
Foundations of Parallel Computation

Abhiram Ranade

In preparation.

c©2015 by Abhiram Ranade. All rights reserved.

Contents

1 Introduction 7
1.1 Parallel Computer Organization . 7

1.1.1 Network Model (Fine-grained) . 9
1.2 Coarse grained models . 9
1.3 Parallel Algorithm Design . 10

1.3.1 Matrix Multiplication . 11
1.3.2 Prefix computation . 13
1.3.3 Selection . 15

2 Model (fine-grained) 20
2.1 Model . 20
2.2 Input Output protocols . 20
2.3 Goals of parallel algorithm design . 21

2.3.1 Fast but inefficient computation . 22
2.4 Lower bound arguments . 22

2.4.1 Speedup based bounds . 22
2.4.2 Diameter Bound . 22
2.4.3 Bisection Width Bound . 23

2.5 Exercises . 24

3 More on prefix 25
3.1 Recognition of regular languages . 25

4 Simulation 28
4.0.1 Simulating large trees on small trees . 28
4.0.2 Prefix Computation . 29
4.0.3 Simulation among different topologies . 29

5 Sorting on Arrays 31
5.1 Odd-even Transposition Sort . 31
5.2 Zero-One Lemma . 31
5.3 The Delay Sequence Argument . 32
5.4 Analysis of Odd-even Transposition Sort . 33
5.5 Exercises . 34

2

6 Sorting in coarse grained models 35
6.1 Parallel sorting by regular sampling . 35
6.2 Exercises . 37

7 Systolic Conversion 38
7.1 Palindrome Recognition . 38
7.2 Some terminology . 39
7.3 The main theorem . 40
7.4 Basic Retiming Step . 40
7.5 The Lag Function . 40
7.6 Construction of lags . 41
7.7 Proof of theorem . 41
7.8 Slowdown . 42
7.9 Algorithm design strategy summary . 42
7.10 Remark . 43

8 Applications of Systolic Conversion 44
8.1 Palindrome Recognition . 44
8.2 Transitive Closure . 44

8.2.1 Parallel Implementation . 45
8.2.2 Retiming . 46
8.2.3 Other Graph Problems . 46

9 Hypercubes 48
9.1 Definitions . 48

9.1.1 The hypercube as a graph product . 48
9.2 Symmetries of the hypercube . 49
9.3 Diameter and Bisection Width . 49
9.4 Graph Embedding . 50

9.4.1 Embedding Rings in Arrays . 51
9.5 Containment of arrays . 51
9.6 Containment of trees . 52
9.7 Prefix Computation . 53

9.7.1 Prefix computation in subcubes . 53

10 Normal Algorithms 55
10.1 Fourier Transforms . 55
10.2 Sorting . 57

10.2.1 Hypercube implementation . 58
10.3 Sorting . 58
10.4 Packing . 59

11 Hypercubic Networks 61
11.1 Butterfly Network . 61

11.1.1 Normal Algorithms . 62
11.2 Omega Network . 63
11.3 deBruijn Network . 64

11.3.1 Normal Algorithms . 64
11.4 Shuffle Exchange Network . 64
11.5 Summary . 65

12 Message Routing 67
12.1 Model . 68
12.2 Routing Algorithms . 68
12.3 Path Selection . 69
12.4 Scheduling . 69
12.5 Buffer Management . 70
12.6 Basic Results . 71
12.7 Case Study: Hypercube Routing . 71
12.8 Case Study: All to All Routing . 72
12.9 Other Models . 73

13 Permutation routing on hypercubes 75

14 Queuesize in Random Destination Routing on a Mesh 78
14.1 O(

√
N) Queuesize . 78

14.2 O(logN) Queuesize . 79
14.3 O(1) Queuesize . 79

14.3.1 Probability of Bursts . 79
14.3.2 Main Result . 80

15 Existence of schedules, Lovasz Local Lemma 81
15.0.3 Some Naive Approaches . 82
15.0.4 The approach that works . 82

16 Routing on levelled directed networks 84
16.1 The Algorithm . 85
16.2 Analysis . 86

16.2.1 Events and Delay sequence . 86
16.2.2 Main theorem . 87

16.3 Application . 88
16.3.1 Permutation routing on a 2d array . 88
16.3.2 Permutation routing on a Butterfly . 89

17 Introduction to PRAMs 91
17.1 Simulation of PRAMS on Networks . 92
17.2 Comparison of CREW and EREW . 93
17.3 Comparison of EW and CW . 93

18 List Ranking and Applications 94
18.1 Wyllie’s Algorithm: n processors, O(log n) time . 94
18.2 Efficient Randomized Algorithm . 95
18.3 Deterministic Algorithm Using Coloring . 96
18.4 Leaf Numbering on a Tree . 98

18.5 Evaluating Expression Trees . 99

19 Convex Hull in two dimensions 101
19.1 Preliminaries . 101
19.2 Uniprocessor Algorithm . 101
19.3 N processor, log2N time algorithm . 103
19.4 Brent’s scheduling principle . 103
19.5 N/ logN processor, log2N time algorithm . 104
19.6 A Tree algorithm . 104
19.7 Butterfly Network . 105
19.8 Other networks . 106
19.9 Exercises . 106

20 VLSI Layouts 107
20.1 Layout Model . 107

20.1.1 Comments . 108
20.1.2 Other costs . 109

20.2 Layouts of some important networks . 109
20.2.1 Divide and conquer layouts . 109

20.3 Area Lower bounds . 110
20.4 Lower bounds on max wire length . 110

21 VLSI Lower bounds 112
21.1 Model . 112
21.2 Lower bounds on chip area . 113

21.2.1 Cyclic Shift Lower bound . 113
21.2.2 Generalizations of the cyclic shift problem 114
21.2.3 Further generalization . 115
21.2.4 Integer Multiplication . 115

21.3 Summary of Area Bounds . 116
21.4 AT bounds . 116
21.5 AT 2 Bounds . 116
21.6 Cyclic Shift . 117

21.6.1 Summary . 118
21.7 Matrix multiplication . 118

21.7.1 Proof Outline: . 118
21.8 Proof . 119
21.9 Sorting . 120
21.10Concluding remarks . 120

21.10.1 An interesting observation . 121
21.11Exercises . 121

22 Area Universal Networks 122
22.1 Fat Tree . 122
22.2 Simulating other networks on Fh(h) . 123

22.2.1 Simulating wires of G . 123
22.2.2 Congestion . 123

22.2.3 Simulation time . 123

23 Parallel Programming 125
23.1 The map reduce model . 126

23.1.1 Implementation of map reduce programs . 127
23.1.2 Commutative associative reductions . 128

23.2 Example . 128
23.3 Additional remarks . 129

Chapter 1

Introduction

A parallel computer is a network of processors built for the purpose of cooperatively solving large
computational problems as fast as possible. Several such computers have been built, and have been
used to solve problems much faster than would take a single processor. The current fastest parallel
computer (based on a collection of benchmarks, see http://www.top500.org/lists/2015/06/) is the
Tianhe-2 system from China, containing 3,120,000 procesors. This computer is capable of perform-
ing 55× 1015 floating point computations per second (often abbreviated as 55 Petaflops). Parallel
computers are routinely used in many applications such as weather prediction, engineering design
and simulation, financial computing, computational biology, and others. In most such applications,
the computational speed of the parallel computers makes them indispensible.

How are these parallel computers built? How do you design algorithms for them? What are
the limitations to parallel computing? This course considers these questions at a foundational
level. The course does not consider any specific parallel computer or any specific language for
programming parallel computers. Instead, abstract models of parallel computers are defined, and
algorithm design questions are considered on these models. We also consider the relationships
between different abstract models and the question of how to simulate one model on other model
(this is similar to the notion of portability of programs).

The focus of the course is theoretical, and the prerequisites are an undergraduate course in
Design and Analysis of Algorithms, as well as good background in Probability theory. Probability
is very important in the course because randomization plays a central role in designing algorithms
for parallel computers.

In this lecture we discuss the general organization of a parallel computer, the basic programming
model, and some algorithm design examples. We will briefly comment on issues such as parallel
programming languages, but as mentioned earlier, this is beyond the scope of the course.

1.1 Parallel Computer Organization

A parallel computer is built by suitably connecting together processors, memory, and switches. A
switch is simply hardware dedicated for handling messages to be sent among the processors.

The manner in which these components are put together in a parallel computer affects the ease
and speed with which different applications can be made to run on it. This relationship is explored
in the following sections. The organization of the parallel computer also affects the cost. Thus the
main concern in parallel computer design is to select an organization/network which keeps cost low
while enabling several applications to run efficiently.

7

m m m m
m m m m
m m m m
m m m m

m m m m
m m m m
m m m m
m m m m

m m m m
m m m m
m m m m
m m m m

m m m m
m m m m
m m m m
m m m m

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

........
........
.....

m
m m�
�
�

.B
B
B

m
m m�
�
�

.B
B
B

m
"
"
"
""

.
b
b
b
bb m

m m�
�
�

.B
B
B

m
m m�
�
�

.B
B
B

m
"
"
"
""

.
b
b
b
bb

m
��

��
�
��

�
��

.H
HHH

HHH
HHH

(1.1) (1.2)

(1.3)

Figure 1. Parallel Computer Organizations

Figure 1 schematically shows the organization of several parallel computers that have been built
over the years. Circles in the Figure represent a node which might consist of a processor, some
memory, and a switch. The memory in a node is commonly referred to as the local memory of
the processor in the node. Nodes are connected together by communication links, represented by
lines in the Figure. One or several nodes in the parallel computer are typically connected to a host,
which is a standard sequential computer, e.g. a PC. Users control the parallel computer through
the host.

Figure 1.1 shows an organization called a two dimensional array, i.e. the nodes can be thought of
as placed at integer cartesian coordinates in the plane, with neighboring nodes connected together
by a communication link. This is a very popular organization, because of its simplicity, and as we
will see, because of the ease of implementing certain algorithms on it. It has been used in several
parallel computers, including The Paragon parallel computer built by Intel Corporation. Higher
dimensional arrays are also used. For example, the Cray T3E parallel computer as well as the
IBM Blue Gene computer are interconnected as a 3 dimensional array of processors illustrated in
Figure 1.2.

Figure 1.3 shows the binary tree organization. This has been used in some parallel computers.
Our real reason for including it, however, is that it is useful in demonstrating some important
parallel algorithms. These algorithms can execute on other organization/networks too: we simply
use only a suitable spanning tree in network and ignore the other communication links.

Besides two and three dimensional arrays and binary trees, several other organizations have been
used for interconnecting parallel computers. We will study some of them later on in the course.

1.1.1 Network Model (Fine-grained)

At a fundamental level, a parallel computer is programmed by specifying the program that each
processor in it must execute. In most common parallel computer organizations, a processor can
only access its local memory. The program provided to each processor may perform operations
on data stored in its local memory, much as in a conventional single processor computer. But in
addition, processors in a parallel computer can also send and receive messages from processors to
which they are connected by communication links. So for example, each processor in Figure 1.1 can
send messages to upto 4 processors, the ones in Figure 1.2 to upto 6 processors, and in Figure 1.3
to upto 3 processors.

For estimating the execution time of the programs, it is customary to assume that the programs
can perform elementary computational operations (e.g. addition or multiplication) on data stored in
local memory in a single step. For much of the course we will assume that it takes a single time step
to send one word of data to a neighboring processor. This is a reasonable assumption for physically
small parallel computers. It is also a good assumption for understanding parallel algorithm design.
Further, many of the algorithms we design will be useful even if communication is more expensive.

1.2 Coarse grained models

The programming model described above can be considered to be ”fine-grained” because commu-
nication could happen inexpensively in every step.

For most large scale computers, a coarse grained model is more suitable. In this, each processor
can perform unit computation on local data at each step as in the fine grained model. However, the

communication, even with neighbouring processors, takes longer. To send w words, it takes time
L+wg, where L, g are parameters, typically both greater than 1. In this model unit communication
could be as much as L + g times as expensive as unit computation. Thus this model discourages
communication. Note further that if you wish to send 2 words, it is faster to send them in a single
communication step which takes L + 2g steps, rather than in two steps which will together take
2(L + g) steps. Thus this model encourages grouping communication together. Hence the name
coarse grained.

There is another feature of large parallel computers that deserves mention: these computers
typically have processors specialized for computation and for communication. The communication
processors facilitate the communication between the computational processors. They may serve
like a telephone system or a postal system connecting the computational processors, i.e. allow one
computational processor to send data to any processor in the network rather than only those to
which it is directly connected. Note that the communication processors are not expected to be
programmed by the users; the users only decide what runs on the computational processors.

We will also consider how such communication processors and the network connecting them
ought to be designed.

1.3 Parallel Algorithm Design

In order to solve an application problem on a parallel computer we must divide up the computation
required among the available processors, and provide the programs that run on the processors. How
to divide up the computation, and how to manage the communication among the processors falls
under the subject of parallel algorithm design. Parallel algorithm design is a vast field. Over the
years, parallel algorithms have been designed for almost every conceivable computational problem.
Some of these algorithms are simple, some laborious, some very clever. I will provide a very
brief introduction to the field using three examples: matrix multiplication, a problem called prefix
computation, and the problem of selecting the rth largest from a given set of n numbers. These
three examples will in no way cover the variety of techniques used for parallel algorithm design, but
I hope that they will illustrate some of the basic issues. All these problems will be considered in
the network model.

One strategy for designing a parallel algorithm is to start by understanding how the problem
might have been solved on a conventional single processor computer. Often this might reveal that
certain operations could potentially be performed in parallel on different processors. The next step
is to decide which processor will perform which operations, where input data will be read and
how the data structures of the program will be stored among the different processors. For high
performance, it is desirable that (1) no processor should be assigned too much work– else that
processor will lag behind the others and delay completion (2) The processors should not have to
waste time waiting for data to arrive from other processors: whatever data is needed by them should
ideally be available in their local memories, or arrive from nearby processors. The algorithms we
present for matrix multiplication and for selection essentially use this strategy: the operations in
well known sequential algorithms are mapped to the different processors in the parallel computer.

Sometimes, however, the natural algorithm used on single processors does not have any opera-
tions that can be performed in parallel. In this case we need to think afresh. This is needed in the
algorithm for prefix computation.

When designing parallel algorithms, an important question to be considered is which model

procedure matmult(A,B,C,n)

dimension A(n,n),B(n,n),C(n,n)

do i=1,n

do j=1,n

C(i,j)=0

do k=1,n

C(i,j)=C(i,j)+A(i,k)*B(k,j)

enddo

enddo

enddo

end

Figure 2. Sequential Matrix Multiplication

to use. Often, it is useful to start by considering the most convenient model. Once we have an
algorithm for one model, it may be possible to simulate it on other models.

1.3.1 Matrix Multiplication

I shall consider square matrices for simplicity. The sequential program for this problem is shown in
Figure 2.

The program is very simple: it is based directly on the definition of matrix multiplication
(cij =

∑
k aikbkj). More sophisticated algorithms are known for matrix multiplication, but this is

the most commonly used algorithm. It is clear from the code that all the n2 elements of C can be
calculated in parallel! This idea is used in the parallel program given in Figure 3.

An n× n two dimensional array of processors is used, with processors numbered as shown. All
processors execute the program shown in the figure. Notice that each basic iteration takes 3 steps
(after data is ready on the communication links), I will call this a macrostep.

Matrix B is fed from the top, with processor 1i receiving column i of the matrix, one element
per macrostep, starting at macrostep i. Processor 11 thus starts receiving its column in macrostep
1, processor 12 in macrostep 2, and so on. This is suggested in Figure 3 by staggering the columns
of B. Likewise, matrix A is fed from the left, with processor j1 receiving row j, one element
per macrostep, starting at macrostep j. The code for each processor is exceedingly simple. Each
processor maintains a local variable z, which it initializes to zero. Then the following operations
are repeated n times. Each processor waits until data is available on the left and top links. The
numbers read on the two links are multiplied and the product added to the local variable z. Finally,
the data read on the left link is sent out on the right link, and the data on the top sent to the
bottom link.

I will show that processor ij in the array will compute element C(i, j) in its local variable z.
To see this notice that every element A(i, k) gets sent to every processor in row i of the array. In
fact, observe that processor ij receives elements A(i, k) on its left link at macrostep i + j + k − 1.
Similarly processor ij also receives B(k, j) on its top link at the same step! Processor ij multiplies

13233343

m m m m
m m m m
m m m m
m m m m

21

22

23

enddo

z = z + x*y
Transmit x on right link, y on bottom link

?

-

11213141

12223242

14243444

CODE FOR EVERY PROCESSOR

local x,y,z,i

z = 0
do i = 1 to n 24 33

34

42

43

44

11

12

13

14

31

32 41

B

A

x = data read from left link
y = data read from top link

Receive data on top and left links

Figure 3. Parallel Matrix Multiplication

procedure prefix(x,y,n)

dimension x(n),y(n)

y(1) = x(1)

do i=2,n

y(i) = y(i-1) + x(i)

enddo

end

Figure 4. Sequential Prefix Computation

these elements, and notice that the resulting product A(i, k) ∗ B(k, j) is accumulated in its local
variable z. Thus it may be seen that by macrostep i + j + n − 1, processor ij has completely
calculated C(i, j). Thus all processors finish computation by macrostep 3n− 1 (the last processor
to finish is nn). At the end every processor ij holds element C(i, j).

