used to represent vectors, with the ith element of the list representing the
ith element of the vector. By making lists of lists, you can represent multidimensional
vectors also.

3. Lists can be used to represent mathematical and symbolic expressions. eg The expres-
sion ’(+ b c (* d e)) can be represented as a list containing the elements ’+ ’b ’c and
the list ’(* d e). See the chapter on symbols.

8.5 Procedures with variable number of arguments

Scheme allows procedures to take a variable number of arguments. Here is an example of
such a procedure and how it can be called:

(define (print a . args)

(pp a)

(pp args))

(print 1 2 3)

(print 4 5 6 7)

In general, the procedure definition must have a fixed number of parameters, except that
the last parameter can be declared as a list parameter, by putting a . before it. Suppose we
define a function with n formal parameters, of which the last is a list parameter. Then the
call to such a procedure must contain at least n arguments. The first n − 1 arguments will
be bound to the first n − 1 parameters in the usual manner. All the remaining arguments
will be put into a list and the list will be bound to the last parameter. So in the above the
parameters a and args will have the values 1 and (2 3) when called as (print 1 2 3) and
the values 4 and (5 6 7) when called as (print 4 5 6 7).

Exercises

The first few problems deal with matrices, which are represented as a list of lists, the ith list
storing the ith row of the matrix. For example a matrix

(

a b c
d e f

)

will be stored as a list ((a b c)(d e f)).

1. Write a function (firstcol mat) which returns the first column of mat, stored in the
matrix representation. Thus if mat is the matrix given above, ((a) (d)) should be
returned.
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2. Write a function (lastcols mat) which returns a matrix which has all columns of mat
except the first column. For the matrix above the result should be ((b c) (e f)).

3. Write a function (matappend mat1 mat2) which takes two matrices having the same
number of rows and returns a matrix in which each row is the concatenation of the
corresponding rows of mat1 and mat2. Thus if mat1 and mat2 are both the matrix
given above, we should get ((a b c a b c) (d e f d e f)).

4. Write a function (mmult mat1 mat2) which returns a matrix that is the multiplication
of mat1 and mat2. Use the functions defined above if appropriate.

5. Write a function to return the transpose of a given matrix. For example (transpose
’((1 2 3) (4 5 6))) should return ’((1 4) (2 5) (3 6)). Use the functions given above as
appropriate.

6. The cross product of sets {s1, . . . , sn} and {t1, . . . , tm} is defined as the set of all
ordered pairs (si, tj). Write a program that takes as input two lists representing sets,
and returns a list representing their cross-product. For example (cross ’(1 2 3) ’(4 5))
should return the list ((1 4) (1 5) (2 4) (2 5) (3 4) (3 5)). Since the outer list represents
a set, note that the elements in it may be present in any order; the inner lists represent
ordered pairs, these must be present in the order shown.

7. Write a function DEL that takes a number and a sorted list and returns the result of
deleting the number from the list. If the number is absent then the original list should
be returned. For example, the call (DEL 5 ’(1 2 5 7 8 9)) should return ’(1 2 7 8 9).
Your function should exploit the fact that the list is sorted.

Argue as carefully as you can that your function is correct. Your argument must
include a precisely written induction hypothesis, including a statement of what the
induction is over.

8. A scheme object X is said to be a search tree if either (1) X is a number, or (2) X
is a list ’(A B C) where B is a number and A and C are search trees such that B is
larger than the largest number in A (or A itself if A is a number) and smaller than the
smallest number in C (or C itself if C is a number). Examples of search trees: 5, ’(1 2
3), ’((1 2 (3 4 5)) 7 (8 9 100)). The following are not search trees: ’(1 2 3 4), ’(1 5 (2
3 4)), ’((1 2 3)).

Write a function CHECK that determines whether a list is a search tree. For example
(CHECK ’(1 2 (3 7 9))) should return #t.

9. Write an imperative style function that returns the smallest number from an array of
numbers. Prove its correctness.

10. Consider the following program for reversing a list.

(define (reverse L answer)

(if (null? L)

answer

(reverse (cdr L) (cons (car L) answer))))
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To reverse a list L, the call required is (reverse L ’()). Thus (reverse ’(1 2 3)

’()) returns ’(3 2 1).

(a) Write a precise specification for the function. Write it as formally as possible.

(b) To prove correctness, what induction hypothesis will you use? The complete proof
is not expected; though you should clearly state what the induction is over.

11. Write a function to sort a list of numbers, i.e. rearrange the numbers within the list
so that they are in non-decreasing order. For this use the following idea: split the
list into its even part (use the function even-list defined earlier) and the odd part,
recursively sort the two parts, and then merge them together using the merge function
defined earlier.
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Chapter 9

Trees

In this lecture we study binary trees, how to draw them, and some of their uses.
A tree is a special kind of a mathematical object called a graph. A graph is defined by

two sets, V and E. V is any set, but E is required to be a set of unordered pairs of elements
from V . For example, V = {1, 2, 3, 4, 5, 6}, E = {{1, 4}, {2, 4}, {3, 4}, {4, 5}, {5, 6}}. The
elements of V are said to be nodes or vertices, the elements of E are called edges. An edge
{u, v} is said to connect vertices u and v. While refering to edges, it is more customary to
use the notation (u, v) rather than {u, v}, and we will use that in the rest of this chapter.
Pictorially, a vertices may be represented by points in the plane and edges by lines connecting
the corresponding points. The above graph is pictured below.

A cycle is a sequence of edges (u1, u2), (u2, u3), . . . , (uk−1, uk), (uk, u1). A graph in which
there are no cycles is said to be a tree.

Any vertex in a tree may be designated as the root; the vertices that are connected to the
root are said to be the children of the root. The root is said to be the parent of the children.
The vertices connected to a child u (except for its parent) are called its children, and so on.
Here is an example. 5 is the root; 4, 6 are the children of 5; 1,2,3 are the children of 4.

5

/ \

4 6

/ | \

1 2 3

A rooted tree in which every vertex has 0, 1, or 2 children is a binary tree.
Height The height of a binary tree is the length (number of edges) of the longest root

leaf path.

9.1 Trees and Program execution

Consider the scheme program for calculating the nth fibonacci number

(define (fib n)

(if (<= n 2)

1
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(+ (fib (- n 1) ) (fib (- n 2 )))

)

)

The execution of this program for the call (fib 5) can be represented by the following tree:

(fib 5)

/ \

(fib 4) (fib 3)

/ \ / \

(fib 3) (fib 2) (fib 2) (fib 1)

/ \

(fib 2) (fib 1)

Here, the vertices represent function calls; if during execution of one function call another
function is invoked, we draw an edge between the corresponding calls. Since (fib 1) and (fib
2) return values and do not call any function hence they represent leaves.

The leave return 1 and at each node, the incoming values are added till the root is reached
and the value is output.

Note: This program is not very efficient as the (fib) of the same number is calculated
many times over.

9.2 Drawing Complete Binary Trees

In this section we develop a program to draw binary trees in scheme graphics. For this we
need to get familiar with the following commands:

1. (trans x y stm1 stm2 ..) This command shifts the origin of scheme graphics to coordi-
nate x y and executes stm1 stm2 .. in this system.

2. (scale sx sy stm1 stm2 .) This command sets a scale of (X axis : 1 to sx) and (Y axis
: 1 to sy) and executes statements stm1 stm2 .. under this scale.

A possible program for drawing a tree of height h is given below

(define (tree h)

(point 0 0)

(if (> h 0)

(begin

(line 0 0 -0.1 -0.1)

(line 0 0 0.1 -0.1)

)
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(begin

(trans -0.5 -0.5 (scale 0.5 0.5 (tree (- h 1))))

(trans 0.5 -0.5 (scale 0.5 0.5 (tree (- h 1))))

)

)

)

Exercises

1. Add drawing commands to the procedure fib discussed earlier so that it draws the
execution tree. In other words, the call (fib 5) should cause the picture shown to be
drawn, as well as it should evaluate to 120.
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Chapter 10

Built-in High Order Functions for lists

Three higher order functions are commonly used: map, reduce, and filters. Scheme actually
has two kinds of filters respectively called list-transform-positive and list-transform-negative.

10.1 Map

syntax: (map f l1 l2 ... ln)
Here l1,l2,...ln are n lists having the same length and f is a function taking n arguments.

If lij denotes the jth element of list li, then the output is a list in which the ith element is
(f li1 li2 . . . lin). In other words, the output is the following.

(list

(f (car l1) (car l2) ... )

(f (cadr l1) (cadr l2) ... )

............................

)

Examples

(map + ’(1 2 3 4) ’(10 20 30 40))

=> ’(11 22 33 44)

(map abs ’(1 -20 3 -4))

=> ’(1 20 3 4)

10.2 Reduce:

syntax: (reduce f zero l)
The argument f must be a function of two arguments, and l a list. If l is ’(), then zero is

returned. If l has just one element, then that element is returned. If l has several elements
l1,l2,...,ln, then the following is returned:

(f (... (f (f l1 l2) l3) ...) ln)
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Examples:

(reduce + 0 ’(1 2 3 4 5)) => 15

(reduce list ’() ’(1 2 3 4 5)) => ((((1 2) 3) 4) 5)

The last example shows that reduce is left associative.

10.3 Filters

syntax: (list-transform-positive list predicate)
This is predefined in scheme, but can be implemented as follows.

(define (list-transform-positive list predicate)

(if (null? list)

’()

(if (predicate (car list))

(cons (car list) (list-transform-positive (cdr list) predicate))

(list-transform-positive (cdr list) predicate))))

An analogous function list-transform-negative returns elements that dont match the pred-
icate. Examples:

(list-transform-positive ’(1 2 3 4 5) even?) => ’(2 4)

(list-transform-negative ’(1 2 3 4 5) even?) => ’(1 3 5)

Note on some Scheme functions:

Map/reduce require you to pass functions – so it is useful to know which scheme commands
are function and which are not. Interestingly, and and or are not functions– instead they
are what is called “special forms”. The distinction is that the arguments to a function are first
evaluated and then the function is applied; whereas in a special form only those arguments
that are actually needed are evaluated. For example, in (and x y z) if x is false, then we can
return false without evaluating y and z. This is in fact what scheme does, and thus and is
a special form in scheme. Similarly, or can return a value as soon as any non false value is
found, and thus or is also a special form. If you want to pass and /or to map/reduce,
define logand/logor as functions as follows and pass them:

(define (logand x y) (and x y))

(define (logor x y) (or x y))

53



10.4 Application of Filters: Quicksort

This is a famous sorting algorithm developed by C. A. R. Hoare. First we pick an element of
the list (in the program below it happens to be the car), which we call splitter – this element
is used to split the input list into three smaller lists consisting respectively of elements
smaller than, equal to, and greater than the spliter. Now we apply quicksort function to
the first and third lists separately and the results are appended. The lists are created using
list-transform-positive.

(define (quicksort list )

(if (null? list )

’()

(let ((splitter (car list )))

(append

(quicksort (list-transform-positive list

(lambda (x) (< x splitter ))))

(list-transform-positive list

(lambda (x) (= x splitter )))

(quicksort (list-transform-positive list

(lambda (x) (> x splitter ))))))))

This algorithm has been found to be very efficient in practice. The number of steps
required to sort any list mainly depends on the splitter value. It is possible to prove that if
the spliter is median of list then we shall require least number of steps to sort the list.

Exercise

Find how many comparisons take place if you are sorting a list of 1023 distinct elements and
if at each step the splitter happens to be the median of the list. Do the same for the case in
which the splitter happens to be the smallest element of the list.

10.4.1 Applications of Map and Reduce

1. Matrix multiplication

2. Matrix transpose and many more...

Exercises

1. Write a function that compares two lists containing numbers and determines if they
are identical.

2. Using the above function or otherwise, write a function that takes two matrices (each
a list of lists of numbers) and determines if they are identical. You are expected to use
map and reduce in both parts (less credit for writing code which does not use these).
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You may note that logand, logor are binary functions that compute logical and, logical
or, respectively. For example (logand #t #f) evaluates to #f. Also remember that
(= x y) evaluates #t or #f depending upon whether the numbers x and y are equal.

3. Suppose you are given a list M containing elements which are themselves lists and have
the form (rollno marks1 marks2 marks3 ...) where marksi are the marks in the ith lab
assignment. The goal is to be able to sort this in ascending order of marks obtained
in any specified assignment. So for example (sortlab M 5) should return the list M
but sorted in ascending order of the marks in the 5th lab. Write the function sortlab.
(Hint: modify any sorting function, say quicksort so that it can be passed a function
that compares two lists. )
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Chapter 11

Analysis of Algorithms

Most of this course is about programming style; our concern is readability, extensibility and
user friendliness of programs. Our focus is not on the speed of programs, or on developing
fast algorithms. However, the speed of programs is important. It is important that we know
how to analyze the speed of our programs. Analysis of algorithms is a vast and deep topic.
Our goal here is to get a very brief flavour of it.

Usually in analyzing any algorithm it is customary to decide that a certain operation is the
most dominant one, and then attempt to estimate how many times the algorithm performs
that operation. The number of times that operation is performed will vary depending upon
the size of the input given to the program, and even the precise input itself. So it is customary
to ask: for a given input size, how many operations does the program perform over all
possible input instances of that size? For example, if we are considering sorting programs, it
is customary to count the number of comparisons performed by the algorithm. So we could
ask, for input size n, what is the maximum number of comparisons needed to sort any input
with n keys? This is typically called the worst case complexity. In a similar manner it is
possible to define the average case complexity, which is the number of operations needed by
the algorithm averaged over all input instances of the given size n.

In this lecture we evaluate the worst case complexity of a selection sort algorithm.

11.1 Selection sort

The basic step of selection sort is to remove the smallest element in the input that is yet to
be sorted and appending that element to the output. This may be expressed in scheme as
follows:

(define (selsort l)

(if (null? l)

’()

(let ((s (smallest l)))

(cons s (selsort (remove s l))))))

(define (smallest l)

(define (smallestwithc candidate l)
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(if (null? l)

candidate

(if (<= candidate (car l))

(smallestwithc candidate (cdr l))

(smallestwithc (car l) (cdr l)))))

(smallestwithc (car l) (cdr l))

)

(define (remove e l) ;; assuming e occurs in l

(if (= e (car l))

(cdr l)

(cons (car l) (remove e (cdr l)))))

We will estimate the number of comparisons performed by selsort. To do this we need to
estimate the number of comparisons performed by smallest and also by remove. This done
by writing recurrence equations.

11.2 Analysis of smallest

Smallest called on a list of length n simply calls smallestwithc (i.e. short for “smallest
with candidate”) with a list of length n-1 and a candidate which is just the first element
of the initial list. So we should simply analyze the number of comparisons performed by
smallestwithc.

Suppose xi denotes the number of comparisons performed by smallestwithc when it is
called on a list of length i. Now, for the empty list (length = 0) the function simply returns
the candidate without doing any comparisons. Thus x0 = 0. If it is called on any list of
length i > 0, then it does one comparison, and then calls itself on a list of length i − 1. The
number of comparisons done in the recursive call is xi−1 by definition. Thus we have:

xi = 1 + xi−1

where the equation holds for all i > 1. In other words, we have the entire family of equations
x1 = 1 + x0, x2 = 1 + x1, and so on. Such a collection of equations is called a recurrence.
The simplest way to solve a recurrence is to substitute the equations into one another:

xi = 1 + xi−1 = 1 + 1 + xi−2 = 1 + 1 + 1 + xi − 3 = . . . = 1 + · · · + 1 + x0

where the number of 1s in the last expression is clearly i. But since x1 = 0, we get xi = i.
Thus when smallest is called with a list of length n it must be the case that xn−1 = n − 1

comparisons are performed by smallestwithc which gets called.

11.3 Analysis of remove

We will leave it to the reader to verify similarly as above that the number of comparisons
needed to remove an element from a list of length n in the worst case is n.
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11.3.1 Analysis of selsort

Let yi denote the number of comparisons needed to sort a list of length i in the worst case
(i.e. for that input of length i for which the maximum number of comparisons are needed).

When called on an empty list, the function returns directly, so clearly y0 = 0. If called
on a list of length i > 0, it first calls smallest on the input list, then calls remove on the
input list, and then finally recursively calls itself on a list of length one less, i.e. length i − 1.
Thus we have:

yi = i − 1 + i + yi−1 = 2i − 1 + yi−1

We can solve this recurrence by substitution as before. So we get:

yi = 2i − 1 + yi−1 = 2i − 1 + 2(i − 1) − 1 + yi−2 = 2i − 1 + 2(i − 1) − 1 + · · · + 3 + 1 + y0

The last expression is simply an arithmetic series of odd numbers from 1 to 2i − 1 to which
is added y0 = 0. But the arithmetic series sums up 2i(i/2) = i2.

Thus selsort takes n2 comparisons to sort any list of length n in the worst case.

11.4 Exercises

1. Estimate the number of comparisons needed by other sorting algorithms.

2. Write a scheme program to compute xn where n is an integer, using the following idea
(to be used recursively):

(a) If n is even, then xn =
(

xn/2
)2

.

(b) If n is odd, then xn =
(

x(n−1)/2
)2 × x.

How many multiplications does your program need for computing 217? You are ex-
pected to estimate this as follows. Let Mn denote the number of multiplications needed
to compute xn. Can you relate M17 to other Mi and so on?
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Chapter 12

Matrices And Shortest Path Problems

We will see an unusual kinds of matrix multiplication in this lecture. This will enable us
to compute shortest path in a map. It will also provide a good example of higher order
functions.

Suppose we are given a matrix A such that aij gives the distance between cities i and j,
if they are connected by road directly. If cities i and j are not connected directly, then we
will have aij = ∞. Further, aii = 0 for all i, of course. For example consider the road map
shown in Figure 12.1.

We could represent it as the following matrix (with 1=Mumbai, 2=Pune, 3=Nashik,
4=Kolhapur, 5=Nagpur):

















0 160 200 450 ∞
160 0 220 350 ∞
200 220 0 ∞ 500
450 350 ∞ 0 ∞
∞ ∞ 500 ∞ 0

















The usual matrix multiplication C = AB of matrices A, B is defined as consisting of
elements cij =

∑

k aik ∗ bkj . Suppose we define cij using addition in place of multiplication
and taking the minimum instead of summing, i.e. let us define:

cij = min{ai1 + b1j , ai2 + b2j , . . . , ain + bnj}

assuming n is the number of rows in A. Now consider what happens we compute A2 using
this definition, i.e. If D = A2 we have

dij = min{ai1 + a1j , ai2 + a2j , . . . , ain + anj}

But now note that aik + bkj is simply the length of the path if we go from city i to city j,
passing only through city k on the way. But we take the minimum value of aik + akj over
all all possible k (including k = i, j as well). Thus dij as calculated above is nothing but
the length of the shortest path from i to j passing through any single city along the way,
however the single intermediate city could be i or j itself. Let us say that a path has k hops
if it passes through k − 1 cities (excluding the origin and the destination). Thus it follows:

The ijth entry of A2 give the length of the shortest path having at most 2
hops from city i to city j.
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Nashik
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220

160

200

450

350

500

Figure 12.1: Schematic Map

We could continue this process! Thus by squaring the matrix A2 we will obtain the matrix
A4 which can be seen as giving the lengths of all paths with at most 4 hops (i.e. which have
at most 3 other cities on the way). So squaring ⌈log n − 1⌉ times, we will obtain a matrix
Am where m = 2⌈log n−1⌉ ≥ n − 1. But the entries of this matrix will denote the length of
shortest paths having at most m ≥ n − 1 hops. But no shortest path need have more than
n − 1 hops (else a city would be repeated, and we can remove these circuitous paths). Thus
Am will give the lengths of the shortest paths.

Exercises

1. Compute A2, A3, A4 for the matrix given earlier. Verify that A4 = A5 = A6 = . . ..

2. Write a matrix multiplication function that takes as parameters the two matrices, a
function add, a function mult and a value zero (which is the identity for the add
function, i.e. (add zero x) => x.). It should be possible to get ordinary matrix
multiplication by specifying +, *, 0 for the parameters add, mult and 0.

3. Write binary functions imin and i+ that normally require the arguments to be numbers,
but can also allow the arguments to be the symbol ’infinity. i+ should return ’infinity
if either argument is ’infinity, otherwise the sum. imin should return the min if both
arguments are numbers, ’infinity if both arguments are ’infinity, and the number if one
of the argument is a number and the other is ’infinity.
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4. Write a function which uses the matrix multiplication routine of the first problem and
the functions defined in the second problem to find the length of the shortest paths in
a map. Assume the input is a matrix giving distance between cities as discussed. Use
the symbol ’infinity to represent ∞. The output of the function will be a matrix, in
which the ij entry will give the length of the shortest path between i and j. In essence
you will be computing the n-1th power of the input matrix.

5. Write binary functions pmin and p+, which take as input some representation of a
path, e.g. (length-of-the-path list-of-cities-on-the-path). pmin simply returns the path
having the smaller length, while p+ returns the path obtained by concatenating the
given two paths. You are to decide on the precise representation of the path as per
your convenience.

6. Write a function which uses the matrix multiply routine of problem 1 and the functions
pmin and p+ to generate the shortest paths themselves (not just the length of the
shortest path). In particular, the output should be a matrix, in which the ij entry
gives the length of the shortest path as well as the path itself (specified as a list of
cities along the path). The input should be the same as the input for problem 3, i.e. a
matrix whose ij element gives the distance from city i to city j. From this you should
generate a matrix whose ij element describes the path from city i to city j. Then you
should simply compute the n-1th power of this matrix.
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Chapter 13

Symbolic Computing

In addition to the numeric data, scheme allows processing of symbolic data. A symbol is
almost the same as a character string – but while a character string may contain spaces, a
symbol is any string that satisfies the rules of being an identifier in Scheme. We will think
of symbols in this manner as being simple kinds of strings, we will not consider some of the
more complicated aspects of symbols that the Scheme interpreter allows.

A symbol s is represented as ’s. In Scheme, the quote is used to prevent the evaluation
of what follows, i.e. whatever follows is to be taken literally rather than thought of as
representing its value. Thus if you type s the Scheme interpreter will assume you mean the
value of s, if you type ’s the Scheme interpreter assume you mean s itself, i.e. the symbol s.
The quote has been used with lists earlier for the same purpose, we similarly allow symbols
to be inside lists as well.

(define r ’a) ; r has the value symbol a

(define r a) ; r has the same value as the value of

; assuming a has been defined earlier.

(define p ’(a b c)) ; list of symbols a b and c.

(define q (list a b c)) ; list of the values of a b c.

A list containing symbols is called a symbolic expression or an s-expression. The usual list
operations work on s-expressions, of course. For example in the above example (car p)

would return ’a.

13.1 Uses of s-expressions

S-expressions are a general way of representing symbolic data are mathematical expressions,
programs, rules. For example:

(define a ’(* x (sin x)))

(define b ’(define (square x) (* x x)))

Such symbolic data can be processed as if it is a list, using the usual list operations. We
give some examples of such processing.
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13.1.1 Symbolic Differentiation

You have probably seen how a function could be numerically differentiated, i.e. evaluating
the formula f ′(x) ≈ (f(x + h) − f(x))/h for some small h. However, if a function is given to
us symbolically, we can find its derivative symbolically, using the usual rules of differentiation
e.g.

d

dx
(u + v) =

d

dx
u +

d

dx
v

d

dx
(uv) = v

d

dx
u + u

d

dx
v

d

dx
sin x = cos x

d

dx
g(u) =

d

dx
g(x)

d

dx
u

These rules are recursive! Thus they can easily be encoded in Scheme. Here is the code for
the first 2 rules and the simple rules that the derivative of x itself is 1, and that of any other
constant is 0.