The total time taken is 3n− 1 macrosteps (or 9n− 3 steps), which is substantially smaller than
the approximately cn3 steps required on a sequential computer (c is a constant that will depend
upon machine characteristics). The parallel algorithm is thus faster by a factor proportional to n2

than the sequential version. Notice that since we only have n2 processors, the best we can expect
is a speedup of n2 over the sequential. Thus the algorithm has acheived the best time to within
constant factors.

At this point, quite possibly the readers are saying to themselves, “This is all very fine, but
what if the input data was stored in the processors themselves, e.g. could we design a matrix
multiplication algorithm if A(i, j) and B(i, j) were stored in processor ij initially and not read
from the outside?” It turns out that it is possible to design fast algorithms for this initial data
distribution (and several other natural distributions) but the algorithm gets a bit more complicated.

1.3.2 Prefix computation

The input to the prefix problem is an n element vector x. The output is an n element vector y
where we require that y(i) = x(1) + x(2) + · · · + x(i). This problem is named prefix computation
because we compute all prefixes of the expression x(1) + x(2) + x(3) + · · ·+ x(n). It turns out that
prefix computation problems arise in the design of parallel algorithms for sorting, pattern matching
and others, and also in the design of arithmetic and logic units (ALUs).

On a uniprocessor, the prefix computation problem can be solved very easily, in linear time,
using the code fragment shown in Figure 4. Unfortunately, this procedure is inherently sequential.
The value y(i) computed in iteration i depends upon the value y(i − 1) computed in the i − 1th
iteration. Thus, if we are to base any algorithm on this procedure, we could not compute elements
of y in parallel. This is a case where we need to think afresh.

Thinking afresh helps. Surprisingly enough, we can develop a very fast parallel algorithm to
compute prefixes. This algorithm called the parallel prefix algorithm, is presented in Figure 5. It
runs on a complete binary tree of processors with n leaves, i.e. 2n− 1 processors overall.

procedure for leaf processors

local val, pval

read val

send val to parent

Receive data from parent

pval = data received from parent

write val+pval

end

procedure for internal nodes

local lval, rval, pval

Receive data from left and right children

lval = data received from left child

rval = data received from right child

send lval+rval to parent

Receive data from parent

pval = data received from parent

send pval to left child

send pval+lval to right child

end

procedure for root

local lval, rval

Receive data from left and right children

lval = data received from left child

rval = data received from right child

send 0 to left child

send lval to right child

end

Figure 5. Parallel Prefix Computation

The code to be executed by the processors is shown in Figure 5. The code is different for the
root, the leaves, and the internal nodes. As will be seen, initially all processors except the leaf
processors execute receive statements which implicitly cause them to wait for data to arrive from
their children. The leaf processors read in data, with the value of x(i) fed to leaf i from the left.
The leaf processors then send this value to their parents. After this the leaves execute a receive
statement, which implicitly causes them to wait until data becomes available from their parents.

For each internal node, the data eventually arrives from both children. These values are added
up and then sent to its own parent. After this the processors wait for data to be available from
their parent.

The root waits for data to arrive from its children, and after this happens, sends the value 0 to
the left child, and the value received from its left child to its right child. It does not use the value
sent by the right child.

The data sent by the root enables its children to proceed further. These children in turn execute
the subsequent steps of their code and send data to their own children and so on. Eventually, the
leaves also receive data from their parents, the values received are added to the values read earlier
and output.

Effectively, the algorithm runs in two phases: in the “up” phases all processors except the root
send values towards their parent. In the “down” phase all processors except the root receive values
from their parent. Figure 6 shows an example of the algorithm in execution. As input we have
used x(i) = i2. The top picture shows values read at the leaves and also the values communicated
to parents by each processor. The bottom picture shows the values sent to children, and the values
output. Figure 6 verifies the correctness of the algorithm for an example, but it is not hard to do
so in general. The two main insights are (a) Each internal node sends to its parent the sum of the
values read in its descendant leaves, and (b) Each non root node receives from its parent the sum
of the values read to the left of its descendant leaves. Both these observations can be proved by
induction.

In the “up” phase, the leaves are active only in the first step, their parents only at step 2, their
parents in turn only at step 3, and so on. The root receives values from its children in step log n,
and sends data back to them at step (log n) + 1. This effectively initiates the “down” phase. The
down phase mirrors the up phase in that activity is triggered by the root, and the leaves are the last
to get activated. Thus the entire algorithm finishes in 2 log n steps. Compare this to the sequential
algorithm which took about n steps to complete. 2 log n is much smaller!1

In conclusion even though at first glance it seemed that prefix computation was inherently
sequential, it was possible to invent a very fast parallel algorithm.

1.3.3 Selection

On a single processor, selection can be done in O(n) time using deterministic as well as randomized
algorithms. The deterministic algorithm is rather complex, and the randomized rather simple. Here
we will build upon the latter.

The basic idea of the randomized algorithm is: a randomly choose one of the numbers in the
input as a splitter. Compare all numbers to the splitter and partition them into 3 sets: those which
are larger than the splitter, those which are equal to the splitter, and those that are smaller than

1We can devise an algorithm that runs in essentially the same time using only p = n/ log n processors. This
algorithm is more complex than the one described, but it is optimal in the sense that it is faster than the sequential
version by about a factor p.

m
m m�
�
�

.B
B
B

m
m m�
�
�

.B
B
B

m
"
"
"
""

.
b
b
b
bb m

m m�
�
�

.B
B
B

m
m m�
�
�

.B
B
B

m
"
"
"
""

.
b
b
b
bb

m
��

��
�
��

�
��

.H
HHH

HHH
HHH

6 6666 666

1 4 9 16 25 36 49 64

5 25 61 113

30 174

1 4 9 16 25 36 49 64

?

.

? ? ? ?

.

? ? ?

m
m m�
�
�

.B
B
B

m
m m�
�
�

.B
B
B

m
"
"
"
""

.
b
b
b
bb m

m m�
�
�

.B
B
B

m
m m�
�
�

.B
B
B

m
"
"
"
""

.
b
b
b
bb

m
��

��
��

��
��

.HHH
HHH

HHHH

0 30

0

0

30

301

5

5 14 55

91

91 140

1 5 14 30 55 140 20491

Figure 6. Execution Example for Parallel Prefix

the splitter. The problem of finding the rth smallest from the original set can now be reduced to
that of finding the r′th smallest from one of the sets, which set to consider and the value of r′ can
both be determined by finding the sizes of the three sets.

We next describe the parallel algorithm. For even modestly complicated algorithms, we will
typically not write the code for each processor as in the previous examples, but instead present a
global picture. This includes the description of what values will be computed (even intermediate
values) on which processors, followed by a description of how those values will be computed. The
latter will often be specified as a series of global operations, e.g. “copy the value x[1] in processor
1 to x[i] in all processors i”, or “generate array y by performing the prefix operation over the
array x”. Of course, this way of describing the algorithm is only a convenience, it is expected that
from such a description it should be possible to construct the program for each processor.

The parallel algorithm will also run on a tree of processors with n leaves. The input, a[1..n]
will initially be stored such that a[i] is on the ith leaf, and r on the root. The algorithm is as
follows.

1. Construct an array active[1..n] stored with active[i] on processor i initialized to 1. This
is used for keeping track of which elements are active in the problem being solved currently.

2. Next, we pick a a random active element as a splitter as follows:

(a) First the rank array is constructed, again with rank[i] on leaf i. This simply numbers all
active elements from 1 to however many active elements there are. This is simply done by
running a prefix over the array active[1..n], i.e. rank[i] = active[1] + active[2]

+ ... + active[i]. Note that rank is also defined for non active elements, but this
is ignored.

(b) Note now that rank[n] will equal the number of active elements. This value is also
obtained at the root as a part of the prefix computation. Call this value Nactive. The
root processor picks a random integer srank between 1 and Nactive. This integer is
sent to its children, and so on to all the leaves. Each leaf i checks the value it receives,
and if active[i]=1 and rank[i]=srank then it sets splitter=a[i]. Notice that only
one leaf i will set splitter=a[i]. This leaf sends the value back to the root.

3. Next we compute the number of elements which are smaller than the leaf. For this the root
sends splitter to all leaves. Each leaf i sets val[i]=1 if a[i]<splitter and active[i]=1.
The sum of all val[i] can be obtained at the root using the up phase of the prefix algorithm.
This is retained at the root as the value small. Likewise the root computes the values equal
and large.

4. Now the root compares r to small and small+equal. If small < r ≤ small+equal, then we
know that the rth smallest must equal the splitter, and so the root returns splitter as the
result, and the execution halts. If If r ≤ small, then we know that the set of active keys with
value smaller than the splitter must participate in the next iteration. So if r ≤ small, then
the root sends a message “small” to all leaves. On receiving this, each leaf i sets active[i]=0
if a[i] >= splitter. Similarly if r<large then the root sends the message “large” to all
leaves. On receiving such a message each leaf i sets active[i]=0 if a[i] <= splitter.

5. The algorithm resumes from step 2.

The algorithm contains several operations such as “root sends message ... to all leaves”, clearly
this can be done in log n steps. Also we know from the preceding section that prefix can be done
in O(log n) steps. Thus a single iteration of the loop can be done in O(log n) steps. So all that
remains to be determined is the number of iterations for which the loop executes.

Let us define an iteration to be good if the number of active elements reduces by a third,
the number of active elements after the execution is at most two-third of the number of active
elements at the beginning. Then an elementary probability computation shows that every iteration
is good with probability at least 1/3. So now in order for the algorithm to not terminate in k log n
iterations, it must be the case that at least (k−1) log n iterations must not be good. Since whether
an iteration is good or not is independent of the other iterations, the probability of this is at
most

(
k logn

(k−1) logn

)
(2/3)(k−1) logn. Using

(
n
n−r

)
=
(
n
r

)
≤ (ne/r)r we get the probability to be at most(

ke(2/3)k−1
)logn

. For a constant but large enough k, this can be made O(1/n). Thus with high

probability the algorithm will terminate in O(log n) iterations, or O(log2 n) time.2

Exercises

1. Consider the following single processor algorithm. The algorithm happens to be solving the
knapsack problem - but you dont need to use this information.

KP(C,n,V[1..n],W[1..n]){

Array P[1..C, 1..n+1]

for i=1..C

P[i,n+1] = 0

for j=n..1 // j is stepping backwards

for i=1..C

If W[j] > i

P[i,j] = P[i,j+1]

else if W[j] = i

P[i,j] = max(P[i,j+1], V[j])

else

P[i,j] = max(P[i,j+1], V[j] + P[i-W[j],j+1]

return P[C,1]

}

The above algorithm performs many operations. Which of these can be performed in parallel?
Show how the algorithm can be implemented on an n+1 processor linear array. Be sure to
state at what time the operations in the j,i th iterations of the loops are performed and on
which processor.

2The term “high probability” will be defined formally sometime later.

2. Consider the problem of selecting the rth smallest from a sequence of n numbers. Suppose a
splitter s is picked at random, and the problem is reduced to finding r′ th smallest from some
m elements as discussed. Show that the probability that m is at most 2n/3 is at least 1/3.

3. Consider the problem of selecting the rth smallest key from a set of n keys, stored n/p per
leaf on a p leaf complete binary tree. Show that by choosing p properly and by modifying the
algorithm of the text a little, you can get a speedup of p/ log log p.

4. A 2d torus interconnection is as follows. There are n2 processors labelled (i, j) for 0 ≤ i, j < n.
Processor (i, j) has connections to processors (i± 1 mod n, j) and (i, j+±1 mod n). Suppose
processor (i, j) holds elements Aij, Bij of n × n matrices A,B. Show how their product can
be obtained in O(n) time.

Chapter 2

Model (fine-grained)

We define our basic model, and what it means to solve a problem, i.e. how input and output are
expected. We conclude by mentioning the overall goal of algorithm design.

2.1 Model

We will use a simple execution model for parallel computers, which is described below. Real parallel
machines are more complicated, but our simple model will allow us to better study the fundamental
issues. Later we will see how to handle the complications of real machines.

Our model is synchronous: we will assume that there is a single global clock and all processors
operate in synchrony with this global clock. Each processor may execute any standard instruction
in a single step, or it may send messages on any of the links connected to it. Each processor has
its own program stored locally, and can compute using data read from its local memory and data
received from neighbouring processors. Messages require one step to traverse the link; so that a
message sent on a link in the current step will be received at the other end only in the next step.
Each message will consist of a small (fixed) number of words. Unless specified otherwise, we will
assume that words are O(log p) bits long, where p is the number of processors in the network; this
is so that one word should be able to hold at least the address of every node.

We will assume that communication statements are blocking, i.e. a processor executing a receive
statement waits until the corresponding processor issues a send. Not only that, we will assume that
sends also block, i.e. the sending processor must also wait until the receiving processor reads the
data being sent.

Each processor in the network may in principle have a distinct program. This generality is usually
not utilized; in most of the algorithms we will consider each processor will have the same program
running on it. Some algorithms such as prefix described earlier have a few distinct programs, a
special program for the root, another one for the internal nodes, and one for the leaves.

2.2 Input Output protocols

In order for a parallel computer to solve an application problem, it is necessary to define protocols by
which it can input/output data from/to the external world. Our purpose is to allow the algorithm
designer all reasonable flexibility in deciding how the data is to be input/output. Yet, there are
some natural restrictions that must be imposed on this flexibility, these we state now.

20

First, every bit of input data must be read exactly once. The intuition behind this restriction is
that if the algorithm needs a particular input value in several processors, it should be the respon-
sibility of the algorithm to make copies of the value and supply it to the different processors; the
user should not be expected to make copies and supply them to more than one processor, or even
supply it to the same processor more than once.

The second condition is that the input/output should be when and where oblivious. What
this means is as follows. Suppose that the algorithm reads bits x0, x1, . . . , xn−1 and generates bits
y0, y1, . . . , ym−1, then the time at which xi is to be read should be fixed before hand, independent
of the values that these bits may take (when oblivious input). Further, the processor which will
read xi should also be fixed by the algorithm designer before the execution begins, independent
of the values assigned to the inputs (where oblivious input). Similarly, we define when and where
oblivious output requirements, i.e. the place and time where each output bit will be generated must
be fixed in advance.

The spirit of these requirements is to simplify the task of the user; the user is required to present
each input bit at prespecified time and processor, and is guaranteed to receive each output bit at
prespecified times and processors.

Notice however, that the above restrictions leave substantial freedom for the algorithm designer.
We have said nothing about how the inputs ought to be read; the designer may choose to read all
inputs at the same processor, or at different processors, in a pattern that he might deem convenient
for future computations. Likewise the output may be generated at convenient times and positions.

As an example, in the prefix algorithm described in the previous lecture, we had the input
initially read at the leaves of the tree. This was done only because it was convenient; for other
problems, we might well choose to read inputs in all processors in the network if that is convenient.
This can be done provided each bit is read just once, and in an oblivious manner as described above.

We may also consider algorithms in which the input is assume to be present in the memories of
the processors, and the output is also placed in the memories at the end. In such cases, we assume
that there is just one copy of the input. Also, where the input resides initially and where the output
is to reside at the end must be declared by the programmer at the beginning of the execution.

2.3 Goals of parallel algorithm design

The main goal of parallel algorithm design is simple: devise algorithms using the time taken is as
small as possible. An important definition here is that of speedup:

speedup =
Best Sequential Time

Parallel Time

We would like to minimize the parallel time, or maximize the speedup. A fundamental fact
about speedup is that it is limited to being O(p), where p is the number of processors in the parallel
computer. This is because any single step of a p processor parallel computer can be simulated in
O(p) steps on a single processor. Thus, given any p processor algorithm that runs in time O(T),
we can simulate it on a single processor and always get a single processor algorithm taking time
O(pT). Thus we get:

speedup =
Best Sequential Time

Parallel Time
=
O(pT)

T
= O(p)

So the main goal of parallel computing could be stated as: devise algorithms that get speedup
linear in the number of processors.

The above discussion implicitly assumes that the problem size is fixed (or that we should work
to get linear speedup on all problem sizes). This is not really required: we expect computers to be
used to solve large problems, and parallel computers to be used for solving even larger problems.
Thus, we will be quite happy if our algorithms give speedup for large problem sizes, and on large
number of processors. It is in fact customary to allow both the number of processors as well as the
problem size to become very large, with the problem size increasing faster.

2.3.1 Fast but inefficient computation

For practical purposes, it is important to have high speedup (preferably linear). However, theoret-
ically, it is interesting to focus on reducing time without worrying about the number of processors
used. How small can we make the time (say for adding n numbers, or multiplying n× n matrices,
or say computing a maximum matching in a graph with n nodes)? From a theoretical standpoint,
it is interesting to ask this question without insisting on linear speedup. Since for most problems
log n is a lower bound, this question has often been formalized as “Does there exist a O(logk n)
time parallel algorithm for a given problem of input size n using at most nc processors where c, k
are fixed constants? Some interesting theoretical results have been obtained for this.

2.4 Lower bound arguments

We discuss some elementary lower bound ideas on the time required by a parallel computer.

2.4.1 Speedup based bounds

The speedup definition might be written as:

Parallel Time =
Best Sequential Time

speedup
=

Best Sequential Time

O(p)
= Ω

(
Best sequential Time

p

)

i.e. the parallel time can at best be a p factor smaller if p processors are used. For example,
in sorting, since the best sequential algorithm is O(N logN), we can at best get an algorithm of
O(logN) using O(N) processors. This is a rather obvious bound on the time required by a parallel
algorithm, but worth keeping in mind.