(define (deriv s)

(cond ((null? s) ’())

((not (list? s)) (if (eq? s ’x)

1

0))

(else (let ((op (car s))

(args (cdr s)))

(cond ((eq? op ’+) (cons ’+ (map deriv args)))

((eq? op ’*) (list ’+ (list ’* (car args)

(deriv (cadr args)))

(list ’* (cadr args)

(deriv (car args)))))

)))))

If you now execute (deriv ’(* x x)) Scheme will return (+ (* x 1) (* x 1)) which in
fact can be simplified to 2x, which is indeed the derivative of x2 as required.

Exercises

1. Extend the deriv function given above to handle, trigonometric functions, exponenti-
ation and natural log.

2. Write a function (simplify s) which will simplify an arbitrary algebraic expression
s. The idea is to use this to simplify the output of deriv. So if you write (simplify

(deriv ’(* x x))) you should get (* 2 x).

Be warned that simplification is hard! The program will need to know about properties
of 0 and 1 vis-a-vis addition and multiplication, as well as commutativity, distribution
of addition over multiplication, and possibly other things. Write the program in stages,
incorporating different rules progressively.
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3. Write a program for doing symbolic integration. This is also hard.

13.1.2 Processing Programs

An s-expression can very well be representing a program, and so we could process it to
augment the program, or find out its properties. Or we could translate the program from
one language to another. These are processes that happen in compilers, for example.

We will consider a very simple example as an illustration: translating a program from
Scheme to Lisp. These languages are very similar, though there still are many differences.
We will pretend that there is only one difference– the way in which functions are defined
in Lisp. The form is (defun function-name (arg1 arg2 ...) function-body). So the
square function would be written as

(defun square (x) (* x x))

Here is a program which will do this translation. It does not handle all the cases though.

(define (trans def)

(let ((name (caadr def))

(args (cdadr def))

(body (cddr def)))

(append (list ’defun name args) body)))

Exercises

1. Extend the translator to translate nested definitions as well.

2. Scheme has a construct trace which can be used to print the arguments of a function
everytime it is called, and the result returned by the function as it exits. Write a
function (trans s) which transforms a function definition to produce this effect. Given
below is an example input:

(trans ’(define (f x y z) body))

which should evaluate to

(define (f x y z)

(print x y z)

(let ((result body))

(print result)

result))

Here the function print simply prints its arguments on the screen (assume this function
is given).
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Chapter 14

Relations

A relation is a set of k-tuples, for some fixed k. Each k-tuple in the relation is often called
a row of the relation. The set of all the ith elements of all the k-tuples is called a column
of the relation. These names are based on the pictorial interpretation of writing down a
relation so that each tuple is written out horizontally, one tuple in each line. Remember
that the tuples are unordered within the relation, whereas the elements of each tuple are
ordered within each tuple.

Relations are commonly used in building databases. For example, information about
student roll numbers and hostels could be stored in a relation in which there is a column
each for storing roll number, name, and hostel number, and there is a row for each student.

Relations can be manipulated by performing predefined operations on them such as select,
project, count, cross-product and join.

14.1 Selection

The select operation has the format

(select relation predicate)

The predicate specified must take as argument any row of the specified relation. The value
of a select operation is a new relation consisting only of the rows in the specified relation
that match the specified predicate.

You should realize that select is simply a special case of list-transform-positive.

14.2 Projection

The format is:

(project relation list-of-columns)

The value of this operation is a new relation in which only the specified columns are present,
in the order they are named in list-of-columns. Note that we cannot implement this relation
simply by dropping columns – this could cause two rows to become identical in which case
we need to remove duplicates.
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14.3 Count

This is simply the number of rows in the relation, i.e. can be implemented in scheme by
using the length built-in function for lists.

14.4 Cross Product

We define the cross product of two relations A = (a1,a2,a3..,an) and B = (b1,b2,b3...,bm)
as the set of all possible rows obtained by concatenating any row of A with any row of B.
The cross product has as many rows as the product of the number of rows in A and B, and
as many columns as the sum of the columns in A and B. Here is an example:

A = |1 | 10| B = |5 | 55|

|2 | 20| |4 | 30|

|3 | 33|

A X B = |1 10 5 55|

|1 10 4 30|

|2 20 5 55|

|2 20 4 30|

|3 33 5 55|

|3 33 4 30|

14.4.1 Applications of the cross-product

The concept of cross product is employed in many applications -
Consider a relation representing the son-father relationship - the first field name specifies

the son and the second field name the father.

Let R = |A B|

|B C|

|D B|

Taking the cross product of R with itself -

R X R = |A B A B|

|A B B C|

|A B D B|

|B C A B|

|B C B C|

|B C D B|

|D B A B|

|D B B C|

|D B D B|

Selecting those elements which have column2 = column 3 -
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|A B B C|

|D B B C|

This represents those combinations in which the entry specifies the grandfather-father-son
of a family.

14.5 The JOIN function

SYNTAX : join(r1,field1,r2,field2)
The function returns a relation which has the con-catenation of all elements of r1 and r2

in which the field1 and field 2 respectively match.
eg. join(r1,2,r2,1)

when r1 = |e f| and r2 = |f g|

|d f| |b h|

returns |e f f g|

|d f f g|

14.6 Examples

Consider a relation R1 consisting of two columns, the first one naming the father, and the
second a son. For example:

R1 = {(Dashrath,Ram), (Dashrath,Laxman), (Ram,Lava), (Ram,Kusha)}
Consider a relation R2 of two columns in which the first column names the husband and

second the wife.
R2 = {(Dashrath,Kousalya), (Dashrath,Kaikeyi), (Dashrath,Sumitra), (Ram,Sita), (Lax-

man,Urmila)}
Now if we want to find the number of sons of Dashrath, we could use
Count(Select(R1, column 1=”Dashrath”))
Or to construct a relation between father-in-law and daughter-in-law we could write:
Project(Join(R1,2,R2,1),’(1,4))

Exercises

1. Write code for all the primitives. Make sure that you remove duplicates while imple-
menting the project operation.

2. How will you construct a relation in which each row names (two) brothers?

3. Express the join relation in terms of the other relations.
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Chapter 15

Memoization

Memoization is a very powerful idea for making many recursive algorithms fast. Here we
will describe it for the fibonacci program.

PROBLEM: Write a function that calculates the n’th Fibonacci number.
The simple minded solution to this is:

(define (fib i)

(if (< i 2)

1

(+ (fib (- i 1)) (fib (- i 2)))))

The above solution is wasteful. For example, (fib 5) will call (fib 3) and (fib 4); but
fibonacci(4) will itself call (fib 3) again. Clearly, we dont need to repeat this call again – all
we need is to save a result once we calculate it.

Here is how:

(define (memofib n)

(define memo (make-vector (+ n 1))) ;; vector of n+1 nulls.

(define (init-memo)

(vector-set! memo 0 1) ;; vector indexing starts at 0

(vector-set! memo 1 1))

(define (fib n )

(if (number? (vector-ref memo n)) ;; nth number already calculated?

(vector-ref memo n)

(begin

(vector-set! memo n (+ (fib (- n 1)) (fib (- n 2))))

(vector-ref memo n))))

(init-memo)

(fib n))

This program is very similar to the simple fibonacci program – it just checks to see if the
work has already been done, otherwise it does the work. After doing the work, the result is
saved in a vector so that it can be used later if necessary.
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Exercises

1. Run the original program as well as the optimized program for a large value of n. The
difference should be immediately apparent.

2. How many recursive calls does a call to the original program result in? You may
express your answer in terms of the Fibonacci numbers themselves.

3. COIN CHANGING PROBLEM. Given an unlimited supply of coins of certain denom-
ination, find the minimum number of coins needed to give change for any specified
amount. The denominations should be taken as an input to the program in a list, i.e.
the function should look like

(change amount list-of-coins)

For example (change 40 ’(1 2 5 10 20 25 50)) should return 2.

Hint: Suppose Change(n) denote the smallest number of coins needed to give change
of n paise. If P is one of the allowed denomination, then clearly Change(n) ≤ 1 +
Change(n − P ). This is because I can add a P paise coin to the optimal way to give
change for n-P paise and get change for n paise which may not necessarily the optimal
way. But the above inequality must be true for some denomination and hence we get

Change(n) = 1 + min
P

Change(n − P )

For example, if the denominations are 1,2,5,10, then this condition means that

Change(n) = 1+min{Change(n−1), Change(n−2), Change(n−5), Change(n−10)}

Use this inequality to write a recursive program. Use memoization to make the program
efficient.

4. We implemented memoization by using the set! primitive. This is not strictly neces-
sary, as it turns out. See if you can discover why. Invent a scheme to do this. Your
scheme should work in general; but to explain it you should give the code for comput-
ing Fibonacci numbers in this manner. Your code should be in the functional style.
However be warned that it will probably be more complex to understand as compared
to the code that uses set! given in the text.

(Hint: Pass a list of the previously computed results to each recursive call, and have
each call return not only the solution but also the list of all results computed till
that point. Utilize the new list for subsequent computation. You need not write the
function to lookup from the list, but you should carefully state what such a function
would have to do.)
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Chapter 16

Embedded Languages

The most interesting programs that you see around you are programming environments.
These do not take an input and produce an output in the conventional sense, they allow
you to develop programs which in turn take inputs and produce outputs. The scheme
interpreter is one such program; but there are others. For example there are simulation
environments in which you can write programs that describe complicated machines (say
circuits or chemical reactors) and then you need to describe the inputs that are to be given
to these machines and the simulation environments will tell you the output produced by your
circuits or reactors. Another example of a programming environment is MATLAB, which
is a language for manipulating matrices. So the MATLAB program allows you to write a
program in the MATLAB language and helps you to execute that program.

The Scheme interpreter is interesting in that it can be adapted to behave like a specialized
programming environment. This is typically done by two mechanisms. The first mechanism
is of course the development of libraries of procedures which do the required collection of
specialized tasks (e.g. matrix manipulation, simulation of circuits etc.). But in addition
to procedures, the Scheme language also has special forms – these are expressions which
evaluate the arguments passed to them in some special manner. Scheme provides facilities
viz. macros for effectively defining new special forms. In some sense it is the special forms
that give a language its character (the procedure mechanism is the same in most languages)
– thus the facility to define special forms is akin to the ability to define your own language.

In fact, it is this facility that makes Scheme an ideal language in which to design special
purpose programming systems. For example, by suitably designing libraries of procedures
and designing a few special forms, Scheme can be made to work like an Object Oriented,
or a Logic Programming Language. This is often referred to as embedding new language
primitives (e.g. object-oriented or logic programming primitives) into an existing language
(e.g. Scheme).

In the next chapter, we will see a very simple example of this embedding. Although
the example is very simple, it is actually very useful, and it illustrates the basic issues in
embedding primitives from one language into another.

Here we discuss the macro facility in scheme.
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16.1 Macros

The syntax for defining a macro is as follows:

(define-global-macro (macro-name macro-parameters)

body

)

For example:

(define-global-macro (increment a) ;; macro definition

(list ’set! a (list ’+ a 1))

)

(define b 100)

(increment b) ;; macro invocation

A macro invocation is processed in 2 phases, an expansion phase and an evaluation phase. In
the expansion phase, the macro invocation is textually replaced by the expansion result. In
the evaluation phase, the expansion result is treated as ordinary Scheme code and evaluated.

The expansion phase is as follows: (1) The arguments of the macro invocation are not
evaluated, but are bound as such to the formal parameters of the macro. In case of the
invocation (increment b), the formal parameter a is bound to the symbol ’b. (2) The
macro definition is then evaluated. This is basically the same as the evaluation of any
Scheme procedure. For our example, the result is (list ’set! ’b (list ’+ ’b 1)), i.e.
’(set! b (+ b 1)).

This result is evaluated in the expansion phase. Thus the invocation (increment b) is
expanded to (set! b (+ b 1)), which is then evaluated. The overall effect is to set b to
the value 101.

Macro expansions may contain further invocations of macros. Macros may in fact be
recursive; however this must be done carefully. This is described further in Section 16.1.2.

Note that other languages such as C also provide macros (using the so called preprocessor
facility), and these are in spirit similar to Scheme macros.

16.1.1 Convenient notation for writing macros

The following notation is often used while writing macros. There are 3 command:

1. The backquote command denoted by the character ‘ having the same name

2. The unquote command denoted by the character comma ,

3. The splice-unquote command denoted by the characters ,@

The backquote command is a genaralization of an ordinary quote ’. Like an ordinary quote,
it may be followed by a symbol, in which case the effect is identical. Like an ordinary quote
it may be followed by a list which does not contain the unquote or splice-unquote commands,
in which case again it behaves like an ordinary quote.

If an unquote command appears inside a backquoted list, then the value of whatever is
unquoted is used. For example, we might have:
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(define a 100)

’(a)

‘(,a)

The commands ’(a) and ‘(a) will both evaluate to a list consisting of the symbol ’a, as
usual. The command ‘(,a) however will evaluate to a list containing the value of a, i.e. the
list ’(100).

The unquote-splice command causes the value to be used, but the value is spliced into
the list. So suppose we have:

(define a ’(10 20 30))

Then ’(1 a 2) will denote a list consisting of the number 1, the symbol ’a and the number
2; the command ‘(1 ,a 2) will denote the list ’(1 (10 20 30) 2), and the command ‘(1 ,@a

2) will denote the list ’(1 10 20 30 2).
Using the above notation, the increment macro could be written as:

(define-global-macro (increment a)

‘(set! ,a (+ ,a 1))

)

Notice that this is much more readable and compact.
As another example, consider the following macro which will mimic the trace facility of

Scheme.

(define-global-macro (tdefine template body)

(pp template) ;; only for debugging,

(pp body) ;; maybe omitted.

‘(define ,template

(pp (list ,@(cdr template)))

(let ((result ,body))

(pp result)

result)))

So if you now type

(tdefine (sum x y z) (+ x y z))

the macro will translate this to:

(define (sum x y z)

(pp (list x y z))

(let ((result (+ x y z)))

(pp result)

result))

Relationship between quote and backquote: At first, it might seem that every form
involving a backquote and the unquote/splice-unquote operators can be naturally converted
to one involving only the usual quote. For example, ‘(a ,b ,@c d) can also be written
as (append (list ’a b) c (list ’d)). However, a backquoted expression can contain a
quote, for example consider the code:
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(define c ’d)

‘(set! a ’,c)

The second line will now evaluate to ’(set! a ’d). There is no easy way to produce this
result without using backquotes.

16.1.2 Nesting and recursion

We may use all usual Scheme features such as nesting and recursion. Here is an example.

(define-global-macro (incrementmany L) ;; increment many variables

(if (null? L)

’()

‘(begin

(set! ,(car L) (+ ,(car L) 1))

(incrementmany ,(cdr L)))))

(define x 1)

(define y 2)

(incrementmany (x y)) ;; invocation.

The invocation will cause L to be bound to the list (x y). Since this list is not null, the first
expansion will return the result

(begin

(set! x (+ x 1))

(incrementmany (y)))

But this result itself contains a (recursive) invocation. For this invocation the parameter L

will be bound to the list (y). The result of this will be

(begin

(set! y (+ y 1))

(incrementmany ()))

This also contains an invocation of incrementmany, this time with parameter L bound to an
empty list. Thus this will return the result ’(). Thus, the overall expansion will be:

(begin

(set! x (+ x 1))

(begin

(set! y (+ y 1))

’()))

When this code is executed, the effect will be to increment both x and y.
It is important to be careful while using recursion in macros, however. Here is an (erro-

neous) recursive implementation of the foreach macro of Exercise 5.
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(define-global-macro (foreach x L command) ;; Does not work!

‘(if (null? ,L)

’()

(begin

(let ((,x (car ,L)))

,command)

(foreach ,x (cdr ,L) ,command))))

(foreach i ’(1 2 3) (pp i)) ;; invocation

The result of expanding the above invocation is:

(if (null? ’(1 2 3))

’()

(begin

(let ((i (car ’(1 2 3))))

,(pp i)

(foreach i (cdr ’(1 2 3)) (pp i)))))

It is now easy to see why this wont work. The expansion will contain the recursive call
(foreach i (cdr ’(1 2 3)) (pp i)). This is not the same as (foreach i ’(2 3) (pp

i))! This is because the arguments to a macro are not evaluated before expansion. So the
recursive macro expansion will be called with parameter L set to ’(cdr ’(1 2 3)). In other
words, the recursion will not terminate! Constrast this with the proper use of recursion given
above.

Exercises

1. Write the following without using the backquote ‘(a ,b (c ,@d) e).

2. Write the following using the backquote (list ’a ’b c ’d).

3. Write a macro such that (dotimes i n body) will expand to

(do ((i 0 (+ i 1)))

((= i n))

body)

i.e. the idea is that the body should be executed n-1 times with i taking values from
0 to n-1.

4. Modify the tdefine macro given above so that it prints the arguments with an explana-
tory message, i.e. if we invoke (sum 1 2 3) currently the message printed would just
be (1 2 3). Instead get it to print (Calling (sum 1 2 3)).

5. Write a macro (foreach varname List command) that will execute the specified com-
mand for every element of the given list. The variable specified as varname can be used
in the command, and it will take as values successive elements of List. For example:
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(define L ’(1 3 5 7))

(foreach x L (pp x))

This should cause pp to be invoked on every element of L, i.e. it should print out 1, 3, 5,
7. (foreach ...) is not expected to have a value. While writing the macro, you may
need to use temporary variables– you may use variable names of the form foreach00,

foreach01, ..., and you may assume that these names will never be used in the user
program. (Using the temporary variables is not necessary, the problem can also be
solved without any temporary variables; but you are free to use them if you wish.)
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Chapter 17

Embedding Advanced Graphics into
Scheme

Scheme provides fairly low level primitives for graphics. The main drawing procedures
are graphics-draw-point and graphics-draw-line. These procedures take as arguments
coordinates of points (and line endpoints) with respect to the screen. The primitives that we
have used in this course nicer in that they allow alternate frames of reference to be defined
(implicitly). For example, in the code

(line 0 0 0.1 0.1) ;; line 1

(trans 0.5 0.5 (line 0 0 0.1 0.1)) ;; line 2

although line 1 and line 2 appear to have identical endpoints, in reality they will be drawn
differently, because line 2 is drawn after translating the origin to (0.5,0.5). Such a facility
makes it very convenient to abstract pictures as procedures; suppose (window) causes a
window to be drawn, then invoking (trans dx dy (window)) will cause a window to be
drawn shifted by (dx,dy).

In this chapter we will study how these primitives trans, scale etc. have been provided.
There are two aspects:

1. Algorithm and data structures. The main question is how can we keep track of the
current frame of reference. Specifically, we should always be in a position to determine
where to draw a line on the screen when a user requests a line to be drawn after a
series of translation, scaling and other commands. This is discussed in Section 17.1.

2. User Interface Issues. What are the different ways in which the basic functionality
relating to translation/scaling etc. be offered to the user? Our definition of trans,

scale, rotate, line, point is only one possible interface. There could be several
other possible ways. This is discussed in Section 17.2.

17.1 Algorithmic Issues

The surface on which the drawing appears will be called the screen. In the case of Scheme,
it is a window that appears on the monitor in addition to the shell window. The screen is
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associated with a frame of reference; in case of the Scheme graphics screen, the origin is at the
center of the screen and the four corners of the screen have coordinates ±1. The commands
graphics-draw-point and graphics-draw-line take as arguments the coordinates in the
screen frame of reference.

The frame of reference in which the user operates is initially the same as the screen frame.
However, by using translate, scale and rotate the user can define new frames of reference
and draw with respect to these frames. If the user draws a point (x, y) in a certain frame
of reference, then where it will be drawn on the screen is determined by the frame changes
the user has executed before. In the rest of this section, we will only consider the question
of plotting points. Drawing of lines and more complex figures can be done in an analogous
manner.

The basic idea is to use a matrix F to represent the current frame of reference. F is a
3 × 3 matrix with a special structure (f31 = f32 = 0, f33 = 1), and given a point having
coordinates (x, y) in the current frame, its coordinates (x’,y’) in the screen frame are obtained
by performing a matrix multiplication with F :
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y′

1





 =







f11 f12 f13

f21 f22 f23

0 0 1













x
y
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Initially, F is simply the identity matrix. Clearly, in this case the matrix multiplication
above gives x′ = x and y′ = y which is exactly what we want.

Suppose we now want have a frame which is centered at (dx, dy) in the screen frame, i.e.
obtained by doing a translation of (dx, dy). A point (x, y) in such a frame must be plotted
at point (x + dx, y + dy) on the screen. The effect of this frame is modelled if we set

F =







1 0 dx
0 1 dy
0 0 1







Now F (x, y, 1)T = (x + dx, y + dy, 1)T as we want. Scaling can be represented by setting:

F =







sx 0 0
0 sy 0
0 0 1







Composition of frame changes The important feature is that frame changes can be com-
posed very easily. Suppose, F1 is a matrix that models a certain translation, and F2 models
some scaling. Then the matrix modelling the translation followed by the scale change is sim-
ply the matrix product F1F2. In fact this is true for any number of transformations of any
kind: the new matrix is obtained from the old simply by performing a matrix multiplication
corresponding to the new transformation.

17.2 User Interface

There are a number of different ways in which graphics facilities can be provided to the user.
The set of primitives we have provided is only one such way.
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Here, for example, is a completely different way in which graphics facilities could be given.
Instead of having the notion of “the current frame of reference” in which points and lines
are drawn, one could consider the notion of a “current pen position”, with respect to which
all drawing is done. For example, the command (point) would be invoked without giving
any arguments and it would mean that the point would have to be drawn at the current pen
position. (line x y) would mean draw a line from the current position to the point (x,y).
We would have to provide a command (move x y) which would cause the pen to move to
(x,y) without drawing.

In the rest of this chapter, we will discuss 2 user interfaces which are similar to the one
we have used in this book. These are simpler to implement. After discussing these we will
discuss how the our actual interface is implemented.

In what follows we will only discuss translation and plotting points; other transformations
(scaling, rotation) and drawing other figures (lines) are similar.

We will also assume that we are given functions matrixmultiply and matrixvectormultiply

that do these operations. Finally we will use the following definition for constructing a matrix
representing transformations:

(define (trans-matrix dx dy)

‘((1 0 ,dx)

(0 1 ,dy)

(0 0 1))))

17.2.1 User Interface 1

We provide the following interface to users:

1. (trans! dx dy): This causes the reference frame to be translated by (dx,dy).

2. (point x y) This asks a point to be plotted at (x,y) of the current frame of reference.
The command for drawing lines is similar.