2.4.2 Diameter Bound

Diameter of a graph: For any pair of vertices u,v in graph G, le d(u, v) = Length of shortest
path from u to v. Then

Diameter(G) = max
u,v∈G

d(u, v)

Why is this significant? Because this implies that if data from both these sources is required for
some computation, then the time taken for that computation is at least half the diameter.

Theorem 1 Suppose in an N processor network G, with diameter D, where each processor reads
some xi. Then the time T taken to compute x1 + x2...xN ≥ D/2.

Proof: The sum depends on all xi’s. Suppose the sum is computed at some processor p – this
must be fixed because of the obliviousness requirement. If for some u we have d(p, u) > T , then
it means that the value output by p is the same no matter what is read in u. This cannot be
possible, and hence Then, T ≥ d(p, u) for all u ∈ G Now, suppose diameter D = d(x, y). Thus
D = d(x, y) ≤ d(x, P) + d(P, y) ≤ 2T .

Notice that this also applies to prefix computation, since the last value in the prefix is simply
the sum of all elements.

For a sequential array, we find that the diameter is N − 1. So, any algorithm using a sequential
array of N processors will run in time T ≥ (N − 1)/2. So the time will have to be Ω(N) with such
a network, if each processor reads at least one value.1

2.4.3 Bisection Width Bound

Given a graph G = (V,E), where |V | = n, its bisection width is the minimum number of edges
required to separate it into subgraphs G1 and G2, each having at most dn/2e vertices. The resulting
subgraphs are said to constitute the optimal bisection. As an example, the bisection width of a
complete binary tree on n nodes is 1. To see this, note that at least one edge needs to be removed
to disconnect the tree. For a complete binary tree one edge removal also suffices: we can remove
one of the edges incident at the root.

To see the relevance of bisection width bounds, we consider the problem of sorting. As input
we are given a sequence of keys x = x1, . . . , xn. The goal is to compute a sequence y = y1, . . . , yn,
with the property that y1 ≤ y2 ≤ . . . ≤ yn such that y is a permutation of x. First, consider the
problem of sorting on n node complete binary trees.

We will informally argue that sorting cannot be performed easily on trees. For this we will show
that given any algorithm A there exists a problem instance such that A will need a long time to
sort on that instance.

We will assume for simplicity that each node of the tree reads 1 input key, and outputs one key.
We cannot of course dictate which input is read where, or which output generated where. This is
left to the algorithm designer; however, we may assume that input and output are oblivious.

Consider any fixed sorting algorithm A. Because input-output is oblivious, we know that the
processor where each yi is generated (or xi read) is fixed independent of the input instance. Consider
the left subtree of the root. It has m = n − 1/2 processors, with each processor reading and
generating one key. Let yi1 , yi2 , . . . , yim be the outputs generated in the left subtree. The right
subtree likewise has m processors and reads in m inputs. Let xj1 , xj2 , . . . , xjm be the inputs read in
the right subtree.

No consider a problem instance in which xj1 is set to be the i1th largest in the sequence x, xj2
is set to be the i2th largest, and so on. Clearly, to correctly sort this sequence, all the keys read in
the right subtree will have to be moved to the left subtree. But all of these keys must pass through

1Suppose, however, that we use only p processors out of the N . Now we can apply the theorem to the subgraph
induced by the processors which read in values. Then the speedup bound is N/p, and the diameter bound is (p−1)/2.
So, T ≥ (N/p, (p− 1)/2). This can be minimized by taking p = O(

√
N), so that both lower bounds give us O(

√
N).

This bound can be easily matched: read
√
N values on each of the first

√
N processors. Processors compute the sum

locally in O(
√
N) time, and then add the values together also in the same amount of extra time.

the root! Thus, just to pass through the root the time will be O(m) = O(n). Sequential algorithms
sort in time O(n log n), thus the speedup is at most O(log n) using n processors.2

In general, the time for sorting is Ω(n/B), where B is the bisection width of the network.
Notice that the diameter is also a lower bound for sorting: it is possible that a key must be

moved between points in the network that define the diameter. However, sometimes the diameter
bound will be worse than bisection, as is the case for trees.

2.5 Exercises

1. We argued informally that the root of the tree constituted a bottleneck for sorting. This
argument assumed that all the keys could have to pass unchanged through. An interesting
question is, can we some how “compress” the information about the keys on the right rather
than explicitly send each key? It turns out that this is possible if the keys are short.

(a) Show how to sort n keys each 1 bit long in time O(log n) on an n leaf complete binary
tree.

(b) Extend the previous idea and show how to sort n numbers, each log log n bits long, in
time O(log n).

Assume in each case that the processors can operate on log n bit numbers in a single step,
and also that log n bit numbers can be sent across any link in a single step.

2. Consider the problem of sorting N keys on a p processor complete binary tree. Suppose the
input consists of one key per processor, with no restriction on where the output can appear.
Give lower bounds based on speedup, diameter, and bisection width.

2Can we somehow compress the keys as they pass through the bisection? If the keys are long enough, then we
cannot, as we will see later in the course. For short keys, however, this compression is possible, as seen in the
exercises.

Chapter 3

More on prefix

First, note that the prefix operation is a generalization of the operations of broadcasting and
accumulation defined as follows.

Suppose one processor in a parallel computer has a certain value which needs to be sent to all
others. This operation is called a broadcast operation, and was used in the preceding lecture in
the selection algorithm. In an accumulate operation, every processor has a value, which must be
combined together using a single operator (e.g. sum) into a single value. We also saw examples
of this in the previous lecture. We also saw the prefix operation over an associative operator “+”.
Indeed, by defining a+ b = a we get a broadcast operation, and the last element of the the prefix is
in fact the accumulation of the inputs. Thus the prefix is a generalization of broadcasting as well
as accumulation. We also noted that these operations can be implemented well on trees.

The prefix operation turns out to be very powerful. when x[1..n] is a bit vector and + represents
exclusive or, the prefix can be used in carry look ahead adders. Another possibility is to consider
+ to be matrix multiplication, with each element of x being a matrix. This turns out to be useful
in solving linear recurrences, as will be seen in an exercise.

The algorithm can also be generalized so that it works on any rooted tree, not just complete
binary trees. All that is necessary is that the leaves be numbered left to right. It is easy to show
that if the degree of the tree is d and height h, then the algorithm will run in time O(dh).

3.1 Recognition of regular languages

A language is said to be regular if it is accepted by some deterministic finite automaton. The problem
of recognizing regular languages commonly arises in lexical analysis of programming languages, and
we will present a parallel algorithm for this so called tokenization problem.

Given a text string, the goal of tokenization is to return a sequence of tokens that constitute
the string. For example, given a string

if x <= n then print(”x= ”, x);

the goal of the tokenization process is to break it up into tokens as follows, with the white space
eliminated (tokens shown underlined):

if x <= n then print (”x= ” , x) ;

25

This can be done by having a suitable finite automaton scan the string. This automaton would
scan the text one character at a time, and make state transitions based on the character read.
Whether or not the currently read character is the starting point of a token would be indicated
by the state that the automaton immediately transits to. The goal of the tokenization process,
then, is to compute the state of the finite automaton as it passes over every character in the input
string. At first glance, this process appears to be inherently sequential; apparently, the state after
scanning the ith character could not conceivably be computed without scanning the first i characters
sequentially. As it turns out, the state can be computed very fast using prefix computation if the
finite automaton has few states.

More formally, we are given as input a text string x = x1, x2, . . . , xn of n characters over some
alphabet Σ, and a finite automaton with state set S, with |S| = K, with one state I designated the
start state. The goal is to compute the state si that the automaton is in after reading the string
x1, . . . , xi having started in the start state. The finite automaton has a state transition function
f : Σ× S → S which given the current state s and the character x read, says what the next state
is (f(x, s)) is.

For the parallel algorithm we need some notation. With each text string α we will associate a
function fα : S → S. In particular, if the automaton upon reading string α after starting in state
sj moves to state sk (after |α| transitions), then we will define fα(sj) = sk. Our problem is then
simply stated: we need to compute fx1,...,xi(I) for all i. Note that for x ∈ σ, we have fx(s) = f(x, s).

Our parallel algorithm first computes functions gi = fx1,...,xi ; then applies these functions to I so
as to obtain gi(I), which is what we want. Given a suitable representation of gi, the second step can
be done in a constant amount of time in parallel. The first step, computation of gi is accomplished
fast as follows.

Let α and β be two strings, and let α, β denote the concatenation of the strings. For any α, β,
define fα ◦fβ = fα,β. Alternatively, for any s ∈ S, (fα ◦fβ)(s) = fα,β(s) = fβ(fα(s)). Thus we have:

gi = f1 ◦ f2 ◦ · · · ◦ fi

But this is just prefix computation over the operator ◦. It is easily verified that ◦ is associative,
so we can use the algorithm of the previous lecture. All we need now is a good data structure for
representing function fα.

We can easily represent fα as a vector Vα[1..K]. We assume that the states are numbered 1
through K, and Vα[i] denotes the state reached from state i after reading string α. Given vectors
Vα and Vβ we may construct the vector Vα,β using the following observation:

Vα,β[i] = Vβ[Vα[i]]

Clearly, the construction takes time O(K) using 1 processor. Thus in time O(K), we can implement
the ◦ operator.

Thus using the algorithm of the previous lecture, we can compute gi for all i in time O(K log n)
using n/ log n processors connected in a tree. The sequential time is O(n), so that the speedup is
O(n/K). For any fixed language, K is a constant, so that the time really is O(log n).

Notice that the above algorithm will be useful in practice whenever K is small.

Exercises

1. Show how to evaluate an nth degree polynomial on an n leaf tree of processors.

2. Show how to compute recurrences using parallel prefix. In particular, show how to compute
z1, . . . , zn in O(log n) time where

zi = aizi−1 + bizi−2

for 2 ≤ i ≤ n given a2, . . . , an, b2, . . . , bn, z0 and z1 as inputs. (Hint: Express as a suitable
prefix problem where the operator is matrix multiplication.)

3. Let C[1..n] denote a string of characters, some of which are the backspace character. We will
say that character C[i] is a survivor if it is not erased by the action of any backspace character
(if the string were to be typed on a keyboard). Show how to compute an array S[1..n] of bits
where S[i] indicates if C[i] is a survivor. Note that you can only transmit a single character
on any edge in any step.

4. Consider a one dimensional hill specified by a vector h[1..n], where h[i] is the height of the hill
at distance i from the origin. Give an algorithm for computing an array v[1..n] where v[i] = 1
iff the point (i, h(i)) is visible from the origin, and 0 otherwise.

5. Suppose in a complete binary tree, the ith node from left (inorder numbering) reads in x[i].
Show how prefix can be calculated. Develop this into a scheme for computing prefix on any
tree with one value read at each node. Assume the tree is rooted anyhow and then read the
values as per the inorder numbering. Using this show how a

√
p × √p array can be used to

find prefix of p numbers in O(
√
p) time. How large a problem do you need to solve on the

above array to get linear speedup? Say which processor will read which inputs.

Chapter 4

Simulation

A large body of research in interconnection networks is devoted to understanding the relationships
between different networks. The central question is as follows: once an algorithm has been designed
for one network, can it be automatically ported to another network? This can be done by simulating
the execution of the former on the another. In this lecture we will illustrate this idea by simulating
a large tree of processors using a small tree of processors. More sophisticated examples will follow
subsequently.

4.0.1 Simulating large trees on small trees

The motivation for this is the prefix problem. Suppose that we wish to compute a prefix of the
vector x[1..n] using a complete binary tree which has just p leaves. One possibility is to design the
algorithm from scratch, a better alternative is to simulate the previous algorithm on the p leaf tree.
We now describe how this simulation is done; obviously, the simulation is valid for executing other
algorithms and not just prefix.

The idea of the simulation is as follows. We label tree levels starting at the root, which is
numbered 0. For i = 0.. log p, we assign each processor in level i of the p leaf tree (host) to do the
work of the corresponding level i processor of the n leaf tree (guest). This leaves unassigned guest
processors in levels 1 + log p.. log n. Each such processor is assigned to the same host processor as
its ancestor in level log p. With this mapping each host processor in levels 0.. log p − 1 is assigned
a unique processor, while host processors in level log p are assigned a subtree from the host having
n/p leaves each.

Oblivious Simulation

It is now easy to see that any arbitrary computation that runs on the guest in time T can be run
on the host in time Tn/p. To see this first note that every host processor does the work of at
most 2(n/p)− 1 processors (comprising the n/p leaf subtree). Thus every computation step of the
guest can be done in O(n/p) steps of the host. Second, note that every pair of neighboring guest
processors are mapped to either the same host processor, or neighboring host processors. Thus, a
single communication of a guest processor can be simulated either using a single communication,
or a single memory to memory transfer (if the communicating processors were mapped to a single
host processor). In any case, the complete communication step of the guest can also be simulated
in time O(n/p).

28

Notice that the simulation described above preserves efficiency. In particular, suppose that
some algorithm ran on the host in time T and with efficience ε. From this we know that the best
sequential time would be T (2n − 1)ε. The speedup of the simulated algorithm on the host is thus
(best sequential time)/Tn/p = εp. The efficiency of the simulated algorithm is thus also ε. In other
words, if we initially started off with an efficient O(n) processor algorithm, we will automatically
end up with an efficient algorithm on O(p) processors.

4.0.2 Prefix Computation

By the result of the previous algorithm, a p leaf tree would execute the prefix algorithm in time
O((n/p)(log n)) = O((n log n)/p). The speedup now is O(n

(n logn)/p
) = O(p/ log n). The efficiency is

O(1/ log n), identical to what we had in section 1.3.2. But this is to be expected from the discussion
in the preceding subsection.

As it turns out, our simulation actually does better. To see this, our analysis must exploit the
fact that during prefix computation, all the guest processors work only for O(1) steps although the
entire algorithm takes time O(log n) on the guest. Consider the up pass. Consider every leaf of the
host processor. This does the work of O(n/p) processors in the guest. But since every processor
does only O(1) steps of computation during the uppass, the entire uppass for the subtree can be
performed on the host in time O(n/p). The portion of the uppass for the higher levels will require
time O(log p) as before of course. The total time is thus O(n/p + log p). The same is the case for
the down pass. Notice that if we dont exploit the fact that all guest processors are active only for
a short time, the time taken, using the analysis of the previous paragraph would be O((n/p) log n).

Suppose we choose p = n/ log n. The time required, using the refined estimate isO(n/p+log n) =
O(log n). Thus we have been able to achieve the same time as in section 1.3.2 but using only n/ log n
processors! The speedup now is O(n

logn
) = O(p), i.e. linear!

4.0.3 Simulation among different topologies

In the previous examples, we simulated trees on smaller trees. But it is possible to define simulation
among networks with different topologies as well. We present a simple example; more complex
examples will follow later in the course.

Suppose we have an algorithm that runs in T steps on an n node ring. Can we adapt it somehow
to run on an n node linear array of processors?

Suppose the array processors are numbered 0..p − 1, with processor i being connected to pro-
cessors i − 1 and i + 1, for 1 ≤ i ≤ p − 2. A ring of processors is similar, but in addition has a
connection between processor p− 1 and 0 as well.

Note first that having processor i of the array do the work of processor i of the ring is inefficient.
Suppose that in each step ring processor p − 1 communicates with processor 0. In the array this
communication cannot be acheived in fewer than p− 1 steps, because the corresponding processors
are p− 1 links apart. Thus the T step ring algorithm will run in time O(T (p− 1)) on the array.

Consider, now, the following mapping assuming p is even. For i < p/2, ring processor i is
simulated by array processor 2i. For i ≥ p/2, ring processor i is simulated by array processor
2p− 2i− 1. Notice that with this embedding, every pair of neighboring ring processors are mapped
either to neighoring array processors, or to processors that are at most a distance 2 in the array.
Thus, a communication step in the ring can be simulated by 2 steps of the array. Every computation
step of the ring can be simulated in a single array step, of course. In summary, any T step ring

program will take at most 2T steps on the array. Further note that if the ring program had efficiency
ε, the array program will have efficiency at least ε/2.

Chapter 5

Sorting on Arrays

We consider a simple algorithm, called Odd-Even Transposition Sort for sorting on one dimensional
arrays. For proving the correctness of this we present the Zero-One Lemma, as well as the delay
sequence argument, which are both used later as well.

We then present sorting algorithms for two dimensional arrays.

5.1 Odd-even Transposition Sort

Suppose you have a linear array of N processors, each holding a single key. The processors are
numbered 1 to N left to right, and it is required to arrange the keys so that the key held in
processor i is no larger than the key in processor i+ 1.
Algorithm[6] The basic step is called a comparison-exchange in which a pair of adjacent processors
i and i+ 1 send their keys to each other. Each processor compares the received key with the key it
held originally, and then processor i retains the smaller and processor i+1 the larger. On every odd
step of the algorithm in parallel for all i, processors 2i− 1 and 2i perform a comparison exchange
step. On every even step, in parallel for all i, processors 2i and 2i+1 perform a comparison exchange
step. Clearly, the smallest key will reach processor 1 in N steps, following which the second smallest
will take at most N − 1 and so on. The question is, will sorting finish faster than the O(N2) time
suggested by this naive analysis. It turns out that N steps suffice, but the proof requires two tools.

5.2 Zero-One Lemma

This lemma applies to the class of Oblivious Comparison Exchange algorithms defined as follows.
The algorithm takes as input an array A[1..N], and sorts it in a non decreasing order. It consists
of a sequence of operations OCE(u1, v1), OCE(u2, v2), . . ., where all ui and vi are fixed before the
start of the execution, and the effect of OCE(ui, vi) is to exchange A[ui] and A[vi] if A[ui] > A[vi].

Lemma 1 (Zero-One Sorting Lemma) If an oblivious comparison exchange sorting algorithm
correctly sorts all input arrays consisting solely of 0s and 1s, then it correctly sorts all input arrays
with arbitrary values.

Proof: Suppose the given OCE algorithm is given as input the sequence x1, . . . , xN and it produces
as output the sequence y1, . . . , yN in which there is an error, i.e. yk > yk+1 for some k. We will

31

show that the algorithm will also make an error when presented with the sequence f(x1), . . . , f(xN),
where

f(x) =

{
0 if x < yk
1 otherwise

To see this let xit, Xit respectively denote the value in A[i] after step t for the two executions
considered, i.e first with input x1, . . . , xn and second with input f(x1), . . . , f(xn). We will show by
induction on t that Xit = f(xit); this is clearly true for the base case t = 0. Suppose this holds at
t. Let the instruction in step t + 1 be OCE(i, j). If xit ≤ xjt then there will be no exchange in
the first execution. The key point is that f is monotonic. We thus have that f(xit) ≤ f(xjt), and
hence by the induction hypothesis we also must have Xit ≤ Xjt. Thus there will be no exchange
in the second execution also. If on the other hand, xit > xjt, then there is an exchange in the first
execution. In the second iteration, we must have either (a) Xit > Xjt, in which case there is an
exchange in the second iteration as well, or (b) Xit = Xjt in which case there really is no exchange,
but we might as well pretend that there is an exchange in the second execution.

From the above analysis we can conclude that sequence output in the second execution will be
f(y1), . . . , f(yn). But we know that f(yk) = 1 and f(yk+1) = 0. Thus we have shown that the
algorithm does not correctly sort the 0-1 sequence f(x1), . . . , f(xN). But since the algorithm was
supposed to sort all 0-1 sequences correctly it follows that it could not be making a mistake for any
sequence x1, . . . , xn.

Remark: Sorting a general sequence is equivalent to ensuring for all i that the smallest i elements
appear before the others. But in order to get the top i to appear first, we dot need to distinguish
between them, i.e. we only need to distinguish between the top i and the rest. An algorithm
that correctly sorts all arbitrary sequence of i 0s and rest 1s will in fact ensure that the smallest i
elements in a general sequence will go to the front.

5.3 The Delay Sequence Argument

While investigating a phenomenon, a natural strategy is to look for its immediate cause. For
example, the immediate cause for a student failing an examination might be discovered to be that
he did not study. While this by itself is not enlightening, we could persevere and ask why did he not
study, to which the answer might be that he had to work at a job. Thus an enquiry into successive
immediate causes could lead to a good explanation of the phenomenon. Of course, this strategy
may not always work. In the proverbial case of the last straw breaking the camel’s back, detailed
enquiry into why the last straw was put on the camel (it might have flown in with the wind) may
not lead to the right explanation of why the camel’s back broke. Nevertheless, this strategy is often
useful in real life, and as it turns out, also in the analysis of parallel/distributed algorithms. In this
context it has been called the Delay Sequence Argument.

The delay sequence argument may be thought of as a general technique for analyzing a process
defined by events which depend upon one another. The process may be stochastic; either because
it employs randomized algorithms or because its definition includes random input. The technique
works by examining execution traces of the process1. An execution trace is simply a record of the

1Sort of a post mortem..

computational events that happened during execution, including associated random aspects. The
idea is to characterize traces in which execution times are high, and find a critical path of events
which are responsible for the time being high. If the process is stochastic, the next step is to show
that long critical paths are unlikely – we will take this up later in the course.

The process we are concerned with is a computational problem defined by a directed acyclic
graph. The nodes represent atomic operations and edges represent precedence constraints between
the atomic operations. For example, in the sorting problem, an event might be the movement of
a key across a certain edge in the network. Typically, the computational events are related, e.g.
in order for a key to move out of a processor, it first has to get there (unless it was present there
at the beginning of the execution). The parallel algorithm may be thought of as scheduling these
events consistent with the precedence constraints.

An important notion is that of a Enabling Set of a (computational) event. Let T0 denote a fixed
integer which we will call the startup time for the computation. We will say Y is a enabling set for
event x iff the occurrence of x at time t > T0 in any execution trace guarantees the occurrence of
some y ∈ Y at time t− 1 in that execution trace. We could of course declare all events to be in the
enbaling set of every event – this trivially satisfies our definition. However it is more interesting if
we can find small enabling sets. This is done typically by asking “If x happened at t, why did it
not happen earlier? Which event y happening at time t− 1 finally enabled x to happen at t?” The
enabling set of x consists of all such events y.

A delay sequence is simply a sequence of events such that the ith event in the sequence belongs
to the enabling set of the i + 1th event of the sequence. A delay sequence is said to occur in an
execution trace if all the events in the delay sequence occur in that trace. Delay sequences are
interesting because of the following Lemma.

Lemma 2 Let T denote the execution time for a certain trace. Then a delay sequence

E = ET0 , ET0+1, . . . , ET

occurs in that trace, with event Et occurring at time t.

Proof: Let ET be any of the events happening at time T . Let ET−1 be any of the events in the
enabling set of ET that is known to have happened at time T − 1. But we can continue in this
manner until we reach ET0 .

The length of the delay sequence will typically be the same as the execution time of the trace,
since typically T0 = 1 as will be seen. Often, the process will have the property that long delay
sequences cannot arise (as seen next) which will establish that the time taken must be small.

5.4 Analysis of Odd-even Transposition Sort

Theorem 2 Odd-even transposition sort on an N processor array completes in N steps.

The algorithm is clearly oblivious comparison exchange, and hence the Zero-one Lemma applies.
We focus on the movement of the zeros during execution. For the purpose of the analysis, we will
number the zeros in the input from left to right. Notice that during execution, zeros do not overtake
each other, i.e. the ith zero from the left at the start of the execution continues to have exactly

i − 1 zeros to its left throughout execution: if the ith and i + 1th zero get compared during a
comparison-exchange step, we assume that the ith is retained in the smaller numbered processor,
and the i+ 1th in the larger numbered processor.

Let (p, z) denote the event that the zth zero (from the left) arrives into processor p.

Lemma 3 The enabling set for (p, z) is {(p+ 1, z), (p− 1, z − 1)}. The startup time T0 = 2.

Proof: Suppose (p, z) happened at time t. We ask why it did not happen earlier. Of course, if
t ≤ 2 then this might be the first time step in which the zth zero was compared with a key to its
left. Otherwise, the reason must be one of the following: (i) the zth zero reached processor p + 1
only in step t − 1, or (ii) the zth zero reached processor p + 1 earlier, but could not move into
processor p because z−1th zero left processor p only in step t−1. In other words, one of the events
(p+ 1, z) and (p− 1, z − 1) must have happened at time t− 1.

(p+ 1, z) and (p− 1, z− 1) will respectively be said to cause transit delay and comparison delay
for (p, z).

Proof of Theorem 2: Suppose sorting finishes at some step T . A delay sequence ET0 , . . . , ET
with T0 = 2 must have occurred. We further know that Et = (pt, zt) occurred at time t.

Just before the movement happened at step 2, we know that the z2th zero, the z2 +1th zero and
so on until the zT th zero must all have been present in processors p2 + 1 through N . But this range
of processors must be able to accomodate these 1 + zT − z2 zeros. Thus N − p2 ≥ 1 + zT − z2. Let
the number of comparison delays in the delay sequence be c. For every comparison delay, we have
a new zero in the delay sequence, i.e. c = zT − z2. Further, a transit delay of an event happens to
its right, while a comparison delay to its left. Thus from pT to p2 we have T − 2 − c steps to the
right, and c steps to the left, i.e. p2 − pT = T − 2− 2c. Thus

T = p2 − pT + 2 + 2c = p2 − pT + 2 + 2zT − 2z2 ≤ N − pT + 1 + zT − z2

Noting that pT = zT and z2 ≥ 1 the result follows.

5.5 Exercises

1. Suppose we are sorting on a linear array with one key per processor. Suppose we are given
an input in which each key is at a distance at most d from its final position. Show that O(d)
steps of the odd-even transposition sort will suffice.

Note that the 0-1 Lemma does not mention any conditions about how much a key needs to
travel. So you may wish to modify the statement of the Lemma a bit and prove the modified
statement.

2. Prove that sorting on a linear array of n processors takes n steps without using the 0-1 Lemma,
i.e. construct a delay sequence argument for general keys.

Chapter 6

Sorting in coarse grained models

Many high level models have been proposed for very large parallel computers which hide many
details from the user. Most such computers are ”coarse grained”, i.e. it is not advisable to perform
communication after every single computational operation, but instead, perform many computations
and then a round of communication in which a lot of data may be moved.

We consider a generic model (the literature has several such models, logp, BSP, are some).
A program consists of synchronous supersteps, which can be either computation supersteps, or
communication supersteps. In a computation superstep, each processor can execute many com-
putations, using its local memory. The time required to execute a computation superstep is the
maximum time needed by any processor. A communication step is more complicated. The time
taken by it is L+ gw, where L and g are parameters, and w is the maximum number of words sent
or received by any single processor.

Note that this model is synchronous, i.e. all the computation and communication steps start at
the same time. Thus we do not need to worry about ”did I receive all messages sent to me?”. You
may wonder whether this synchronization would not have a time penalty. The parameter L is meant
to account for this partly. The parameter g is meant to account for the speed of communication.
We will explore later how the synchronization happens.

It is possible to simulated fine-grained sorting algorithms on coarse grained models; but it is
easier to design coarse grained algorithms from first principles. Of course, we will require a lot of
parallel slack.

6.1 Parallel sorting by regular sampling

In a way, sorting is really data movement: the smallest keys should move to the smallest numbered
processors, the next smallest to the next smallest numbered, and so on. So some data movement
is inevitable. Can we sort using just this one data movement for all keys? This is the motivation
behind the algorithm presented next.

This requires n = Ω(p3) keys on p processors. The basic idea is to sample and then do something
like bucket sort. We have one bucket per processor, and thereby placing data into buckets is acheived
by a single communication. The algorithm is fairly natural.

1. Each processor sorts its keys locally. Let k = n/p. Keys ranked k/p, 2k/p, . . . , (p− 1)k/p are
selected as primary splitters.

2. All primary splitters from all processors are sent to processor 1.

35

3. Processor 1 sorts the p(p − 1) primary splitters it received. After sorting let these be
x1, . . . , xp(p−1). From these we select y1, . . . , yp−1, where yi = x(2i−1)p/2 as secondary split-
ters.

4. The secondary splitters are sent to all processors.

5. Each processor partitions its keys into p parts, where the ith part contains keys larger than
yi−1 (if i > 0) and no larger than yi (if i < p). All the keys in the ith part are sent to processor
i.

6. Each processor sorts the received keys.

In the end the keys are guaranteed to be in non-descending order on processors 0 through p − 1,
however, each processor may not hold the same number of keys. So the algorithm is not output
oblivious. But simple additional steps can be used to accomplish this if necessary.

The final key distribution is not too skewed, however. Each processor gets at most its fair share.

Lemma 4 At the end each processor will hold at most 2n/p keys.

Proof: We will bound the number of keys that are in processor i at the end. For this, we will lower
bound the number of keys that are not in i. There are 3 cases.

1. i = 1: Processor 1 receives all keys smaller that y1 = xp/2. There are thus p(p − 1) − p/2
primary splitters larger than y1. With each of these primary splitters we can associate k/p
distinct keys which are larger than y1. Thus there must be at least (p2− 3p/2)k/p keys larger
than y1. Thus there are at most n − (p2 − 3p/2)k/p = 3pk/2 < 2n/p keys smaller than y1,
and hence in processor 1.

2. i = p: The argument is analogous.

3. 1 < i < p: Processor i must receive keys greater than yi−1 and smaller than or equal to yi.
As before we count the complement. Since yi−1 = x(2i−3)p/2, we find that there must be at
least ((2i− 3)p/2)k/p = ik− 3k/2 keys smaller than yi−1. Likewise, yi = x(2i−1)p/2, and hence
there are p(p − 1) − (2i − 1)p/2 = p2 − pi − p/2 primary splitters larger than yi. With each
one of these we can associate distinct k/p larger keys. In addition, we must count the k/p− 1
distinct keys we can associate with yi. Thus there are at least (p2− pi− p/2)k/p+ k/p− 1 =
pk− ik−k/2+k/p−1 elements larger than those in processor i. Thus the number of elements
in processor i must be at most

n− (ik − 3k/2)− (pk − ik − k/2 + k/p− 1) = 2k − k/p+ 1 < 2k

We next estimate the time taken. Step 1 takes time O(n/p log n/p). Steps 2,4 each take time
L + pg. Step 3 takes time O(p2 log p2). In step 5 each processor sends n/p keys, and received at
most 2n/p. Thus the time for this is L+ 2gn/p. The total time is thus

O(
n

p
log

n

p
+ p2 log p+ L+ g(

n

p
+ p))

This is O(n logn
p

) if n = Ω(p3), g = O(log n) and L = O(n logn
p

).

6.2 Exercises

1. Suppose it is required that finally each processor hold exactly k = n/p keys. Show that this
can be done using a single prefix operation, followed by a single step in which each processor
i receives keys from processors i± 1 and keeps some of those.

2. Suppose the primary splitters are chosen by picking each key with probability q as a splitter.
The rest of the algorithm remains the same. Show that q = θ(log n) is sufficient to get linear
speedup, and for this it is necessary to have n = Ω(p log2 p), i.e. much smaller slack.

Chapter 7

Systolic Conversion

An important feature of designing parallel algorithms on arrays is arranging the precise times
at which operations happen, and also the precise manner in which the input/output have to be
staggered. We saw this for matrix multiplication.

The main reason for staggering the input was the lack of a broadcast facility. If we had a suitable
broadcast facility, the matrix multiplication algorithm could be made to look much more obvious.
As shown, we could simply broadcast row k of B and column k of A, and each processor (i, j) would
simply accumulate the product aikbkj at step k, and the whole algorithm would finish in n steps.
This algorithm is not only fast, but is substantially easier to understand.

Unfortunately, broadcasts are not allowed in our basic model. The reason is that sending data
is much faster over point to point links than over broadcast channels, where the time is typically
some (slowly growing) function of the number of receivers.

All is not lost, however. As it turns out, we can take the more obvious algorithm for matrix mul-
tiplication that uses broadcasts, and automatically transform it into the algorithm first presented.
Thus, the automatic transformation, called systolic conversion allows us to specify algorithms using
the broadcast operation and yet have our algorithm get linear speedup when run on a network that
does not allow broadcast operations!

In fact using systolic conversion, we can do more than just broadcasting. To put very simply,
during the process of designing the algorithm, we are allowed to include in our network special
edges which have zero delay. Strange as this may seem, a signal sent on such edges arrives at the
destination at the beginning of the same step in which it was sent, and the data received can in fact
be used in the same cycle by the receiving processor!

Using the systolic conversion theorem we can take algorithms that need the special edges and
from them generate algorithms that do not need zero delay. Of course, the special edges cannot be
used too liberally– we discuss the precise restrictions in the next lecture. But for many problems,
the ability to use zero delay edges during the process of algorithm design substantially simplifies
the process of discovering the algorithm as well as specifying it.

Before describing systolic conversion, we present one motivating example.

7.1 Palindrome Recognition

Suppose we are given as input a string of characters x1, x2, . . . , x2n, where xi is presented at step
i. We are required to design a realtime palindrome recognizer, i.e. our parallel computer should

38

indicate by step 2j+1 for every j whether or not the string x1, . . . , x2j is a palindrome (i.e. whether
x1 = x2j and x2 = x2j−1 and so on).

Shown is a linear array of n processors for solving this problem. It uses ordinary (delay 1) edges,
as well as the special zero delay edges. The algorithm is extremely simple to state. In general, for
after any step 2j, the array holds the string x1, . . . , x2j in a folded manner in the first j processors.
Processor i holds xi and x2j+1−i; these are precisely two of the elements that need to be equal to
check if x2j is a palindrome. Using the 0 delay edges, processor j sends the result of its comparison
to processor j − 1. Processor j − 1 receives it in the same step, “ands” it with the result of its own
comparison and sends it to processor j − 2 and so on. As a result of this, processor 1 generates a
value “true” if the string is a palindrome, and “false” otherwise, all in the very same step!!

The rest of the algorithm is easily guessed. In steps 2j + 1, the inputs x2j, . . . , xj+1 are shifted
one spot to the right. Input x2j+1 arrives into processor 1. The zero delay edges are not used in this
step at all. In step 2j + 2, elements x2j+1, . . . , xj+2 moves one spot to the right and element x2j+2

arrives into processor 1. As described above, each processor compares the elements it has, and the
zero delay edges are used to compute the conjuction of the comparison results. Thus at the end of
step 2j + 2, the array determines whether or not x1, . . . , x2j+2 is a palindrome.