Implementation: We maintain a global variable F which represents the transformation
matrix corresponding to the current frame of reference. The trans! command is imple-
mented simply by multiplying F by a suitable matrix as defined above. Similarly we define
scale!, rotate!. The implementation of trans! is very simple:

(define (trans! dx dy)

(let ((ftrans (trans-matrix dx dy)))

(set! F (matrixmultiply F ftrans))))

Given that the current matrix is always available, the point command only needs to perform
the required matrix multiplication. This is done as follows:

(define (point x y)

(let ((screencoord (matrixvectormultiply F (list x y 1))))

;; screencoord is the result vector represented as a list

(graphics-draw-point (car screencoord) (cadr screencoord))))
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Criticism: This interface is not very convenient for users. Typically a user will want to
write “Draw picture P1 with origin at (x1, y1), then picture P2 with origin at (x2, y2), ...”,
where the points (xi, yi) are all with respect to the current frame. These actions would be
represented using above primitives as:

(trans! x1 y1) (Picture1) (trans! (- x1) (- y1))

(trans! x2 y2) (Picture1) (trans! (- x2) (- y2))

...

The reverse translations (trans! (- xi) (- yi)) are necessary to bring the frame back
to original to get ready to draw the next pictures. This code is more verbose than what our
actual interface needs:

(trans x1 y1 (Picture1))

(trans x2 y2 (Picture2))

...

Not requiring the users to write the code for reversing the translations improves compactness,
and further reduces the chances of errors (say the user forgets to write the reversals).

17.2.2 User Interface 2

The problem we need to solve is: how to suppress the evaluation of some of the arguments
being passed to a procedure. Lambda expressions can easily accomplish this, i.e. lambda
expressions can be used to delay evaluation.

We do require a different interface, but it is almost the same as our ideal interface:

1. (lambdatrans dx dy g): Here g is a function that contains the drawing commands,
dx and dy are numbers. This primitive causes the drawing commands to be executed
after translating the origin by (dx,dy). As an example, to plot a point at (0.1,0.1) after
translating the origin to (0.5,0.5) we would write (lambdatrans 0.1 0.1 (lambda ()

(point 0.5 0.5))).

2. (point x y): This is the same as before.

The crucial difference between trans and lambdatrans is that the arguments to former are
the drawing commands themselves, while to the latter, they must be contained in a function
which is passed as an argument. Here is how lambdatrans is implemented:

(define (lambdatrans dx dy g)

(set! F (matmul F (trans-matrix dx dy)))

(g)

(set! F (matmul F (trans-matrix (- dx) (- dy))))

)

Notice that this implementation correctly does what we want. When we call the function
using say (lambdatrans 0.1 0.1 (lambda () (point 0.5 0.5))), the arguments are in-
deed evaluated – but the result of evaluating the lambda expression is a function – which is
what get passed. The passed function is actually called only inside lambdatrans itself – and
this happens after the matrix F has been changed to reflect the translation.
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17.2.3 User Interface 3

The trans command is actually implemented as a macro. The implementation of the other
commands is similar.

(define-global-macro (trans dx dy . body)

(let ((forwardtrans (list ’trans! dx dy))

(one-line-body (cons ’begin body))

(backwardtrans (list ’trans! (list ’- dx) (list ’- dy))))

(list ’begin forwardtrans one-line-body backwardtrans)

))

Now suppose we invoke the above with (trans 0.5 0.5 (line 0 0 0.1 0.1) (line 0.1

0.1 0.1 0.2)), the code that will result from the above will be:

’(begin (trans! 0.5 0.5)

(begin (line 0 0 0.1 0.1) (line 0.1 0.1 0.1 0.2))

(trans! (- 0.5) (- 0.5)))

which is exactly what we want.
We give another definition using the notation discussed in the previous chapter.

(define-global-macro (trans dx dy . body)

‘(begin (trans! ,dx ,dy)

,@body

(trans! (- ,dx) (- ,dy))))

Now suppose we invoke the above with (trans 0.5 0.5 (line 0 0 0.1 0.1) (line 0.1

0.1 0.1 0.2)), the code that will result from the above will be:

’(begin (trans! 0.5 0.5)

(line 0 0 0.1 0.1) (line 0.1 0.1 0.1 0.2)

(trans! (- 0.5) (- 0.5)))

which is also what we want.

Exercises

1. The implementation of trans given above uses two matrix multiplications – the first
for the forward translation and the second for the backward. To save arithmetic and
also roundoff errors, it will be better to save the original value (say by generating a
let statement). Write a macro that does this.

2. Currently none of the graphics commands return any interesting value. Suppose you
would like to return a description of the bounding box generated for the drawing done
inside each command.1 Adapt all the drawing commands so that the user can do this
easily. Show your modifications for trans, line, point, and explain what the user
will have to do in addition, if anything.

1The bounding box is the smallest axis parallel rectangle containing the drawing, and it can be represented
by its bottom left and top right corners, i.e. 4 numbers.
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Chapter 18

Object Oriented Programming

Object oriented programming is often regarded as an appropriate style for writing large
programs. The development of such large programs typically happens over long periods of
time, and as a cooperative effort of several programmers. Further, every program inevitably
has bugs, and inevitably needs to be extended as the demands of the users evolve. So
any paradigm for development of large, professional quality programs needs to address the
following issues:

Cooperative development: How to divide the development work among available program-
mers so that different people can work indepedently with minimal dependence on each
other. This is typically done by fixing the specification of the part assigned to each
programmer, and hiding the implementation of each part from other programmers.

Re-use and extensibility of code: Since programmers are expensive, it is useful if code
once developed can be used as many times as possible (within the same program, or
in other programs). To facilitate such reuse, code that has been developed must be
packaged appropriately so that it can be passed on to the new users as a module, with
a convenient interface. Further, it might be that a previously developed piece of code
almost solves the current problem – in such cases it should be possible to extend its
functionality to handle the current problem with minimal effort, and with minimal
possibility of introducing bugs.

18.1 Motivating examples

These all deal with extending existing software.

18.1.1 Example 1: Library information system

Suppose a library information system currently supports the following operations.

(make-patron name address)

; Enroll a new patorn.

(issue-book patron-record bookno)

; Issues a book to the patron with the given record.
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(accept-book-return patron-record book)

; Removes the book from the record.

(print-ith-issued patron-record i)

; returns the booknumber of the ith book issued to this patron.

Suppose the library starts a category of donor-patrons, who might get more facilities.
How should the information system change?

• Need to store patron category along with each patron.

• Issue-book may change – donors may be able to borrow more books.

Challenge: Can new features be added without changing old code at all.

18.1.2 Example 2: Symmetric Matrices

Suppose we possess implementation for matrices (vector-of-vectors).

(make-matrix m n)

(matrix-ref mat i j)

(matrix-set! mat i j val)

Extension needed: Can we devise a scheme for storing symmetric matrices compactly?
Natural Solution: Store only the lower triangular portion. But now all the functions above
should be redefined in order to be consistent with this format.
Problem: What if I need both symmetric and non symmetric matrices in my program.
What does matrix-ref refer to?

18.2 Example 3: Extensions to Deriv

Add the operator **, or ln or tan.
Can this be done without modifying the existing code at all?

18.3 Basics of OOP

In functional programming, a program may be thought of as a map (i.e. a function) from
the set of all possible inputs to the set of desired outputs. Likewise, it is useful to view
programming in a certain manner to understand the object oriented paradigm.

In this view, a program is developed for modelling some real life phenomenon or a math-
ematical process. The real life phenomenon or the mathematical process concerns some
objects which may be concrete or abstract, e.g. circuit components, salary records, matrices.
The goal is to trace how objects evolve as certain operations (e.g. changing the value of the
signal fed to the input of a component, or calculating the effect of income tax, or inverting a
matrix) are performed upon them. How to represent these objects on a computer and how

82



to describe the operations that can be performed upon them, are the central (interrelated)
questions in OOP.

The term object as used in Object Oriented programming, refers to the computer repre-
sentation of mathematical or real life objects. Each object (in the OOP sense, from now on)
can be thought of as containing data as well as code. For example, the object representing
a circuit component will contain voltage values associated with the component. But in ad-
dition, the object will also be associated with code that describes how the object behaves
under different circumstances. For example, each object representing a circuit component
would have to be associated with code which defines how the component behaves when the
input voltage is changed. As another example, consider an object which represents a matrix
– such an object could be associated with code that inverts matrices. The code associated
with objects is organized as methods; for example a circuit component object could have a
compute-next-state method, and a matrix object could have an invert method associated,
and a salary record object could have an income-tax method. Methods are like procedures,
i.e. they can be called with arguments and they return values, and further more one method
of one object can call another method of another or the same object.

18.3.1 Classes

First of all, all the different objects constituting a program need not be individually described.
For example, a circuit could be made up of several AND gates, or several distinct matrices
might be used in a program. Each object representing a gate would have to have different
data stored locally, however the code associated with the the different objects representing
different AND gates could be identical. Such a collection of objects is said to belong to the
same class. Alternatively, we say that the objects are all instances of the same class.

OOP provides the ability to describe classes. The description of a class includes the
names of the local variables that will appear inside each object that is an instance of the
class, and also the code that will be associated with the instances.

18.3.2 Inheritance

Several classes might themselves share features. In the example stated earlier, a donor and
a patron are objects for whom book issue is different; however other properties (e.g. both
need to have a name and an address) are the same. OOP provides the notion of inheritance:
which is simply the ability to define one class as a special version or a subclass of a given
class. If class A is a subclass of class B, then class B is said to be the superclass of class A.
For example, using OOP we can say that donor is a subclass of patron, and then go on to
describe how donor differs from patron. Except for the differences described, the donor class
behaves identically as patron. The OOP terminology for this is that a subclass inherits its
properties, i.e. names of local variables and the methods from its superclass. The subclass
can be made to behave differently from its superclass by defining new properties for it, or
by redefining the inherited properties.
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18.3.3 Defining Classes

We describe OOP primitives embedded into Scheme. This is based on the work of Bryan O
Sullivan. More commonly, OOP is supported by languages such as C++, Java, Smalltalk
and others.

A class definition has the following form:

(define-class class-name

(superclass)

list-of-additional-fields)

In this book, class names will have enclosing angled brackets as a convention; this is only
for readability. Here are two examples of class definitions:

(define-class <patron>

(<root>)

(name address books))

(define-class <donor>

(<patron>)

(locker-number))

A class is always defined as a subclass of some class. To enable this process to get started,
Scheme OOP contains the definition of a predefined class <root> from which other classes
can be derived. The <root> class does not have any local variables (also called fields or
slots) associated with it; nor does it have any methods.

As mentioned earlier, when a class is defined as a subclass of another class, all the
properites (i.e. fields and methods) are inherited. The class definition mentions the addi-
tions field that objects of the class are to have. Thus class <patron> is defined to have fields
name, address, books in addition to whatever fields that <root> has. But there is nothing
in <root>, so the definition causes <patron> to have just the fields name, address, books.
The class <donor> is defined to be a subclass of <patron> and is deemed to have an ad-
ditional field locker-number. Thus the fields in <donor> will be name, address, books,

locker-number.

18.3.4 Creating Instances

Given the above definitions we can create instances using the make-object form having the
following syntax.

(make-object class-name initial-values-of-fields)

This creates an instance of the specified class, with field values as specified. The initial
values should be specified in the same order that appears in the definition of the class and
its superclasses. Here are some examples:

(define x (make-object <patron> "Ranade" "IITB" ’()))

(define y (make-object <donor> "Dhamdhere" "IITB" ’() 569))
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This will cause x to be an object of class <patron> with its fields name, address, books

set to values “Ranade”, “IITB” and the empty list respectively. y will be set to be an
object of class <donor> with its fields name, address, books, locker-number set to values
“Ranade”, “IITB”, the empty list and the number 569 respectively.

18.3.5 Defining Methods

Methods must be declared, and then defined for different classes, then they may be invoked
on objects of those classes. The general syntax is:

(define-generic name-of-the-method) ;; declaration

(define-method method-name class-on-which-to-be-defined arguments

code) ;; how to define

(method-name object-name arguments) ;; how to invoke

We will start with an example for the <patron> class defined above.

(define-generic issue-book)

(define-method issue-book <patron> (bookno)

(cond ((< (length (self: books)) 4)

(self:set! books

(cons bookno (self: books)))

#t)

(else ’())))

(issue-book x 123) ;; invocation

In the above code, assume x is as defined earlier, i.e. instances of <patron>.
In any method invocation of any method, the first argument must be the object on which

the method is to be invoked. The subsequent arguments are bound to the arguments in
the arguments listed in the method-definition. In the above example, 123 is thus bound to
bookno. The code in the method definition can be any scheme code, and it must return a
value which is the value of the method invocation. However, in addition to ordinary scheme
code, two OOP commands can also be used. These are for accessing and modifying the local
variables of the object, respectively:

(self: local-variable-name)

(self:set! local-variable-name new-value)

:self:

Thus (self: books) in the code above would refer to the books field of x for the invocation
(issue-book x 123); while (self:set! books ...) would set the same field as specified.
Within a method, the object on which is the method is being executed can itself be referred
to as :self:.
Encapsulation: Local variables, or the field in an object cannot be accessed/modified
directly. They can only be accessed/modified inside methods defined for the class. The
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rational for this is encapsulation, i.e. the local variables are hidden from the external world,
and can be accessed by users only in a controlled manner, through the methods.
Inheritance: Although issue-book is explicitly defined only for class <patron> it will
apply to class <donor> as well due to inheritance. So we could write (issue-book y 456)

– this would be legal; but the above code would be used and it would check for the lending
limit of 4 for both x and y.

However, we can redefine the issue-book method for the subclass <donor> as follows:

(define-method issue-book <donor> (bookno)

(self:set! books

(cons bookno (self: books)))

#t)

(issue-book x 123) ; at most 4 books

(issue-book y 345) ; unconditional issue

The general logic that is used to decide which code is to be used when a method is invoked
on a certain object z of class Z is as follows. If the method has been defined explicitly for Z,
then that definition is used. If the method is not defined for Z, then the OOP system checks
if the method is defined in the immediate superclass of Z. If the superclass has the method,
then that definition is used; if not, the superclass of the superclass is checked, and so on. If
neither Z nor any of the superclasses has a definition for the method, then the system signals
an error.

18.3.6 Remark: Incremental specification of functions

In conventional programming languages, a function definition is a single define form:

(define (issue-book patron book) ...)

In OOP, the function definition may be scattered.

(define-method issue-book <patron> (bookno)

...issue only if limit not exceeded...)

(define-method issue-book <donor> (bookno)

...issue unconditionally...)

(issue-book person1 book5)

The define-method forms can be spread out over several files. They dont have to be specified
together. It is this flexibility that makes OOP programs easier to extend. In conventional
programming, including the special case for donors would require modification to the function
issue-book. While making such modifications, there is always the danger that a bug gets
introduced in a part of the code that has already been extensively tested. In OOP, the new
code gets added as a separate method, without the need to alter the existing code

in any way.
This is applicable to the other examples as well. For example, the conventional definition

of deriv is:
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(define (deriv exp) ...)

In OOP, we could have different classes to represent different types of symbolic expressions.
The deriv method for each such class would be defined separately and independently, as and
when the class is added to the code.

(define-method deriv <sine-expression> ()

(cos ...))

(define-method deriv <cos-expression> ()

(sin ...))

18.4 Utility Functions

(class-of object) : returns the class of the object

(class-of x) ==> <patron>

(object? x) : is x an object?

(object? x) ==> #t

(is-a? object class) : is object of an instance of class (direct instance), or a subclass of
class, or a subclass of subclass of class ... (general instance)?

(is-a? y <donor>) ==> #t

(is-a? y <root>) ==> #t

(is-a? x <donor>) ==> ’()

18.5 Object Oriented Design

The first important issue in designing object oriented programs is to define a proper inher-
itance heirarchy (i.e. which class should inherit from which class). Further, you need to
decide where the fields and methods should be defined. The general rule is: if a field or a
method is useful for all the subclasses of a class A then it should be defined in A. In fact a
method should be defined in A even if it is useful for most of the subclasses; if subclasses B,
C need to define the method differently then it can always be redefined in B and C.

It is worth noting that there might be design decision to be made in deciding what should
be a method and what should be a local variable. The general rule here is: If all instances
share the same constant value for a local variable then use a method that simply returns that
fixed value, rather than keeping a variable in every object. Keep this rule in mind while doing
the biology-tutor exercise below.
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18.6 Exercises

1. Add a method to handle the operation (issue-many patron-object list-of-books),
which should cause all the specified books to be issued if possible. (Hint: Use :self:

to repeatedly call the issue-book method of the same object. You can even use the
Scheme function map.)

2. You are to design a dictionary program that provides information about nouns and
verbs of English. It must support the following queries: (1) (plural w) : If w is a noun
return its plural; else return the message “Not a noun”. (2) (past w) : If w is a verb
then return its past tense, else return the message “Not a verb”.

Design a set of classes which will make it easy to store words. You may assume that
English has 3 kinds of nouns: those whose plural is obtained by appending s (e.g.
boy, girl), appending es (e.g. bus), or whose plural is irregular (e.g. ox, life). You
may similarly assume that there are only two kinds of verbs, those whose past tense
is obtained by adding ed (e.g. play, jump) or irregular (e.g. study, run, go). Give the
code that builds a dictionary storing boy, ox (plural oxen), jump, go. It should be easy
to add new words.

You may want to use the symbol-append function which concatenates symbols, e.g.
(symbol-append ’boy ’s) => ’boys

3. A biology-tutor program is to be developed for answering questions about animals.
The program is expected to take questions such as (no-of-limbs cat) and return the
appropriate response, i.e. 4 in this case. The following questions are to be supported:
(1) no-of-legs (2) colour-of-blood (3) blood-temperature, (4) life-span. The following
animals should be in the database: cat, spider, housefly, cockroach, chimpanzee. The
lifespans of these animals may be assumed to be 5, .1, .05, .1, 30 years respectively.
The answers to the other questions should be given as per the following passage.

The animal kingdom may be divided into vertebrates and non-vertebrates.
Vertebrates have red blood while non vertebrates have colourless blood.
Within vertebrates, mammal (e.g. gorilla, cat) and bird families are warm
blooded, while non-vertebrates and other vertebrate families such as reptiles,
amphibians and fish are cold-blooded. Within non-vertebrates are the fami-
lies insecta (e.g. housefly, cockroach) and arachnida (e.g. spiders). Members
of these families have respectively 6 and 8 limbs. Mammals have 4 limbs.

Write the program. Your program should be easy to extend.

4. Write a set of classes that will help in doing animations. This is an open ended problem;
however here we will consider a simple version. Create a system which allows to (i)
define shapes, (ii) Assign velocities and initial positions to the shapes (iii) Show the
evolution of the system as time goes on.

Specifically you should build a “screensaver” showing 2-3 kinds of aeroplanes (i.e.
polygonal shapes) objects moving across the screen. The aeroplanes should disappear
and reappear so as to create a pleasing, natural (to the extent possible!) effect.
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Chapter 19

Containment Heirarchies

A common programming pattern in Object Oriented Programming is to describe large sys-
tems as a nested collection of objects, also termed as containment heirarchies. In this chapter
we will see some examples.

19.1 Logic Circuit Simulation

Yet to be written.

19.2 Exercises

1. The goal of this exercise is to develop a simulation of an Economic System so as to
explore the effects of globalization. Real economists will of course cringe at our model
of an economic system – it is doubtless extremely simplicstic – but then we wont show
this to real economists. Or we can show it to them and ask them to help us improve
it.

Basically our system will consist of certain number of buyers and sellers. Each buyer
or seller will be located in a village. Several villages will comprise a taluka, and several
talukas a district. Our model will be just for one district.

For concreteness, let us assume that our district consists of 8 talukas, each of which
consists of 8 villages. Each village has 4 buyers and one seller. Each seller S will start
off with a working capital of Rs. 10, and will have to pay a rent of Re. 1 every day.
There is a single commodity being traded, say chapatis. Each seller will produce as
many chapatis as there is demand. The cost of each chapati to each seller S will be a
fixed number C(S). For each seller S, we will fix C(S) as a random number1 uniformly
distributed in the interval (rupees) 0.9 to 1.1. C(S) will be fixed for each S for the entire
course of the simulation. Who sells what to whom gets decided every day separately
as follows.

1(random x) will return a random number in the interval 0 to x (non-inclusive). The number returned
is real if x is real, and integer if x is integer.
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Each day starts off with the each seller announcing the price at which he will sell
chapatis. Each buyer needs one chapati every day, however he can buy this from any
seller. If the chapati is bought from the seller in the same village, then there is no
overhead. If it is bought from a seller in the same taluka, then there is an overhead of
10 paise. If it is bought from another taluka, there is an overhead of 20 paise. Each
buyer buys his chapati such that price+overhead is smallest. The sellers collect the
money (the overhead goes for transport) from the buyers and pay the rent. The daily
profit/loss gets added/subtracted from the working capital. If the working capital falls
below zero, the seller goes out of business.

Here is how the seller fixes his price. Define the BE4 price for a seller S as C(S)+0.25,
i.e. the price at which he will break even (i.e. no profit no loss including the rent) if he
sells 4 chapatis. On day 1, every seller fixes his price at his BE4 price. On subsequent
days his rule is very simple: he raises his price by 10 % if he made did not make a loss
the previous day, else he lowers the price by 10 %, but never below his BE4 price.

(a) Evolve the system for 30 days and report the total receipts of the sellers and the
total money paid out by the buyers.

(b) Incorporate the effect of increased globalization as follows. Set to 0 the overhead
for buying from outside your village or your taluka. Now evolve the system for
30 days.

2. The goal of this exercise is to design a program that will be able to draw faces on the
screen. Faces can be round, tall, wide. Noses can have different shapes, let us call them
ordinary, and parrot-beak-shaped. Eyes can have different colours, and can either be
set close or wide (i.e. distance between the eyes can be small or large) and can have
different colours. The mouth can be large or small. This list can go on, but let us stop
here.

How will you design a program that can take user requirements and draw a face? In
particular, you should provide facilities for the user to say something like “Draw a face
which is round, with blue eyes that are set close, and a parrot-beak nose”. Say what
classes you will use, including the heirarchy. What will the methods and the local
variables be? How will a user specify the face that is to be drawn?

A high level answer is expected with some details. You could spend the entire hour
writing out an answer to this problem – but remember it only has 20 marks; so spend
only 20 minutes on it. More only if you have finished solving the other problems.
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Chapter 20

Constraint Logic Programming (CLP)

It is useful to think of programming as consisting of two activities

1. Writing down the specifications precisely and exhaustively. Identifying what is the
input and what is the output and specifying what are the constraints that the output
must satisfy for correctness.

2. Writing a program that constructs the required output.

In the Constraint Logic Programming paradigm, we only do the first step! A programmer
writes down all the constraints that the output must satisfy, and then a constraint solver
which is at the heart of the CLP system processes the constraints and attempts to find the
output values that satisfy the given constraints.

Consider the problem of constructing a 3 × 3 magic square using the digits 1 through 9
exactly once. A magic square is simply a square array of numbers such that all row sums
and column sums are identical. Suppose a, b, c, d, e, f, g, h, i are the numbers in the array as
shown in Figure 20.1. Here is how we could then specify this problem.

Find a, b, c, d, e, f, g, h, i such that

1. 1 ≤ a, b, c, d, e, f, g, h, i ≤ 9

2. a, b, c, d, e, f, g, h, i are distinct integers.

3. a + b + c = d + e + f = g + h + i = a + d + g = b + e + h = c + f + i.

It is clear that any assignment of values satisfying the above constraints will give a magic
square. In the CLP paradigm, we would simply assert the above constraints (using suitable
syntax) and ask the system to find us a solution.