Two points need to be made about this example. First, the zero delay edges seem to provide us
with more power here than in the matrix multiplication example: they are actually allowing us to
perform several “and” computations in a single step. The second point is that the algorithm above
is very easy (trivial!) to understand. It is possible to design a palindrome recognition algorithm
without using zero delays, but it is extremely complicated, the reader is encouraged to try this as
an exercise.

7.2 Some terminology

A network is represented by a directed graph G(V,E). Each vertex represents a processor with
edges representing communication channels. Each edge is associated with a non-negative integer
called its delay. Some vertex in the graph is designated the host. Only the host is assumed to
communicate with the external world. During each step each processor does the following (1) wait
until the values arriving on its input edges stabilize, (2) executes a single instruction using its
internal state or the values on the input edges, and (3) possibly modify its internal state or write
values onto the outgoing edges. The value written on an edge e at step t arrives into the processor
into which e is directed at step t + delay(e). Notice that if delay(e) > 1 then an edge effectively
behaves like a shift register.

A network is semisystolic if there are no directed cycles with total delay of zero:

∀ C ∈ G,
∑
e∈C

delay(e) > 0.

The requirement for a systolic network is that

∀ e ∈ E, delay(e) > 0.

The palindrome recognition network and the second matrix multiplication network presented in
the last lecture were semisystolic; all other networks seen in this module were systolic.

We will say that a network S is equivalent to a network S′ if the following hold: (1) they have
the same graph; (2) corresponding nodes execute the same computations, though a node in one

network may lag the corresponding node in the other in time by a constant number of steps; (3) the
behavior seen at the host is identical.

7.3 The main theorem

Theorem 3 Given semisystolic network S we can transform it to an equivalent systolic network S′

iff for every directed cycle C in S′ we have:

|C| ≤
∑
e∈C

delay(e)

where |C| denotes the length of the cycle C.

We shall transform S to S′ by applying a sequence of basic retiming steps. If we have a network
that is semisystolic, but for which some cycle has a smaller total delay than its length, then we can
still apply the above theorem after slowing down the network (section 7.8).

7.4 Basic Retiming Step

A positive basic retiming step is applied to a vertex as follows. Consider a vertex with delays
i1, i2, . . . on its incoming edges and o1, o2, . . . on its outgoing edges. Suppose all the delays on the
outgoing edges are larger than one. Suppose we remove one delay from every output and add one
delay to the input. Suppose further that that the program for the vertex is made to execute one
step later than before i.e. it executes the same instructions, but each instruction is executed one
step later than before. Negative retiming steps are defined similarly.

It is clear that the behavior of the network does not change because of retiming. First the
values computed by the retimed vertex do not change—it does receive its inputs one step late but
its program is also delayed by one step. But although the vertex produces values late, the rest of
the graph cannot discover this since one delay has been removed from the outputs of the vertex, so
they arrive to other vertices at precisely the right times.

7.5 The Lag Function

We shall construct a function lag(u) for each node u that will denote the total number of delays that
are moved from outgoing edges of node u to the incoming edges during some sequence of retiming
operations. Note that lag(u) also denotes the number of timesteps the program of u is delayed.

Because of the retiming, the delay for an edge ~uv will increase by an amount lag(v), since that
many delays are moved in, and decrease by lag(u), since that many delays are moved out. Thus we
will have newdelay(~uv) = delay(~uv) + lag(v)− lag(u).

To prove the theorem we must show that

• newdelay(~uv) > 0, ∀ (u, v) ∈ E.

• lag(host) = 0, since the external behavior would change if we moved delays across the host.

• There exists a sequence of retiming steps such that the required number of delays can be
moved across each vertex. Remember that we cannot let the delay for any edge go down
below zero during the retiming process.

7.6 Construction of lags

Consider any path P from a vertex u to the host. After retiming, the total number of delays along
the path must be greater than the length of the path. The total number of delays that are moved
out of the path during retiming is lag(u), since nothing is moved in through the host. Thus we
must have (∑

e∈P
delay(e)

)
− lag(u) ≥ |P |

Or alternatively,
lag(u) ≤

∑
e∈P

(delay(e)− 1)

We will define a new graph which we will call G − 1, which is same as G, except that each edge
delay is reduced by 1. Think of this as the “surplus graph”; the delays in G − 1 indicate how
many surplus registers the edge has for moving out. We will call the delay of an edge in G− 1 its
surplus. Further, for any path P define surplus(P) to be the sum of the surpluses of its edges. The
expression above simply says that lag(u) ≤ surplus(P). Our choice of the lags must satisfy this
for all possible paths P from u to the host. In fact it turns out that this choice is adequate. In
particular we choose

lag(u) ≡ min
P
{surplus(P)| P is a path from u to host.}

In other words, we compute the lag for each node as the shortest distance from it to the host. In
G we knew for any cycle C that

∑
e∈C delay(e) ≥ |C|. Thus G − 1 does not have negative cycles,

thus our lag function is well defined.

7.7 Proof of theorem

We show that the lag function defined above satisfies the three properties mentioned earlier.

1. First we show that newdelay(~uv) = delay(~uv) + lag(v) − lag(u) > 0 for every edge ~uv. Let
P denote a path from v to the host such that lag(v) = surplus(P); we know that some such
path must exist by the definition of lag. Let P ′ denote the path from u to the host obtained
by adding ~uv to P . By the definition of lag, we have:

lag(u) ≤ surplus(P ′)

= surplus(~uv) + surplus(P)

= delay(~uv)− 1 + lag(v)

From this we get newdelay(~uv) > 0 as needed.

2. The lag of the host is 0 by construction.

3. Now we show that the lags as computed as above can actually be applied using valid basic
retiming steps.

We start with lag(u) computed as above for every vertex u. We shall examine every vertex in
turn and apply a basic retiming steps if possible. Specifically we apply a positive (negative)
retiming step to a node u if (1) lag(u) is greater (less) than 0, and (2) all the delays on the
outgoing (incoming) edges are greater than 0. If it is possible to apply a retiming step, we do
so, and decrement (increment) lag(u). This is repeated as long as possible.

The process terminates if

(a) All the lags are down to zero, in which case we are done.

(b) There exists some u with lag(u) > 0, but for every such vertex we have some outgoing
edge ~uv with delay(~uv) = 0, so that the basic retiming step cannot be applied. But
we knew in S that lag(v) ≥ lag(u) + 1 − delay(~uv). This inequality is maintained by
the application of the basic retiming steps. Thus we get lag(v) ≥ lag(u) + 1, since we
currently have delay(~uv) = 0.

Thus starting at u and following outgoing edges with zero delay, we must be able to find
an unending sequence of nodes whose lag is greater than 0. Since the graph is finite, this
sequence must revisit a node. But we have then found a directed cycle with total delay
equal to 0. Since the basic retiming steps do not change the delay along a cycle, this
cycle must have also existed in S, giving a contradiction.

(c) There exists some u with lag(u) < 0, but for every such vertex we have some incoming
edge ~uv with delay(~uv) = 0, so that the basic retiming step cannot be applied. We
obtain a contradiction as in the previous case.

Thus the process terminates only after we have applied all the required retiming steps, proving
the existence of such a sequence.

7.8 Slowdown

If we have a network that is semisystolic, but for which some cycle has a smaller total delay than
its length, then we slow down the execution of the network, i.e. slow down the execution of every
component. This effectively increases the delay in each cycle. By choosing a suitable slowdown
factor, we can always obtain enough delay so that the systolic conversion theorem can be applied.

7.9 Algorithm design strategy summary

The algorithm design has the following steps.

1. Design an algorithm for a semisystolic network, G.

2. For each cycle C of G, let sC = d|C|/delayCe. Let s = maxC sC . Slowdown G by a factor s.
Call the new network sG.

3. Find lag(u) = weight of shortest path from u to the host in sG− 1. Here, weight = delay in
sG− 1.

4. Set newdelay(u, v) = delay(u, v) + lag(v)− lag(u). Note that delay(u, v) is the delay in sG.

5. The resulting network is the systolic network equivalent to G.

7.10 Remark

Besides the ease of discovering algorithms, you will note that the semisystolic model is also easier
for describing algorithms. This is also an important reason for designing algorithms using the
semisystolic model and then converting it to the systolic model.

Exercises

1. Is it necessary that there be a unique systolic network that is equivalent to a given semisystolic
one? Justify or give a counter example.

2. We defined lag(u) to be the length of the shortest path from u to the host. What if there is
no such path?

3. We said that the nodes that are lagged need to start executing their program earlier by as
many steps as the lag. Does this mean that each processor needs to know its lag? For which
kinds of programs will it be crucial whether or not the processors start executing at exactly
the right step? For which programs will it not matter?

Chapter 8

Applications of Systolic Conversion

We will see two applications of systolic conversion. The first is to palindrome recognition. We will
derive a systolic network for the problem by transforming the semistolic network developed earlier.
We will then design a semisystolic algorithm for computing the transitive closure of a graph. We
will show how this design can be transformed to give a systolic algorithm. We will mention how
other problems like shortest paths and minimum spanning trees can also be solved using similar
ideas.

8.1 Palindrome Recognition

To apply the systolic conversion theorem, we need that every cycle in the network have delay at
least as large as its length. Unfortunately the semisystolic network we designed does not satisfy this
requirement. So we slowdown the original network by a factor of 2. This means that each processor
(as well as the host) only operates on alternate steps; each message encounters a 2 step delay to
traverse each edge that originally had a delay of 1. Zero delay edges still function instantaneously,
as before. With this change, each cycle in the network has delay exactly equal to its length. So we
can now apply the systolic conversion theorem.

The first step is to compute the surplus for each edge, then the lags are computed by doing the
shortest path computation. As will be seen, the processor u at distance i from the host will have
shortest path length = −i = lag(u). Now using the formula newdelay(uv) = delay(uv) + lag(v) −
lag(u), we will see that each edge will endup with a unit delay.

Note that we could also have retimed the network ”by hand”, by moving delays around heuris-
tically. To get started, we move the delay around the farthest processor. As you can see, delays
can be moved around so that we will reach the same solution as obtained bt applying the systolic
conversion theorem.

8.2 Transitive Closure

Let G = (V,E) be a directed graph. Its transitive closure is the graph G∗ = (V,E∗), where

E∗ = {(i, j)|∃ directed path from i to j in G}

Sequentially, transitive closure is computed typically using the Floyd-Warshall algorithm which
runs in time O(N3), for an N vertex graph. Faster algorithms exist, based on ideas similar to

44

Strassen’s algorithm for matrix multiplication, but these are considered to be impractical unless N
is enormous. We will present a parallel version of the Floyd-Warshall algorithm. It will run on an
N2 processor mesh in time O(N), thus giving linear speedup compared to the sequential version.

Floyd-Warshall’s algorithm effectively constructs a sequence of Graphs G0, G1, . . . , GN , where
G0 = G and GN = G∗. Given a numbering of the vertices with the numbers 1, . . . , N , we have
Gk = (V,Ek), where

Ek = {(i, j)|∃ path in G from i to j with no intermediate vertex larger than k}

Note that E0 and EN are consistent with our definition. The algorithm represents each graph Gk

using its adjacency matrix Ak. The matrix Ak is computed from Ak−1 using the following lemma.

Lemma 5 akij = ak−1
ij ∨ (ak−1

ik ∧ ak−1
kj)

Proof: If there is a path from i to j passing through vertices no larger than k then either it passes
strictly through vertices smaller than k, or k lies on the path. But in that case there are paths from
i to k and from k to j both of which pass through vertices strictly smaller than k.

Note a small point which will be needed later akik = ak−1
ik ∨ (ak−1

ik ∧ ak−1
kk) = ak−1

ik . Thus the ith
column of Ak is the same as the ith column of Ak−1. Similarly, the ith row of Ak is also the same
as the ith row of Ak−1.

8.2.1 Parallel Implementation

The parallel implementation needs a square N × N mesh. We start with a semisystolic network
to facilitate the design process. The network receives the matrix A0 = A from the top, fed in one
row at each step. The matrix A∗ is generated at the bottom eventually, also one row at each step.
The kth row of processors generates the matrix Ak given Ak−1. Notice the manner in which input
is fed; the rows of Ak−1 are fed in the order k, k + 1, k + 2, . . . , N, 1, 2, . . . , k − 1. The rows of Ak

are generated in the order k + 1, k + 2, . . . , N, 1, 2, . . . , k, which is precisely the order in which the
k + 1th row of processors needs its input.

Row k of processors performs its work as follows. The row it first receives, row k of Ak−1 is
simply stored; processor kj stores ak−1

kj . Subsequently, some row i is received. Processor kk receives

ak−1
ik broadcasts it to the all processors kj, and also sends it to processors k + 1, k. Simultaeously

processor kj receives ak−1
ij from the top and ak−1

ik on the broadcast. Thus it can compute akij =

ak−1
ij ∨ (ak−1

ik ∧ ak−1
kj), which it can pass on to processor k + 1, j. After all rows have been received

from the top, it sends out what it has, i.e. row k of Ak−1, which as we remarked is also the row k
of Ak.

We next estimate the time taken in this semisystolic model. Row 1 of A0 = A is sent by the
host at step 1 and arrives at the first processor row at step 2. Rows are fed 1 per step after that so
that row N of A0 arrives at the first processor row in step N +1. Row N moves down one processor
row per step, so that it arrives at processor row N at time 2N . Following that, row 1 arrives into
processor row N at step 2N + 1, and row N − 1 at step 3N − 1. Row N − 1 arrives into the lower
host at step 3N , following which row N arrives. So the entire computation takes a total of 3N + 1
steps.

8.2.2 Retiming

We first consider the case in which the upper and lower hosts are really a single processor. In
this case, it is easily seen that most cycles do not have enough net delay in them. Further, that
a slowdown of a factor of 3 suffices. We leave it as an exercise to compute the new delay of each
edge; we only note that because of this slowdown, the entire computation will be completed in time
3(3N+1)=9N+3.

Another strategy is to consider the lower host as the “real” host, and keep the upper host as
a distinct node. This means that the upper host may have a nonzero lag. This will have to be
accounted for in estimating the total computation time.

As will be seen, if we keep the hosts separate, the graph does not have any cycles. So a slowdown
is not necessary. The computation of the lags and delays is left as an exercise again, we only note
that the upper host gets assigned a lag of −(2N − 2). In other words, the upper host needs to
start its execution at step −(2N − 2) in order that the lower host finishes at step 3N + 1. Thus
the computation really takes time 3N + 1 + 2N − 2 = 5N − 1. Notice that this is faster than the
previous design which took 9N + 3 steps.

8.2.3 Other Graph Problems

As it turns out, we can use the algorithm developed above with minimal changes to compute shortest
paths and minimum spanning trees.

For the shortest path problem, we consider A to be edge length matrix, i.e. aij denotes the length
of edge (i, j). We use the same array as before, and perform essentially the same computation, but
use a different semiring[1, 6]. In particular, we replace the operator ∨ with the operator min (this
takes two arguments and returns their minimum), and the operator ∧ with +, the binary addition
operator.

Minimum spanning trees can also be computed in a similar manner. As before, the input matrix
A gives edge lengths. We modify the transitive closure algorithm by replacing ∨ with min and ∧
with max.

Exercises

1. Complete the retiming for the transitive closure networks (with and and without separate
hosts). Attempt to rearrange delays so that they are uniformly distributed.

2. Show how to implement a priority queue using a linear array of N processors. The array
should accept as input two operations DELETE-MIN and INSERT(x) at one end and in case
of DELETE-MIN, the answer (the minimum element in the queue) should be returned at the
same end (the minimum element should also be deleted from the array) in time independent
of N . The array should function properly so long as the number of elements in the queue at
any instant is less than N .

3. Show how to compute the strongly connected components of anN node graph (input presented
as an adjacency matrix) on an N ×N mesh. The output should be a labelling of vertices, i.e.
vertices in each strong component should be assigned a unique label.

4. Suppose you are given a systolic network in which one node is designated the host. The
network has been programmed to run some algorithm (that it runs correctly) except that
a modification is needed to the algorithm which requires instantaneous broadcast from the
host to all processors. This could certainly be achieved by adding additional wires from the
host to every other node; but it can be done without changing the network at all, although
a slowdown of a factor of 2 is necessary. In other words, show that the in addition to the
communication required for the old program, it is possible to perform broadcast from the host
at every step if a slowdown of a factor of 2 is allowed.

5. Consider a slightly modified palindrome recognition problem as follows. In this, the host
generates the characters x1, x2, . . . , xn in order, but there might be a gap of one or more time
steps between consecutive xi, rather than the exact one step gap in the original problem. The
goal is still the same: devise a circuit which determines whether the characters received till
then form a palindrome. Show how to do this.

Chapter 9

Hypercubes

The main topic of this lecture is the hypercube interconnection structure. Hypercubes were a very
common interconnection structure in parallel processing. Even today they are interesting because
of a number of reasons. First, they can effectively simulate the execution of smaller dimensional
arrays and trees. Second, they allow the development of a very rich class of algorithms called
Normal Algorithms. Third, some other networks can be derived from hypercubes.

In this lecture we will define hypercubes and explore its properties. In addition we will also
define the notion of graph embedding, which will be useful to develop the relationship between
hypercubes and other networks. Normal algorithms will be considered in the following lecture.

9.1 Definitions

An n dimensional hypercube, denoted Hn has 2n vertices labelled 0..2n − 1. Vertex u and v are
connected by an edge iff the binary representations of u and v differ in a single bit. We use ⊕ to
denote the exclusive or of bitstrings. Thus u and v have an edge iff v = v ⊕ 2k for some integer k.
We will say that the edge (u, u⊕ 2k) is along dimension k.

Another definition of hypercubes expresses it as a graph product.

9.1.1 The hypercube as a graph product

The product G2H of graphs G,H is defined to have the vertex set V (G2H) = the cartesian
product V (G) × V (H), and there is an edge from (g, h) to (g′, h′) in G2H iff (a) g = g′ and h, h′

are neighbours in H, or (b) h = h′ and g, g′ are neighbours in G.
Clearly, |V (G2H)| = |V (G)| · |V (H)|.
Here is a way to visualize a G2H. Consider |V (G)| rows, each containing |V (H)| vertices. Label

the rows by labels of vertices V (G), and the columns by Vertices V (H). On the vertices in each
row, put down a copy of H, with h in row labelled h. Similarly, in each column, put down a copy
of G. This then is the product G2H. It is customary to say that g is the first coordinate of vertex
(g, h) of G2H, and h the second.

The hypercube is perhaps the simplest example of a product graph. Consider P2, the path
graph on two vertices, i.e. the graph that consists of a single edge. Then H1 = P2, H2 = H12P2,
H3 = H22P2, and so on.

If we have a 3 way product, say (F2G)2H, then each vertex in the result can be assigned a
label ((f, g), h). However, as we will see next, graph products are associative, so that we may write

48

the product as just F2G2H, and the label as (f, g, h).

Lemma 6 2 is commutative and associative.

Proof: Need to show that G2H is isomorphic to H2G. Recall that X is isomorphic to Y if there
exists a bijection f from V (X) to V (Y) s.t. (x, x′) is an edge in X iff (f(x), f(x′)) is an edge in Y .
The vertices in G2H are (g, h) and those in H2G are (h, g) where g ∈ V (G), h ∈ V (H). We use
f((g, h)) = (h, g).
There is an edge from (g, h) to (g′, h′) in G2H
⇔ either (a) g = g′ and h, h′ are neighbours in H, or (b) h = h′ and g, g′ are neighbours in G.
⇔ There is an edge from (h, g) to (h′, g′) in H2G.
⇔ There is an edge from f((g, h)) = (h, g) to f((g′, h′)) = (h′, g′) in H2G.
Thus f is the required isomorphism. Associativitity is similar.

At this point it should be clear that our new definition of Hn is really the same as the old. Let the
vertices in P2 be labelled 0, 1. Then the coordinates in an n-way products will be x0, x1, . . . , xn−1,
where each xi is 0 or 1. In the old definition, we merely concatenated these to get a single n-bit
string.

9.2 Symmetries of the hypercube

It may be obvious that all vertices of a hypercube are symmetrical, or more formally, that the
hypercube is vertex transitive. This is proved using the notion of a automorphism. An automorphism
is simply an isomorphism from a graph to itself.

It will be convenient to think of vertices as k bit strings. It will also be useful to have the
notation u ⊕ v which denotes the bit-wise exclusive or of u and v. Note that ⊕ is associative and
commutative, and that the all 0s string is the identity and each element is its own inverse. Further,
suppose u, v are neighbours. Thus they must differ in just one bit. Say it is the ith least significant
bit. Then we may write u = v ⊕ 2i.

We will show that there is an automorphism f on Qk that maps any vertex u to any vertex v.
Consider f(x) = x⊕ w where w = (u⊕ v).

1. f(x) = f(y)⇒ x⊕ w = y ⊕ w ⇒ x⊕ w ⊕ w = y ⊕ w ⊕ w ⇒ x = y. Thus f is a bijection.

2. f(u) = u⊕ w = u⊕ u⊕ v = v. Thus f maps u to v as required.

3. Consider a vertex x and its neighbour x ⊕ 2i. Then we have f(x ⊕ 2i) = x ⊕ 2i ⊕ w =
x⊕ w ⊕ 2i = f(x)⊕ 2i. Thus f(x⊕ 2i) and f(x) are also neighbours across dimension i.

Thus f is the required automorphism.

9.3 Diameter and Bisection Width

The diameter of an n dimensional hypercube is n. This follows because the shortest distance
between u and v is the number of bits in which they differ; and this can be at most n, as is for
example when u = 0 and v = 2n − 1.

The bisection width of the hypercube is n/2. Clearly, we can disconnect the hypercube into two
parts by removing the edges along any one dimension; it is also possible to show that at least n/2
edges must be removed to disconnect the hypercube into subgraphs of n/2 vertices each.

9.4 Graph Embedding

The formalism of graph embedding is useful to describe the simulation of one network (guest) by
another (host).

Consider a (guest) graph G = (VG, EG) and a (host) graph H = (VH , GH). An embedding of G
into H : (fV , fE) is specified by two functions:

fV : VG → VH

fE : EG → Paths in H

with the condition that if (u, v) ∈ G then fE(u, v) is required to be a path from fV (u) to fV (v).
Given an embedding we define the following:

∀w ∈ VH : LOAD(w) = | Vertices of G placed on w|

∀e ∈ EG : DILATION(e) = Length of fE(e)

∀e ∈ EH : CONGESTION(e) = |{e′|e ∈ fE(e′)}|

Finally, we define the LOAD, DILATION and CONGESTION of the embedding to be the maximum
values of the respective parameters. Finally, it is customary to implicitly consider embeddings with
LOAD=1, unless the LOAD is explicitly stated.

Lemma 7 Let l, d, c denote the load, congestion and dilation for embedding network G into network
H. Then G can be simulated on H with a slowdown of O(l + d+ c).

The proof of this lemma in its most general form is beyond the scope of this course, but can be
found in [8]. Here we will sketch the proof of a weaker result: we will show that the time is O(l+cd).
First, consider the simulation of the computation steps of G. Each processor of H does the work
of at most l processors of G, and hence a step containing only computation can be simulated on H
in time O(l). A communication step of G is simulated by sending messages in H along the paths
of fE. Consider any such message. The message moves at most d edges of H, and can be delayed
during the movement at each step only because of other messages contending for the edge it needs
to traverse (we assume unbounded queues for messages). Since there are at most c messages that
may delay it at any edge, the total time it waits is at most cd. Thus it gets delivered in time
d+ cd = O(cd) steps. Thus a general step of G can be simulated in time O(l + cd) on H.

We note that for the rest of the lecture, we will use embeddings in which l, c and d will all be
constants. This will give us constant time simulations.

9.4.1 Embedding Rings in Arrays

As a very simple example, let us consider the problem of embedding the ring or the cycle network
Cn on n nodes into the linear array or path Pn on n nodes. Note that Pn has connections between
nodes i, i+ 1 for i = 0 to i = n− 2. Cn has all these connections, and in addition has a connection
from n− 1 to 0.

The naive embedding would be to place node i of Cn on node i of Pn. This has dilation n− 1,
for the edge in Cn from n− 1 to 0.

Consider instead, the embedding in which we place node i of Cn on node 2i of Pn, for i ≤ (n−1)/2,
and for other i we place node i of Cn on node 2n−2i+1. It is easy to see that every pair of adjacent
nodes in Cn are placed at most a distance 2 in Pn. Thus this has dilation 2 (as also congestion 2,
load 1), and is better than the naive embedding.

9.5 Containment of arrays

One of the reasons for the popularity of hypercubes is that Hn contains as subgraphs every 2d1 ×
2d2 × . . . 2dk array if n ≥ ∑i di.

We first consider the case k = 1, i.e. we will show that the Hn contains a Hamiltonian cycle
for n ≥ 2. The proof is by induction; the base case n = 2 is obvious. Suppose Hn−1 does
contain a Hamiltonian cycle. We may form Hn by taking copies H0 and H1 of Hn−1 and pairing
corresponding vertices. We know that the two copies in turn contain Hamiltonian cycles by the
induction hypothesis. We can merge the two cycles into a single cycle as follows. Let (u0, v0) be
any edge on the cycle in H0, and let (u1, v1) be the corresponding edge in copy H1. We disconnect
the cycles in these edges, but instead add in the edges (u0, u1) and (v0, v1) which we know must be
present in Hn. This gives the larger Hamiltonian cycle as required.

For k > 2 we need the notion of Graycodes. A Graycode Gn is a function that maps integer
in the range 0 . . . 2n − 1 to n bit strings such that Gn(i) and Gn(i + 1 mod 2n) differ in exactly 1
bit. Gray codes certainly exist: Gn(i) can be defined as the processor address of the ith node of
the Hamiltonian cycle that Hn is known to contain.

We now present a dilation 1 embedding of a 2d1× . . .×2dk mesh in Hn where n =
∑
i di. Let the

mesh vertices be assigned numbers (x1, . . . , xk) where 0 ≤ xi < 2di . Let || denote concatenation of
bit strings. We place mesh vertex (x1, . . . , xk) on hypercube processor Gd1(x1)|| . . . ||Gdk(xk). First
note that this constitutes a valid hypercube address with n bits. Second, consider any neighbor in
the mesh, say vertex (x1, . . . , xi−1, xi+ 1, xi+1, . . . , xk). This will be placed on some processor in Hn

whose address will be Gd1(x1)|| . . . ||Gdi−1
(xi−1)||Gdi(xi + 1)||Gdi+1

(xi+1)|| . . . ||Gdk(xk)). These two
hypercube addresses are clearly identical in the first i− 1 fields and the last k − i fields. In the ith
field the first has Gdi(xi) whereas the second has Gdi(xi + 1). But by the definition of Gray codes,
these two differ in precisely in 1 bit. Thus the entire hypercube addresses also differ in exactly 1
bit, establishing that mesh neighbors get placed on hypercube neighbors. To complete the proof
we need to argue that each mesh processor is placed on a unique hypercube processor, which is
obviously true.

What if the sides of the array are not powers of two? It can be shown that a two dimensional
a × b array can be embedded in the smallest hypercube with at least ab processors with dilation
2[6]. Thus, the hypercube will be able to simulate its execution with a slowdown of 2.

9.6 Containment of trees

Let Tn denote the complete binary tree with 2n − 1 nodes.

Theorem 4 Tn is not a subgraph of Hn, for n ≥ 3.

Proof: Suppose it is a subgraph. Without loss of generality , suppose the root is placed on vertex
0. Then the neighbours of the root will be on neighbours of 0 and so on.

Define the parity of a tree node to be even if its distance from the root modulo 2. Define the
parity of a hypercube node numbered x to be x it modulo 2. In both graphs, even parity nodes
have odd parity neighbours and vice versa. Thus, the above places even parity tree nodes on even
parity hypercube nodes, and likewise odd.

In the hypercube the number of even parity nodes and odd parity nodes is both 2n−1, because
we can match them across any dimension. In the tree, the number of nodes with the same parity
as the leaves is 2n−1 + 2n−3 + . . . > 2n−1 provided n ≥ 3. Thus the nodes with the same parity as
leaves will not fit in either the odd or even parity hypercube nodes.

Define the double rooted complete binary tree Dn to consist of two vertices which are themselves
connected together by a edge and which in addition connect to the roots of Tn−1.

Theorem 5 Dn is a subgraph of Hn.

Proof: The proof is by induction. The base case is n = 2. Clearly D2 is a subgraph of H2.
Assume that Dn is a subgraph of Hn. Since the hypercube has an automorphism in which any

edge can be mapped to any edge, we may assume that the two roots are at vertices 0 and 1 of
Hn. Further, each root has a single child, and the child is mapped to a neighbour. Thus we can
renumber the dimensions, and assume that the child of the root at 0 is at hypercube node 2. In a
similar manner, we can also have an embedding in which the roots are at 0,2, and the child of the
root at 0 is at 1.

Consider now the hypercube Hn+1. It is made up of two hypercubes Hn. In the first of these,
L, suppose we embed the tree as per the first construction, and in the second, R, as per the second.
Let us assume that in the big hypercube, node u of L has number u, whereas node u of R has
number 2n + u. Notice that this is equivalent to asserting that the new dimension that we are
adding to construct Hn+1 is the most significant dimension. Our construction above gives us Dn

with roots at 0,1, with 0 connected to 2 under which is a copy t1 of Tn−1. Likewise 1 has a child
which is a root for another copy t2 of Tn−1. Similarly, we have two roots at 2n, 2n + 2. The root
at 2n has a child at 2n + 1, which is a root of a copy t3 of Tn−1. Similarly, 2n + 2 has a child at a
neighbouring node which is the root of another copy t4 of Tn−1. This gives an embedding of Dn in
Hn as follows. The two roots are at 0, 2n. Their children are respectively at 1, 2n + 2. The node at
1 has a subtree underneath it consisting of t2, t3, and the node at 2n + 2 has a subtree consisting
on t1, t4.

Since Tn has a dilation 2 embedding in Dn, we have established that Tn has a dilation 2 embed-
ding in Hn.

9.7 Prefix Computation

Once we can embed trees into the hypercube, we can certainly perform prefix computation using the
embedded tree. However, the tree embedding described in the previous section is rather complex.
It is not obvious where a given node of the tree will get placed in the hypercube – to determine this
we need to simulate the complex recursive algorithm defined above.

Prefix computation can be done on the hypercube using a much simpler embedding called the
binomial tree embedding is also useful. In this we embed a 2n leaf tree onto Hn. For this the ith leaf
from the left is placed on processor i of Hn. Assuming the levels of the tree are labelled 0 through
n − 1 leaf to root, the ith node in level j is placed on hypercube processor 2ji. We leave it as an
exercise to show that this embedding has dilation 1. Its main problem is high load – indeed it is
easily seen that processor 0 has load n. The embedding is useful nevertheless to execute those tree
algorithms that operate in a level-by-level manner. Thus prefix computation can be done using the
binomial tree embedding in time O(n).

9.7.1 Prefix computation in subcubes

We may view Hn as a product Hp2Hq, for p = n. This view is useful in several algorithms. In fact,
in many such algorithms it is necessary to perform prefixes in subcubes contained in the product.
Such prefix computations can happen in parallel, of course.

Also note that a prefix computation generalizes accumulation, e.g. computing the sum of all
numbers, or broadcast, where a+ b is defined to be just a.

Exercises

1. Suppose I remove all the edges along some k dimensions of an n dimensional hypercube.
Characterize the resulting graph. Show this pictorially for n = 3 and k = 2.

2. Show that an N node hypercube contains as a subgraph a cycle of length l ≤ N if and only
if l is even.

3. Show that an N node hypercube can be embedded in a P node hypercube (N > P) with load
N/P , dilation=1.

4. Consider an inorder numbering of a 2n−1 leaf complete binary tree where the leftmost leaf is
numbered 1, and the rightmost leaf is numbered 2n − 1. Show that this defines a dilation 2
embedding into Hn.

5. Show that a n-node linear array can be embedded in an n-node complete binary tree with
load 1, dilation 3, and no restriction on the congestion. This is tougher than it looks, and you
should have a very clearly written induction statement.

6. Suppose you are given an (8 x 8) chessboard with two diagonally opposite corner squares
removed. You are also given 31 tiles, each of dimension 2x1. You are supposed to cover the
the given board with the tiles, which may be rotated as required.

Express this as a graph embedding problem. Show that this is impossible.

7. Suppose a 2m × 2m matrix A is stored on a 22m hypercube, with element aij at processor i|j,
i.e at the number obtained by concatenating the m bit numbers i and j, 0 ≤ i, j ≤ 2m − 1.
Devise an O(m) time algorithm to compute Ax where x is a vector to be read from the
external world. At which processors will you read in x (remember that each xi must be read
just once) and where will the result be produced? Can you reduce the number of processors
while keeping the time O(m)?

8. Show how to multiply 2m× 2m matrices in time O(m) on a 23m node hypercube. State where
the inputs are read, where the outputs generated, and where each arithmetic operation is
performed.

(Hint: Suppose you want to compute C = AB, for matrices A,B,C. Then cij =
∑
k aikbkj.

Then perform the multiplication aikbkj on processor i|j|k, i.e. the processor whose number is
obtained by concatenating the m bit numbers i, j, k. Based on this decide on a convenient
location in which to read in aij.)

Can you achieve the same time using a smaller hypercube?

Chapter 10

Normal Algorithms

One reason hypercubes are a popular interconnection network is that they admit a very rich class
of algorithms called normal algorithms. This class contains algorithms for computing Fourier trans-
forms, mergeing/sorting, data permutation and others. In this lecture we will study this class.

A Normal Algorithm running on an n dimensional hypercube has n iterations; each iteration
consisting of a computation step and a communication step. Further, in the ith step, processors
communicate only along dimension i. All algorithms in the class have this high level structure, the
precise computation performed in each iteration will differ for different algorithms of course. It is
also customary to allow a different order for traversing the dimensions. Finally some algorithms
(such as sorting) consist of a sequence of subalgorithms (mergeing steps steps in case of sorting)
each of which is actually a normal algorithm. Some authors refer to the overall algorithm also as a
normal algorithm informally.

10.1 Fourier Transforms

The Fourier transform of a sequence of complex numbers1 a = (a0, a1, . . . , aN−1) is the sequence
A = (A0, A1, . . . , AN−1) defined as follows. Let Pa(x) denote the polynomial

∑
i aix

i. Then Aj =
Pa(ω

j
N), where ωN is a principal Nth root of 1.