Will a solution always be found if it exists? Will a message be printed if no solution
exists? Suffice to say for now, that a whole range of solvers are available, and they work by

a b c
d e f
g h i

Figure 20.1: Magic Square
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using very sophisticated ideas as well as very obvious ones (e.g. try all possible assignments
until the right one is found). How quickly a solver completes its work (or even whether
it completes in finite time at all) depends upon the problem being solved as well as the
sophistication of the solver. In fact it depends also upon how the problem is specified1

It is safe to say that the time taken by the CLP solver (which is a general purpose
program) will in general be more than a program written precisely to implement the given
specifications. However, writing the specifications alone is always much easier, and as a
result CLP systems are becoming very popular for solving certain kinds of problems. In
fact many CLP systems are available commercially and in the public domain. These include
CHIP, ILOG, ECLIPSE

20.1 Finite Domain CLP

In this book we will consider a relatively simple variant of CLP called finite domain CLP. This
basically means that our problem must be specified using a finite number of variables, and
that each variable can take values from a finite domain. We will call such variables domain
variables. The magic square problem belongs to this category with 9 domain variables, each
variable taking values from the finite domain 1,2,3,4,5,6,7,8,9.

Our CLP system is embedded in Scheme. It contains commands for constructing domain
variables, specifying constraints, and a very simple solver. Note that a CLP program in our
system may freely use scheme commands and additional Scheme variables as needed. Scheme
variables behave in the usual manner, i.e. their value is explicitly set by the program. Domain
variables, which must be explicitly constructed will have their values set by the Constraint
Solver when it is called.

A CLP program is in 4 parts:

1. Initialization of the CLP solver.

2. Definitions of domain variables.

3. Specification of constraints.

4. Invocation of the CLP solver.

These 4 parts are discussed below. We will use two examples to illustrate the ideas. The
first is a trivial problem described only because it is exceedingly simple:

Quadratic Equation Problem: Find positive integers x, y such that x+y = 7
and xy = 12.

The second problem is the magic square problem described earlier.

1For the magic square, we could note that each of the rows/columns must sum to 15 since the numbers
1 through 9 which must all appear sum to 45. Thus, we could have specified the third condition as 15 =
a + b + c = . . .. This will almost certainly ease the work for the solver, leading to a solution faster.
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20.2 Initializing the CLP Solver

This is done by the command:

(clp-init)

This performs some of the book-keeping functions needed by the solver. If the command is
issued in the middle of a session, it causes the solver to start afresh, discarding the constraints
that might have been added earlier. This plays a similar role as gr:reset played in graphics
(i.e. clearing the screen, discarding the transformation commands issued till then).

Every CLP program must begin with this command.

20.3 Definition of domain variables

Here is how a domain variable can be constructed

(dvar domain-specified-as-a-list)

This returns a domain variable. This is simply a scheme object which can be stored in an
ordinary scheme variable so that it can be referred to later. For example:

(define v1 (dvar ’(1 2 3 4 5 6)))

(define v2 (dvar ’(red blue green)))

(define v3 (dvar ’(10 20 30)))

(define v4 (list (dvar ’(1 2 3)) (dvar ’(4 5 6))))

The above declares that v1 must take an integer value between 1 and 6, v2 must take as
value a symbol ’red, ’blue, or ’green, and v3 one of the values 10, 20, 30. v4 is a list of two
domain variables; these must respectively take values in [1,3] and [4,6].

20.3.1 Quadratic Equation Problem:

We are given that x, y are positive integers whose sum is 7. So we may conclude that both
of them are in the range [1,6]. So we would write:

(define x (dvar ’(1 2 3 4 5 6)))

(define y (dvar ’(1 2 3 4 5 6)))

20.3.2 Magic Square Problem:

Each of our variables are known to be positive integers in the range [1,9]. Thus we may
write:
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(define 1to9 ’(1 2 3 4 5 6 7 8 9))

(define a (dvar 1to9))

(define b (dvar 1to9))

(define c (dvar 1to9))

(define d (dvar 1to9))

(define e (dvar 1to9))

(define f (dvar 1to9))

(define g (dvar 1to9))

(define h (dvar 1to9))

(define i (dvar 1to9))

We could of course have written ’(1 2 3 4 5 6 7 8 9) several times instead of defining the
variable 1to9. Note that 1to9 is just an ordinary Scheme variable and not a domain variable.

20.4 Specification of constraints

Any number of constraints may be specified, using the following syntax for each constraint:

(add-rule predicate-of-n-arguments dvar1 dvar2 .... dvarn)

The predicate must be specified as a Scheme procedure. Remember that a Predicate is a
function which returns #t or (). Here are some examples:

(add-rule (lambda (x y) (= 15 (+ x y))) v1 v3)

;; assuming v1 and v3 are as declared above.

(add-rule (lambda (x y) (not (= x y))) (car v4) (cadr v4))

;; assuming v4 is as declared above.

The first command says that the values assigned to v1 and v3 must sum to 15. The second
says that the domain variables in the list v4 should not take the same value.

20.4.1 Quadratic Equation Problem:

In this case we need to describe the rules for the sum and the product. This may be done
as:

(add-rule (lambda (p q) (= (* p q) 12)) x y)

(add-rule (lambda (p q) (= (+ p q) 7)) x y)

20.4.2 Magic Square Problem:

There are two kinds of rules, the first kind constraining the sums of rows, columns and
diagonals, and the second kind asserting that the variables must take distinct values. The
first kind are easy to write down:

94



;; row sums

(add-rule (lambda (x y z) (= 15 (+ x y z))) a b c)

(add-rule (lambda (x y z) (= 15 (+ x y z))) d e f)

(add-rule (lambda (x y z) (= 15 (+ x y z))) g h i)

;; column sums

(add-rule (lambda (x y z) (= 15 (+ x y z))) a d g)

(add-rule (lambda (x y z) (= 15 (+ x y z))) b e h)

(add-rule (lambda (x y z) (= 15 (+ x y z))) c f i)

;; diagonal sums

(add-rule (lambda (x y z) (= 15 (+ x y z))) a e i)

(add-rule (lambda (x y z) (= 15 (+ x y z))) c e g)

Next we need to enforce the distinctness constraints. Since there are 9 variables that must
be distinct, there will be

(

9
2

)

= 36 constraints. All these need not be written out separately;
we can use a set of nested loops containing one add-rule command that is called 36 times.

(do ((i 0 (+ i 1))

(alldvars (list a b c d e f g h i))

)

((= i 8))

(do ((j (+ i 1) (+ j 1)))

((= j 9))

(add-rule (lambda (x y) (not (= x y)))

(list-ref alldvars i)

(list-ref alldvars j))))

As will be seen add-rule will be called 36 times to assert the distinctness of the ith and jth
elements in the list of domain variables alldvars, for each of the 36 unordered pairs i, j.

20.5 Invoking the solver

The Solver may be called as follows

(clp-solve solution-handler)

where solution-handler is a procedure with no arguments that gets called whenever the
Solver finds a solution. This procedure may print the solutions on the screen (as described
below), just count the solutions, or do anything else. The solver will in generall attempt
to find all the solutions, and call solution-handler everytime this happens. However,
solution-handler can contain the command (restart 1) which if executed stops execu-
tion and returns control to the Scheme interpreter.
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"New solution"

((3) (4))

"New solution"

((4) (3)) -- done

;Value: ()

Figure 20.2: Output for the Quadratic Equation Problem

20.5.1 Printing the solutions:

The solutions can be obtained by applying the function domain to each domain variable
of interest. The function returns a list of values which the domain variable can take in
the particular solution found by the solver. Usually, when the solver finds a solution, the
list returned will have length 1. We will call such solutions simple solutions. Occasionally
the solver might group solutions together. Suppose for example that for a certain problem
involving domain variables v1 and v3 there are 2 solutions in the first of which v1 has the
value 1 and v3 the value 10 and in the second of which v1 has the value 2 and v3 the value
10. In this case the solver might present the two solutions together as a group solution. This
is done by the solver returning ’(1 2) in response to (domain v1) and ’(10) in response to
(domain v3). In general, a group solution may be thought of as a compact representation
of many simple solutions2.

Note that it is possible that the problem has no solution; in this case the procedure
specified alongwith clp-solve will not be called at all. So if the solver returns without
calling the specified procedure, then it means there are no solutions.

20.5.2 Quadratic Equation Problem:

In this case we could write:

(clp-solve (lambda ()

(pp "New solution")

(pp (list (domain x) (domain y)))))

The above invocation will result in printing out the two solutions as shown in Figure 20.2.

20.5.3 Magic Square Problem:

We could write:

(clp-solve (lambda ()

(pp "New solution")

(pp (append (domain a) (domain b) (domain c)))

(pp (append (domain d) (domain e) (domain f)))

(pp (append (domain g) (domain h) (domain i)))))

2Given a group solution, a simple solution can be constructed by picking one element from each of the
lists returned. Thus the number of simple solutions is the product of the list lengths.
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"New solution"

(2 7 6)

(9 5 1)

(4 3 8)

"New solution"

(2 9 4)

(7 5 3)

(6 1 8)

"New solution"

(4 3 8)

(9 5 1)

(2 7 6)

...

Figure 20.3: Fragment of the output for Magic Squares

The above invocation will print out all the solutions. A fragment of the output from the
above invocation is shown in Figure 20.3.

20.6 Exercises

The following problems should be solved using CLP.

1. Find all 3 digit numbers which equal the sum of the cubes of their digits. One example
is 370 = 33 + 73 + 03.

2. Suppose I am building a house. This involves activities (i) Foundation-laying, (ii)
Building-ground-floor (iii) building-first-floor (iv) ground-floor-plumbing (v) ground-
floor-wiring (vi) first-floor-plumbing (vii) first-floor-wiring (viii) clearing-the-plot (ix)
buying-construction-material. Each activity takes 1 day, and several activities may go
on simultaneously, subject to the following rules:

(a) Foundation-laying can only be done after clearing-the-plot.

(b) Any of the activities involving building, plumbing and wiring can only be done
after foundation-laying and buying-construction-material.

(c) Building-ground-floor must happen before building-first-floor.

(d) Wiring and plumbing of any floor can happen only after the floor is built.

(e) Both the floors must be plumbed on the same day.

The question to be answered is whether all the activities can together finish in 5 days.
Write a CLP program to answer the question. Your program should print which day
each activity happens.
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(Although this problem is trivial, you should organize your program so that it is clear
that the ideas you use will be able to handle other similar, possibly more intricate
problems.)

3. Write a program to solve the n queens problem. The problem is to place n queens on
an n × n chessboard so that no two queens are in the same row, column or diagonal.
You should print all the solutions, along with a serial number for each solution. (Hint:
Use n domain variables, the ith representing the position of a queen in the ith column.)
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Chapter 21

Implementation of Our CLP Solver

Building a CLP system has 2 parts: developing a language using which the user can specify
the domain variables and the constraints, and developing a Solver. In this chapter we will
present a brief high level description of th Solver used in our CLP system. The strategies
used in the solver could range from the simplest to the most sophisticated.

Here is the simplest strategy possible. Since our CLP programs only have a finite number
of domain variables, each with a finite domain, then there are only a finite number of
candidates which need be considered. In particular, if the domain variables are x1, . . . , xn

and each variable xi has a domain of size di, then we only need to examine if any of the Πdi

ways of setting the domain variables satisfies all the specified rules. If Πdi is large, then this
strategy will require high execution time.