Clearly, all Ai can be computed sequentially in O(N2) time using Horner’s rule. But the time
can in fact be reduced to O(N logN) using a divide and conquer strategy as follows.

1. If a has length 1, then we directly return the result. Else, we first partition a into its even
and odd subsequences b and c (with bi = a2i and ci = a2i+1) respectively, and define the

corresponding N/2 degree polynomials Pb(z) =
∑N/2−1
i=0 a2iz

i and Pc(z) =
∑N/2−1
i=0 a2i+1z

i.

2. We then recursively compute the Fourier transforms B = (B0, B1, . . . , Bn/2−1) and C =
(C0, C1, . . . , CN/2−1).

3. For 0 ≤ j < N/2 we set Aj = Bj + ωjNCj and Aj+N/2 = Bj − ωjNCj.

The correctness is proved by induction. We will assume that the recursive calls work correctly.
Thus for 0 ≤ j < N/2 we have:

Aj = Bj + ωjNCj = Pb(ω
j
N/2) + ωjNPc(ω

j
N/2)

1Elements of some commutative ring in general.

55

=
N/2−1∑
i=0

a2i(ω
j
N/2)i + wjN

N/2−1∑
i=0

a2i+1(ωjN/2)i

But note that ωN/2 = ω2
N . Thus we get:

Aj =
N/2−1∑
i=0

a2iω
2ij
N + wjN

N/2−1∑
i=0

a2i+1ω
2ij
N

=
N−1∑
i=0

aiω
ij
N = Pa(ω

j
N)

which is what we wanted. Correctness of Aj+N/2 also follows similarly, noting that ω
N/2
N = −1.

We will first estimate the time to execute the above algorithm on a uniprocessor. If U(N)
denotes the time to compute the transform of N elements, then we have the recurrence U(N) =
2U(N/2) +O(N), with U(1) = O(1). This has the solution U(N) = O(N logN).

We now show how the transform can be computed on an N node hypercube which we will call
Ha. We assume that initially each ai is present on processor Revn(i), where Revn(i) denotes the
number obtained by considering the n bit string representing i in binary and reversing it. At the
end Ai will be present on processor i of Ha. We show how to execute each step of the previous
algorithm on the hypercube as follows:

1. If N is larger than 1, we need to split the sequence a into its even and odd parts b and c, and
then recursively compute their transforms. Each transform is recursively computed using an
N/2 node hypercube; to do this we must ensure that the ith element of the input sequence
must be placed on processor Revn−1(i) of the N/2 = 2n−1 node hypercube. For computing
the transform of b we use the subhypercube Hb consisting of processors 0, . . . , N/2 − 1 of
Ha. For computing the transform of c we use the subhypercube Hc consisting of processors
N/2, . . . , N − 1. Define the local number of processor i of Ha to be i mod N . Clearly every
processor in Hb and Hc gets a local number in the range 0, . . . , N/2−1, and the local numbers
constitute a standard numbering within each hypercube. Notice that element bi = a2i is
initially held on processor Revn(2i) of Ha. Whereas we require it to be on processor Revn−1(i)
of Hb. But these are in fact the same processor! To see this, note that Revn(2i) = Revn−1(i),
and that a processor with local number x in Hb is in fact processor x of Ha. Similarly, element
ci = a2i+1 is initially on processor Revn(2i+ 1) = N/2 + Revn−1(i) of Ha, whereas we need
it on processor Revn−1(i) of Hc. But these are the same processor, since processor with local
number x in Hc is processor x+N/2 of Ha. Thus, we can split the original problem into two
smaller and similar problems at no cost.

2. The transforms of the subsequences b and c are computed recursively. At the end of this step
we are guaranteed that Bi and Ci are held in processor i of Hb and Hc respectively., which
are in fact processors i and i+N/2 of Ha.

3. In this step we compute Ai. This is done on processor i of Ha. For this we need the value
of Bi which is available locally in processor i, and the value of Ci held by processor i+N/2.
But processors i and i + N/2 are neighbors! Thus the value can be fetched in 1 step. The
computation also happens in O(1) time.

For runtime analysis, let T (N) denote the time to compute N input transform using an N
node hypercube. Then T (N) = T (N/2) + O(1), with T (1) = 1. Thus we get T (N) = O(logN).
This can also be obtained by observing that each (parallel) recursive call of the operates on a
distinct dimension of the hypercube, and O(1) time is spent on each dimension. Finally, note that
the algorithm does in fact communicate along hypercube edges one dimension at a time. The
outermost level of the recursion uses communication along dimension 0; the next dimension 1, and
so on. Since step 1 of the algorithm does not need communication nor computation, the dimensions
get used in the order n− 1, n− 2, . . . , 1, 0.

10.2 Sorting

We will present another classic normal algorithm — the Odd-Even sorting algorithm due to Batcher.
The algorithm uses successive mergeing: initially the N keys to be sorted are considered to be
(degenerate) sorted lists of length 1. These are merged pairwise to produce lists of length 2, then
of 4 and so on until there is a single sorted list of length N .

We describe the generic procedure for mergeing 2 sorted sequences. Let a = (a0, a1, . . . , aN/2−1)
and b = (b0, b1, . . . , bN/2−1) be two nondecreasing sequences. The algorithm for mergeing them
into a single nondecreasing sequence is as follows. We present it at a high level, as a uniprocessor
algorithm; the parallel implementation is described later. The algorithm is recursive. The base
case, N = 2 is easy, the merged sequence is simply (min(a0, b0),max(a0, b0)). For larger N the
algorithm is as follows.

1. Compose sequences c = (a0, a2, . . . , aN/2−2) and d = (a1, a3, . . . , aN/2−1) consisting respec-
tively of the even and odd elements of a. Likewise compose f = (b0, b2, . . . , bN/2−2) and
g = (b1, b3, . . . , bN/2−1).

2. Recursively merge the sequences c and g, and let the result be the sequence h = (h0, h1, . . . , hN/2−1).
Also merge d and f , with the result being l = (l0, l1, . . . , lN/2−1).

3. Construct the sequence x = (x0, x1, . . . , xN−1) where x2i = min(hi, li), and x2i+1 = max(hi, li).
Output x as the result.

To establish correctness, we need the 0-1 sorting lemma, which we prove earlier.
Clearly, the above odd-even merge algorithm only uses oblivious comparison exchange opera-

tions, and although it performs comparisons in parallel, for verifying correctness, we can certainly
serialize them in some order. Thus the 0-1 lemma is applicable. So from now on we assume that
the sequences a and b consist of 0s and 1s only.

Let A,B,C,D, F,G,H, L respectively denote the number of 0s in a, b, c, d, f, g, h, l. Clearly we
have C = dA/2e, D = bA/2c, F = dB/2e and G = bB/2c. Further since h is obtained from c and
g, we have H = dA/2e + bB/2c, and L = bA/2c + dB/2e. Clearly, |H − L| ≤ 1. To complete the
proof, we need consider the three possibilities:

• H = L + 1: In this case, the first L elements in h as well as l are 0s, the L + 1th element of
h is a 0 and that of l is 1, and the remaining N/2− L− 1 are 1s in h as well as l. After step
3 clearly, x0, . . . , x2L−1 will all be 0s, and x2L+2, . . . , xN will all be 1s. The algorithm will set
x2L = min(hL, lL) = 0 and x2L+1 = max(hL, lL) = 1. The sequence x will thus be sorted.

• H = L− 1: This case is analogous to the above.

• H = L: In this case hL and lL will both be 1s. Thus, the algorithm will set all values exactly
as in case 1 above, except for x2L which will be set to min(hL, lL) = 1.

Thus in each case, the sequence x is sorted. Thus the algorithm is correct.

10.2.1 Hypercube implementation

We will describe where each of the data items in the algorithm described above are stored on the
hypercube and which processors perform the required operations, and then estimate time. We use
an N processor hypercube which we will call H.

Initially processor i holds ai, and i+N/2 holds bi for 0 ≤ i < N/2. The goal is to produce the
sequence x, with xi produced in processor i.

The recursive call to merge sequences c and g are executed in the subhypercube Hcg consisiting of
the even numbered processors from H; and the recursive call to merge d and f in the subhypercube
Pdf consisting of the odd numbered processors.

To prepare for the recursive calls, we need to position the elements of c, d, f, g properly. For this
we also need to consider a local numbering for Hcg and Hdf . Define the local number of processor i
in H to be bi/2c; clearly if i is even, this defines a standard numbering for Hcg and if i is odd this
defines a standard numbering for Hdf .

We need ci = a2i to be at processor with local number i in Pcg. But processor i of Pcg is processor
2i of H, which already holds a2i. We also need processor with local number i+N/4 of Hcg to hold
gi = b2i+1. But processor i+N/4 of Hcg is processor 2i+N/2 of H. Further, gi = b2i+1 is held by
processor 2i+ 1 +N/2. But processors 2i+ 1 +N/2 and 2i+N are neighbors along dimension 0!
Thus gi = a2i+1 can be moved into processor i+N/4 of Hcg in a single step, for all i in parallel.

Similarly, it can be seen that processor with local number i in Hdf already holds di = a2i+1.
Further processor i+N/4 of Hdf can fetch fi = b2i that it needs in one step from processor 2i+N/2
where it is held.

Step 2 produces hi in processor i of Hcg and li in processor i of Hdf ; alternatively hi is available
in processor 2i of H and li in processor 2i+ 1 of H.

The computation of xj in step 3 is done on processor j of H. Let j = 2i. The computation
of x2i and x2i+1 both need hi and li, which are available on processors 2i and 2i + 1 of H. But 2i
and 2i+ 1 are neighbors along dimension 0. Thus the computation of x can be done using a single
parallel communication along dimension 0, followed by a single comparison in each processor.

To summarize, the first step of the algorithm needs a single communication along dimension 0,
the second step is a recursive call, the third step requires a single communication along dimension
0 followed by a comparison operation. If T (N) denotes the time to merge 2 sequences of length
N/2, we have T (N) = T (N/2) +O(1), with T (2) = 0. This has the solution T (N) = O(logN).

10.3 Sorting

As mentioned earlier, we can sort by using successive mergeing. We use a logN phase algorithm for
sorting N element sequences. In phase i we pairwise merge N/2i−1 sequences each of length 2i−1 to
form N/2i sequences each of length 2i. We do this on an N processor hypercube as follows. The
jth pair of sequences are merged in processors j2i, . . . , (j + 1)2i − 1, which themselves constitute a
2i node hypercube. By the discussion of the previous section, this mergeing step takes O(i) time.

It is also easily seen that the ith step generates output in exactly the form required by the i+ 1th
step. The total time taken is

∑logN
i=1 O(i) = O(log2N).

Note that a uniprocessor can perform sorting in timeO(N logN), thus the speedup isO(N/ logN).
Whether there exists a hypercube sorting algorithm that runs in time O(logN) was a long standing
open problem, on which there has been some advancement recently[6]. If the number of keys being
sorted is substantially larger than the number of processors, then it is possible to sort with linear
speedup, as will be seen in an exercise below.

10.4 Packing

Our last example of a normal algorithm is for the so called packing problem. Using this you should
be able to build a radix sort; this is left to the exercises.

In the packing problem, each processor i in some subset S of processors in the hypercube holds
two values, xi and ri. The values ri are unique and lie in the range 0, . . . , |S| − 1, and further if
processors i, j ∈ S and i < j then ri < rj. The goal is to move xi to processor ri. In other words, the
values xi are to be packed into the smallest numbered processors, without disturbing their relative
order.

It turns out that this movement can be accomplished using a normal algorithm. The algorithm
is as follows:

For d = 0 to (logN)− 1, for each processor j:
If processor j holds xi, ri, and if j and ri differ in bit d, then send xi, ri to neighbour

of j along dimension d.

The key point, which we will prove, is that after each step, every processor will hold exactly one
xi, ri pair. Given this, it is easily seen that eventually every xi, ri must arrive into a processor j
whose address cannot differ in any bit, i.e. j = ri.

Lemma 8 At the end of the dth iteration, every processor holds just one xi, ri pair.

Proof: Suppose that some processor j in fact holds two pairs, xi, ri and xk, rk. Since these pairs
have reached j after correcting bits 0, . . . , d from processors i and k, it must be that i and k differ
from j in only bits 0, . . . , d. Thus, i and k must differ from each other also in only these bits.
Thus words, |i − k| < 2d+1. Assume i < k without loss of generality. Now, if all the processors
i, i+ 1, . . . , k are in S, then clearly, rk − ri = k− i; however since some might not be in S we know
that in general rk − ri ≤ k − i. Thus we know that rk − ri < 2d+1.

Further, j agrees with bits 0, . . . , d of ri. Thus j = ri mod 2d+1. Similarly j = rk mod 2d+1.
Thus ri = rk mod 2d+1, and hence rk − ri ≥ 2d+1.

Thus we have a contradiction.

Exercises

1. Show that the FFT (in general any normal algorithm) can be computed on an N node linear
array in time O(N).

2. Show that the FFT (in general any normal algorithm) can be computed on a
√
N×
√
N mesh

in time O(
√
N).

3. Show that odd-even sorting can be performed on a
√
N ×
√
N mesh in time O(

√
N). To show

this, you need to map the operations in the algorithm to processors in the mesh, and then
estimate the computation and communication time.

4. Consider the problem of sorting N = P 3 keys on a P processor network. Initially, each
processor holds P 2 keys. Finally we would like processor 0 to have the P 2 smallest keys, 1
the next smallest, and so on. (a) Show that the following algorithm is correct.

(a) LOCAL SORT: Each processor locally sorts its keys.

(b) DISTRIBUTE: Let K[i, j] denote the jth smallest key held by processor i, after step 1.
Processor i sends K[i, j] to processor j mod P .

(c) LOCAL SORT: Each processor receives a total of P 2 keys, P from each processor in-
cluding itself. These are sorted locally.

(d) DISTRIBUTE: Let L[i, j] denote the jth smallest key held by processor i, after step 3.

Processor i sends L[i, j] to processor
⌊
j
P

⌋
.

(e) LOCAL SORT: Each processor sorts the P 2 keys it receives.

(f) MERGE-SPLIT: Processors 2i and 2i + 1 send their keys to each other. From these
processor 2i retains the smaller P 2, and processor 2i+ 1 the larger P 2.

(g) MERGE-SPLIT: Processors 2i+ 1 and 2i+ 2 send their keys to each other. From these
processor 2i+ 1 retains the smaller P 2, and processor 2i+ 2 the larger P 2.

(Hint: Assume that at the beginning processor i has Zi zeroes, and rest 1s. Estimate the
number of zeroes in each processor after every step.)

(b) Estimate the time taken by the algorithm if the network connecting the processors is a
binary hypercube. Estimate the speedup of the algorithm. This needs material from lecture
9, and should only be attempted then.

5. Suppose each processor in an n dimensional binary hypercube holds a w bit key. Show that
using a radix sort, radix = 2, it is possible to sort in time O(wn). Hint: use prefix to rank
keys in each iteration of the radix sort. Then move the keys using the packing ideas described
earlier.

6. Suppose each processor i in a hypercube holds a key xi which is to be moved to processor
ai+ b, where a is odd, and a, b are known to all processors. Show that this movement can be
done as a single normal algorithm.

Chapter 11

Hypercubic Networks

While hypercubes are extremely powerful and versatile for algorithm design, they have one im-
portant drawback: high node degree. An interesting question is, can we get the advantages of
hypercubes using a low degree network? In this lecture we will see some networks that partly
achieve this.

We will study the Butterfly network, the omega network, the deBruijn network, and the shuffle
exchange network. The Cube connected cycles network is a minor variant of the Butterfly and will
be presented in an exercise.

11.1 Butterfly Network

A butterfly network of n dimensions has N = 2n(n+1) nodes arranged in 2n rows and n+1 columns
or levels. A node in row i and column j is assigned a label (i, j). Node (i, j) is connected to nodes
(i, j+1) and (i⊕2j, j+1) for 0 ≤ j < n. The former is called a straight edge, and the latter a cross
edge. Edges going between vertex levels j and j + 1 are called dimension j edges. It is customary
to refer to level 0 vertices as inputs, and level n vertices as outputs.

Notice that if all the nodes in any single row are coalesced into a single node, we get an n
dimensional hypercube. Further note that we have a unique forward path from any node (i, 0) to
any node (j, n); we simply move forward using the straight edges corresponding to dimensions in
which i and j do not differ, and take the cross edge wherever they do. It is a simple exercise to
show that the diameter of the Butterfly is 2n. The bisection width is at most 2n; clearly removing
the cross edges in the last dimension bisects the nodes. Interestingly enough, the exact bisection
width is smaller[3]!

The butterfly has some very useful recursive structure. Suppose we slice the butterfly along
nodes in column j, so that each node is cut into two, and the left node gets the edges on the left
and the right the edges on the right. Then it turns out that on the left side of the cut we are left
with 2n/2j distinct butterfly networks each with 2j inputs. This is easily verified pictorially. What
is less obvious, is that on the right we are left with 2j Butterfly networks, each having 2n/2j inputs.

In fact, the butterflies on the left side may be arranged vertically and those on the right vertically,
so that the nodes in level j are placed at the respective contact points. Figure11.1 shows a 16 input
butterfly sliced in level 2 and drawn in this manner. All the small butterflies are not drawn for
clarity. Some of the input and output nodes are renumbered so that the arrangement is understood
better.