At the other end of the spectrum are strategies that attempt to understand the specified
constraints rules. For example, if all constraints in a program happened to be linear simulta-
neous equations, then we can use GAUSS ELIMINATION or CRAMER’S RULE1 This will
certainly be faster than considering all possible ways of assigning the variables and seeing
which ones satisfied the equations. Another idea is to see if the given set of constraints
can be transformed into an equivalent set of linear simultaneous equations. If this can be
done, even then the solution could be obtained rapidly. Unfortunately, even the simplest sets
of constraints arising in practice cannot be transformed into linear simultaneous equations.
However, there are other class of constraints, more richer than the class of linear simulta-
neous equations using which many constraint satisfaction problems can be expressed. One
such class is that of Integer Linear Programs. Here, the domain variables xi are integers,
and the constraints are of the form

∑

aijxj ≤ bi, where aij , bi are constants. Unfortunately,
finding solutions to integer linear programs is not easy; the algorithms are complex and can
still have long execution times. However, this approach is certainly better than the brute
force approach of trying all solutions.

Our CLP solver uses the brute force approach, but with some refinements. In this chapter
we will discuss the brute force approach as well as the refinements.

1Gaussian Elimination would be strongly preferred, if the number of equations and unknowns was large.
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21.1 Brute Force Approach

In this, we consider all possible ways for assigning values to the domain variables, and from
those print out those assignments which satisfy all the rules.
Example: Suppose we have 3 domain variables x, y, z, with domains [1,5], [1,5], [5,7] re-
spectively, and two rules: (i) x = y, and (ii) z + y = 6.

In this case, if we were to use the brute force strategy we would make a table showing
all possible ways in which values can be assigned to x, y, z.

x y z ;; Table 1

1 1 5

1 1 6

1 1 7

1 2 5

1 2 6

1 2 7

....all the way till

5 5 6

5 5 7

Since there are 5 possibilities each for x, y and 3 for z, table 1 will have 5 × 5 × 3 = 75
entries. Next we will examine each entry of the table and retain the entry if the rules are
satisfied, and throw out the entry if any of the rules was not satisfied.

21.2 Refinements

The basic question is, can we get away without examining all the possible assignments to all
the variables? We will describe a simple strategy that does this.

Consider our example again. Rather than write down all the assignments first and then
examine them, suppose we begin with writing down the ways of assigning values only to the
variables x, y which are named in the first rule. Since x, y both lie in [1,5], we will write
down 25 different possible assignments:

x y ;; table 2

1 1

1 2

1 3

...

5 5

Now, we right away PRUNE this list by throwing out all the assignments in which the
first rule is not satisfied. Since the first rule says x = y, we are left with 5 assignments

x y ;; table 3

1 1

2 2
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3 3

4 4

5 5

This procedure is justified because we know that in no solution is any of the discarded
possibilities (e.g. x=1, y=2) going to arise– all the possible values that the pair of variables
x,y will have in any solution are included in the 5 assignments above in table 3.

Next we consider rule 2. Rule 2 refers to variables y, z. Although we have written down
the possibilities for y, we have done nothing yet with z. So we next how to augment each of
the assignments to x, y allowed by table 3 to include z as well. For each assignment given,
we can have 3 ways of assigning z (without worrying yet whether rule 2 applies). So we write
down all such assignments.

x y z ;; table 4

1 1 5

1 1 6

1 1 7

2 2 5

2 2 6

...

5 5 7

Table 4 has 3 entries for every entry in table 3, and thus a total of 15 entries.
Now we apply rule 2 to the entries in table 4, and throw out all the entries that do not

satisfy the rule. This gives us table 5.

x y z ;; table 5

1 1 5

We can confidently claim that this is the only solution to our problem. The proof is by
contradiction. Suppose some other solution (i,j,k) exists other than (1,1,5) which we found.
Now, (i,j) is simply a possible way to assign values to x, y, and hence this must have appeared
in table 2. But (i,j) also satisfies rule 1, hence this entry must have survived to table 3. But
every entry in table 3 is appended with every possible value of z to generate table 4. Since
k is one of the possible values of z, the entry (i,j,k) must be present in table 4. But now we
kept all the entries in table 4 that satisfied rule 2; hence we must have kept entry (i,j,k).
Thus (i,j,k)=(1,1,5), completing the proof.
Reduction in work: Table 2 only had 25 entries, table 3 had 5, table 4 had 15 and table 5
had 1. Thus the total number of entries we handled during the process is 25+5+15+1=41.
The number of times we applied rule 1 was 25 (to entries of table 2). The number of times
we applied rule 2 was 15 (to entries of table 2).

Contrast this with the brute force approach mentioned earlier. We needed to examine
the 75 entries of table 1 (each was at least as large as any of the entries of the other tables).
Further, we applied rule 1 to each entry, i.e. 75 times. Rule 2 was applied to all those entries
that survived the first rule, it can easily be seen that this number is 15.

So overall we have substantial reduction in the amount of work needed, in the number of
table entries that needed to be created, as well as the number of applications of the rules.
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21.3 General Case

The idea described above can be stated in general as follows.

1. Let R1, R2, . . . , Rn denote the rules. Then for i = 1, . . . , n do:

(a) Let X denote the set of variables which were named in rules R1, . . . , Ri−1, and Y
the set of variables which are named in Ri but not in the preceding rules.

(b) Extend the assignments generated for the variables in X to include the the vari-
ables in Y .

(c) Throw out any of the generated assignments that do not satisfy rule Ri.

2. Print out all the assignments that survive to this point. These are the solutions.

21.4 Implications

The order in which rules are given is important.
For example, if we had given the rule z+y=6 first, then we would have 15 entries in table

2. Keeping only the entries that satisfied this rule we would get only 1 entry in table 3.
Then to apply the rule x = y we would augment table 3 with all possible ways of assigning
values to variable x. This would produce table 4 with 5 entries. Keeping only those entries
that satisfy rule x = y, we would get table 5 with 1 entry as before. Notice, however, that
the work done with this order is even less!

The second issue is how do we formulate the rules. We could encode the above rules
using our add-rule command as either:

(add-rule (lambda (a b) (= a b)) x y)

(add-rule (lambda (a b) (= 6 (+ a b)) y z))

or as a single rule:

(add-rule (lambda (a b c) (and (= a b) (= 6 (+ b c)))) x y z)

There is a clear difference in the amount of work needed in the two formulations. The second
formulation will require the enumeration of all possible ways to instantiate the variables
named in the rule, i.e. x, y, z. So if we use this formulation, we will right away start with 75
possibilities.

21.4.1 Summary

The manner in which rules are formulated as well as the order in which they are specified
can make a substantial difference in the amount of work needed to find solutions.

Here are some heuristics which should be used in formulating rules in CLP programs.
The basic idea behind the heuristics is to keep the size of the tables small at all time during
execution.

1. Break a rule involving several variables into many rules, each involving fewer variables
if possible. An example of this is discussed above.
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2. Rules which are stricter should be considered before less strict rules. The intuition is
to keep the size of the tables small at all times. A stricter rule is likely to result in
smaller tables.

3. Rules involving fewer variables should be considered first.

4. Rules involving smaller domains should be considered first. Again the idea is to keep
the size of the current table of possible assignments small.

Note that rules 2 and 3 should be considered in a relative sense. For example, suppose already
rules R1, R2 which refer to variables x, y, z have been applied. There are two additional rules,
R which refers to variables x, y, z and R′ which refers to variables x, w. Which should be
applied next? Based on a naive reading of our heuristics you would say R′ since it only
involves two variables as opposed to 3 involved by R. However, R involves variables which
have already been instantiated, hence considering R would only reduce the size of the table,
whereas R′ would increase the size potentially.

Note finally, that the above heuristics are not foolproof – it is possible that a different
order than the one suggested above will produce smaller tables. It seems though that the
above heuristics will be helpful most of the time.

21.5 Finding a solution vs. finding an optimal solution

In many problems the need is to find an optimal solution, e.g. maximize the value that can
be carried in a given bag (exercise 2 below). Our CLP system does not handle such problems
directly, but it can be made to do so indirectly.

Our CLP system basically answers the question “Is there an assignment of variables
satisfying the given constraints?”. If f(x, y, z) is some function that we want maximized
(e.g. the value of the items accomodated in the given bag), the we can certainly add a
constraint which reads “f(x,y,z)>100”. If this has a solution, then you increase the bound
100 to 110 for example and try again. If no solution is reported by the system for 110, then
you know that the maximum weight that can be carried must be between 100 and 110. Thus
you can try 105 and so on.

21.6 Exercises

1. Suppose you are given data about which countries in a map are adjacent to one another.
This could be given as a list, for example, ’((india pakistan) (iran afghanistan)

(india nepal) (india china) (china nepal)(afghanistan pakistan)) The goal
is to find a colour for each country such that adjacent countries get different colours.
The famous four colour map theorem asserts that any map (drawn on a sphere) can
be coloured in 4 colours. Can you write a CLP program that does this? Examine the
different orders in which you might specify the constraints and see the effect it has on
the size of the tables constructed during the execution.

2. Suppose you are given the value vi and weight wi for each of n items, i = 1, . . . , n.
Your can carry a total weight W (given). Can you pick a set that has the value at
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least What subset should you pick so that it is as valuable as possible? Suppose the
items have values 50,20,35 and weights 10,5,8 respectively, and W=14. Then the last
two items should be picked.2

Can you formulate the problem as a set of rules rather than as a single rule?

3. Substitute a unique digit for each of the letters in the following so that it becomes a
valid arithmetic expression.

S E N D
+ M O R E

M O N E Y

2This example should pursuade you that the problem is difficult; simple strategies such as always pick
the most valuable item or the item with highest ratio value/weight do not work.

104



Chapter 22

Modelling with CLP

In this chapter we will consider how problems can be expressed using CLP.

22.1 Knapsack Problem

Alibaba has just entered his famous cave and is dazzled by all the wealth lying there. He
needs to decide how to carry back the most valuable objects such that his knapsack does not
break. Suppose his knapsack can carry at most W kg weight. He sees n objects lying in the
cave and can instantly judge that the ith object has weight Wi and value Vi. Which objects
should he carry?

Alibaba basically needs to make a decision about each object: whether to take it or
not. These decisions are what we need to help him with. It is customary to model the ith
decision by an indicator variable xi, with xi = 1 indicating that the ith item is selected, and
xi = 0 indicating that the ith item is not selected. These variables must satisfy the following
constraint:

n
∑

i=1

xiWi ≤ W

Note that this is simply saying that the weights of the selected objects must be at most
W kg, which is indeed the condition for the knapsack not breaking. The value that is picked
up by Alibaba is given as:

n
∑

i=1

xiVi

Our goal is to maximize this value. So following the discussion in the last chapter, we will
formulate our problem as:

Find xi, i = 1, . . . , n and the largest V such that

1. Each xi is either 0 or 1.

2.
∑n

i=1 xiWi ≤ W

3.
∑n

i=1 xiVi = V

To find the maximum we will simply adopt trial and error (or binary search). In other words,
we will solve the above problem for different values of V , and see which is the largest value
of V for which a solution is obtained.
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22.1.1 Solving for a fixed V

For any fixed V , we can indeed formulate the conditions given earlier in the language of our
CLP solver. However this may not be the best formulation. The reason is that we only
have two conditions, each of which refer to all the n variables. We had remarked earlier that
instead of having one condition that refers to many variables, it is better to have several
conditions each of which refer to a few variables. This can be done using the following
observations:

∑n
i=1 xiWi ≤ W

⇒ ∑j
i=1 xiWi ≤ W −∑n

i=j+1 xiWi

⇒ ∑j
i=1 xiWi ≤ W (22.1)

We can also argue similarly for the condition on V

∑n
i=1 xiVi ≥ V

⇒ ∑j
i=1 xiVi ≥ V −∑n

i=j+1 xiVi

⇒ ∑j
i=1 xiVi ≥ V −∑n

i=j+1 Vi (22.2)

The last inequality follows since
∑n

i=j+1 xiVi ≤ ∑n
i=j+1 Vi.

Hence we can use rules of the form (22.1) and (22.2).
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