61

3

04812

2

1

0

Figure 11.1: 16 input butterfly sliced at level 2

11.1.1 Normal Algorithms

It should be clear that an N = 2n(n + 1) node butterfly can easily execute 2n input normal
algorithms1. We simply simulate the hypercube execution described earlier: Butterfly node (x, i)
simulates the iteration i execution of hypercube processor x. The input is read in Butterfly level
0. In the hypercube, the computation in the ith iteration in a processor x depends upon the state
of x and processor x ⊕ 2i−1 in iteration i − 1 (since in the hypercube processors communicated
across dimension i− 1 in iteration i− 1). But these states are respectively computed in Butterfly
processors (x, i− 1) and (x⊕ 2i−1, i− 1). But these processors are directly connected to processor
(x, i), and so the required data can be easily obtained. Notice that whereas every processor of the
hypercube is active in every step, 2n input normal algorithms execute in a level by level manner,
with only one level active at any step. The total time, like the hypercube, is of course O(n).

Because the Butterfly has N nodes, it is more natural to execute N input normal algorithms
on it, rather than 2n = N/(n + 1) input algorithms. We will assume that N is also a power of 2.
As it turns out, this can also be done in O(n) = O(logN) time. This is a significant advantage
over the hypercube: N node hypercubes as well as N node Butterflies can execute N input normal
algorithms in time O(logN), though the Butterfly has far fewer edges.

We first observe that N input normal algorithms can be executed in a level by level manner on
an N input (guest) Butterfly in time O(logN). We now show how to simulate this level by level
execution on an N node (host) Butterfly in essentially the same time. For this we need the recursive
structure described earlier. In particular, suppose we slice the guest (N input) Butterfly in level

1We will assume here that the normal algorithm scans hypercube dimensions in ascending order, though a similar
argument will apply to scans in the reverse direction.

n. On the left side we get N/2n = n + 1 Butterflies (left Butterflies) each with 2n inputs. On the
rightside we get 2n Butterflies (right Butterflies), each with N/2n = n+ 1 inputs.

We first consider the simulation of the left Butterflies on our host Butterfly. The n + 1 left
Butterflies are exactly the same size as the host, so it would seem that simulating their execution
would entail a slowdown of n+ 1. But notice that these n+ 1 Butterflies execute in a level by level
manner when executing a normal algorithm. Thus we can simulate their execution in a pipelined
manner on the host. Let the left Butterflies be numbered 0 through n in some convenient manner.
The host can simulate the execution of the 0th Butterfly in a level by level manner in time n; but
notice that it need not wait until step n+ 1 to start simulating the execution of Butterfly 1. In step
1, column 0 of the host can right away start working on Butterfly 1. Proceeding in this manner,
the simulation of Butterfly n starts in step n, and finishes in step 2n. So in 2n steps, the host has
finished simulation of the entire left side.

There are 2n right Butterflies, each with n+1 inputs. Each of these Butterflies will be simulated
by a row of the host. Notice that after the simulation of the left side each processor in column n
of the host holds all the data that needs to be input to a single right Butterfly. This data (n + 1
values) are first distributed within the row of the host, so that each node receives 1 value. Each
row then simulates the level by level execution of an n + 1 input Butterfly. Using the result of a
previous exercise, this takes time O(n).

The total time for the entire simulation is thus also O(n) = O(logN). The N node Butterfly
can thus execute N input normal algorithms in time O(logN), but not in a level by level manner,
as is to be expected.

11.2 Omega Network

The so called Omega network is just a redrawing of the Butterfly network. But the redrawing has
a very nice property which we will see in a minute.

Define the unshuffle un(i) to be number resulting when the least significant n bits of i are right
rotated by 1 bit. We will use urn(i) to denote right rotation by r bits. We will need the following
fact: urn(i⊕ 2r) = urn(i)⊕ urn(2r) = urn(i)⊕ 1.

Our redrawing of the Butterfly to give the Omega is as follows: move vertex (i, j) of the Butterfly
to position (ujn(i), j). Notice that Butterfly vertex (i, j) is connected in the forward direction to
vertices (i, j + 1) and (i ⊕ 2j, j + 1) which are themselves moved to positions (uj+1

n (i), j + 1) and
(uj+1

n (i⊕2j), j+1). But note that uj+1
n (i) = un(ujn(i)). Also note that uj+1

n (i⊕2j) = un(ujn(i⊕2j)) =
un(ujn(i)⊕ 1). Let x = ujn(i). Then we get node (i, j) in the butterfly is the same as node (x, j) in
the Omega, and this connects to node (i, j + 1) and node (i ⊕ 2j, j + 1) which are same as nodes
(un(x), j + 1) and (un(x ⊕ 1), j + 1) respectively in the Omega. In summary, Omega node (x, j)
connects in the forward direction to Omega nodes (un(x), j + 1) and (un(x ⊕ 1), j + 1). This has
the remarkable property that we promised earlier: the pattern of connections between any two
consecutive levels is exactly identical!

It is interesting to write down the backward connections too. A node (y, j − 1) connects to
(un(y), j), (un(y⊕ 1), j. Thus, writing x = un(y) we get y = u−1

n (x). Writing x = u−1
n (y⊕ 1) we get

y = u−1
n (x)⊕ 1. It is customary to write sn = u−1

n to denote the left shift by single bit. Thus (x, j)
connects also to (sn(x), j − 1) and (sn(x)⊕ 1, j − 1).

The use of the letters u, s for the two operators is short for “unshuffle” and “shuffle”. In the so
called perfect shuffle of a deck of cards, we separate the top half of the deck and the bottom half,

and then form a new deck by interleaving the cards from the two halves. Unshuffle is the reverse of
this. Note that moving node i to position un(i) is akin to unshuffling a stack of nodes labelled 0 to
2n − 1 top to bottom.

11.3 deBruijn Network

The n dimensional deBruijn network has 2n nodes numbered 0, . . . , 2n − 1. To construct it, we
start with the Omega network on 2n rows and coalesce all the nodes in row i into a single node
which becomes node i of the deBruijn. Since the pattern of connections between consecutive levels
is identical, we now have a multigraph, from which we eliminate all the duplicate edges to get the
deBruijn network.

The pattern of connections is obtained simply by dropping the second coordinate from the
Omega. Thus node x in the deBruijn connects to nodes un(x), un(x ⊕ 1), sn(x) and sn(x) ⊕ 1.
We note that some of the connections might loop back if the bit pattern of x is special, e.g.
sn(0) = un(0) = 0, and thus node 0 effectively has degree 3, while most nodes have degree 4.

It is easy to see that the deBruijn graph has diameter n. Let u and v be two with un−1un−2 . . . u0

and vn−1vn−2 . . . v0 denoting the bits comprising the numbers u and v respectively. Consider the
following sequence of nodes, denoted by their bit patterns:

(un−1un−2 . . . u0), (un−2un−3 . . . u0vn−1), . . . (un−jun−j−1 . . . u0vn−1 . . . vn−j+1), . . . , (vn−1 . . . v0)

Clearly, each node in the sequence can be reached from the preceding node by following an edge
of the deBruijn graph. Thus we have identified a path from u to v in the graph. Note however,
that path may not be simple, since some of the edges might be selfloops. But in any case the path
has length at most n. This establishes that the diameter is at most n. It is easy to see that the
diameter has to be at least n by considering paths connecting 0 and 2n − 1.

The bisection width is θ(2n/n). This is established in a text such as [6].

11.3.1 Normal Algorithms

The Omega network was a redrawing of the Butterfly, with nodes getting rearranged only within
each level. Thus level-by-level algorithms on the Butterfly will also execute on the Omega in a level
by level manner. In other words, 2n input normal algorithms would execute on the Omega in time
O(n).

But the deBruijn can simulate any level by level algorithm on the Omega without slowdown–
a single column of processors does the work of all levels. Thus deBruijn networks on 2n nodes can
execute 2n input normal algorithms in time O(n).

11.4 Shuffle Exchange Network

The shuffle exchange graph is closely related to the deBruijn. It also has 2n nodes numbered
0, . . . , 2n − 1. Node x in the graph is connected to nodes sn(x), un(x) and x⊕ 1 using the so called
shuffle, unshuffle and exchange edges.

Lemma 9 2n node shuffle exchange can simulate 2n node deBruijn with a slowdown of at most 2.

Proof: We will let node x in shuffle exchange simulate node x in deBruijn. Since each node is
simulated by a unique node, computation is implemented without any slowdown. Communication
is implemented as follows. Notice that the shuffle and unshuffle edges are present in both graphs, so
communication along these edges is implemented without slowdown. The deBruijn communication
between x and sn(x)⊕ 1 can be simulated in two steps: the message is first sent to sn(x), and then
using the exchange edge out of sn(x) to sn(x)⊕ 1 as needed. Likewise the communication between
x and un(x ⊕ 1) is acheived in the shuffle exchange by first following the exchange edge and then
the unshuffle edge.

It is also possible to show the converse (exercise), establishing the fact that the computational
capabilities of the two networks are identical. Thus the 2n node shuffle exchange can also execute
2n inputs in time O(n).

11.5 Summary

We have seen 4 derivatives of the hypercube: Butterfly, Omega, deBruijn, and Shuffle-Exchange.
These have bounded degree unlike the hypercube, but like the hypercube they too can execute
normal algorithms (with as many inputs as the number of processors) in time logarithmic in the
number of processors.

Exercises

1. Show that the Butterfly network with 2n inputs has diameter 2n.

2. What is the diameter of the 2n node shuffle exchange network?

3. Show that the deBruijn network can simulate any algorithm running on a shuffle exchange
network of the same size with a slowdown of 2.

4. Consider a deBruijn network on N = 2n nodes. Show that the 2n leaf complete binary tree
has an embedding in the deBruijn graph with load n and dilation 1.

5. The cube connected cycles network CCC(n) on n2n nodes is defined as follows. Each vertex
is numbered (x, y), where 0 ≤ x < n, and 0 ≤ y < 2n. Vertex (x, y) connects to vertex
(x+1 mod n, y) and (x−1 mod n, y) using edges called ”cycle edges”, and to vertex (x, y⊕2x)
using edges called ”cube edges”. Show that the 2n row Butterfly can be simulated on a CCC(n)
using a slowdown of 2.

6. For the case n = 2k show that CCC(n) is a subgraph of the hypercube with 2n+k nodes.

7. Show that there exists a permutation π over 2k inputs such that of all the connections from
input i to output π(i), only at most 2k/2 can be established in a vertex disjoint manner in a
2k input butterfly. Hint: the answer is similar to the one in Section 12.7. Another way to see
this is to consider a split of the Butterfly along level k/2, and select π so that at most one
path leaves each butterfly on the left.

8. For the above problem, show that for all π, it is possible to make at least 2k/2 connections
in a node disjoint manner. Hint: Show, using Hall’s Theorem for perfect matchings that you
can always ensure that at least one path from each butterfly on the left as per the split above
will get established.

Chapter 12

Message Routing

In this lecture, we will consider the so called message routing problem. Suppose each processor in a
parallel computer has 0 or more objects which we will call messages. Each message may have several
fields, but it has at least two: destination, which is the number of some processor in the network,
and data. The goal is to move the message (in particular, the data field) to the processor named as
its destination. The destination of a message may be several links away from the processor (source)
at which the message is at the beginning. This movement is required to occur in a distributed
manner, using only local information available with each processor. The idea is that each processor
examines the destinations of the messages it holds and sends out its messages to its neighbors so
that each eventually reaches its destination.1

In the parallel algorithms we have seen so far, such a general message movement capability was
not needed. This was because the problems we considered had very regular dataflow which we
could analyze before hand, and then organize computation and store data such that each processor
needed to communicate with nearby processors. In the general case, this need not be true. Consider
an application involving pointers, e.g. algorithms on sparse, irregular, graphs, or algorithms on lists
or trees. Suppose such a data structure, say a tree, is stored in a distributed manner among the
memories of several processors of the parallel computer. It is highly unlikely, that the interconnec-
tion network of the parallel computer will match the particular tree we wish to store. Thus if a
processor holding the data corresponding to a vertex in the tree wishes to get information regarding
the parent of that vertex, this information would have to be obtained using message routing as
formulated above.

Message routing has been intensely studied. There are a number of different models that have
been used to analyze the problem, and theoretical analysis as well as extensive simulations have
been performed of several routing algorithms. Our focus, in these lectures, will be on the “packet
routing” model, which also happens to be the most studied. We present some preliminary analysis
of the general packet routing model (some of the ideas are applicable to other models also). Then
we consider two message routing problems: (1) the problem of permutation routing in which each
processor sends a single message to a unique processor (2) the all-to-all routing problem, in which

1This problem also has a dynamic version, in which each processor continues to inject messages into the network,
and the important issues are how the network behaves in the steady state (if there is a steady state etc.). We will
only consider the static version described above, in which all the messages are given at the start. Note that the
dynamic problem can be converted into a series of static problems by “batching”. That is, the messages grouped
into batches where the ith batch of messages consists of the messages generated by the processors while the (i− 1)th
batch is delivered. Each batch then can be considered to be a single static problem.

67

each processor sends a (distinct) message to every other processor in the network. We conclude
with a survey of message routing models.

12.1 Model

The most common model for analyzing message routing is the store-and-forward or the packet-
switched model. In this model, each message is considered to be an atomic object, or a packet. An
entire packet or a message can be transmitted in one step across any link in the network. Each
link can be used for transmitting only one message in each direction in each step. Further, each
processor in the network is assumed to have only a limited amount of memory which can be used
to hold messages in transit. Thus, the decision of whether to transmit a message along some link
in the network depends firstly upon the availability of the link, and secondly on the availability
of a buffer to hold the message at the receiving processor. Finally, once a message arrives at its
destination, it is removed from the system, i.e. it does not need to occupy buffer space.

Our model also allows auxiliary messages to be exchanged among neighbouring processors.
Auxiliary messages are very similar to ordinary messages except that they are used by the processors
in the network to aid in moving other messages. For example, auxiliary messages may be used to
convey information such as buffer availability. We will require auxiliary messages to have a fixed
length. Further, our model allows only one message (ordinary or auxiliary) to be transmitted along
any link in any step. Finally, if auxiliary messages need to be forwarded for any reason, they need
to be buffered like other messages.

Other models have also been used to study message routing. We will survey these briefly at the
end.

12.2 Routing Algorithms

A routing algorithm consist of the following generic steps repeated in parallel by all processors:

1. Of all the messages waiting in the processor, select at most one message for transmitting along
each link.

2. Exchange auxiliary messages with neighbours and obtain information regarding buffer avail-
ability.

3. Transmit the selected messages subject to buffer availability.

4. Receive messages transmitted by neighboring processors.

The algorithm designer must decide upon the precise implementation of step 1 and step 2. For this,
the designer must select strategies for path selection, scheduling and buffer management.

The path selection strategy is used to decide a path for each message. This will be useful in step
1 in the generic algorithm described above. Given a path for each message, the scheduling strategy
decides when the message moves along it. In step 1 of the code above, if several messages wait to
be transmitted along the same edge, which one to send out will be determined by the scheduling
strategy. The buffer management strategy will determine the manner in which buffers are allocated
to receive incoming messages. We will see examples of all these next.

12.3 Path Selection

We consider path selection strategies for several networks, e.g. 2 dimensional meshes, hypercubes
and butterfly networks.

Suppose a node (x, y) in a 2 dimensional mesh has a message with destination (x′, y′). Then
a natural path for the message would be to first move the message within its row to the correct
column and then on to the correct row, viz. (x, y) → (x, y′) → (x′, y′). Another possibility is
to first go to the correct row and then to the correct column. Finally, a rather interesting path
selection strategy would be adaptive: at each point attempt to move the message closer to its
destination, by making either column movement or row movement. Which movement to make
could be determined dynamically, for example if some other packet also wanted to use the column
edge, then we could choose the row edge, and vice versa. The first two strategies, in contrast, fix the
packet path independent of the presence of other packets – and such strategies are called oblivious
path selection strategies.

On the hypercube, a natural path selection strategy is the so called greedy strategy, so called
because it uses the most natural shortest path. Suppose u is any node in an N = 2n node hypercube.
Suppose we need to find a path from u to some other node v. To do this we examine the bit
patterns of u and v. Wherever the bit patterns differ, we move across the edge in the corresponding
dimension. In particular, let u0u1 . . . un−1 denote the bit pattern of u, and similarly for v. Then
it is easily seen that the following sequence of nodes identifies a path in the hypercube from u to
v: u0 . . . un−1, v0u1 . . . un−1, v0v1u2 . . . un−1, . . . , v0 . . . vn−2un−1, v0 . . . vn−1. Successive nodes in the
sequence are either the same node, or differ in a single bit (and are hence adjacent on the hypercube).
Clearly, the sequence identifies a path with as many edges as the number of bit positions in which
u and v differ, i.e. a shortest path between u and v.

Adaptive strategies are also possible; suppose the source and the destination differ in some k
dimensions, then these dimensions may be crossed in any of the k! different orders, with the precise
path selected dynamically. At each node during transit, the path selection strategy should only
attempt to move the packet towards the destination; if it is possible to get closer to the destination
crossing any of several edges, the one which is needed by the fewest number of other messages
(among those present at the node) might be chosen.

Finally, suppose we have a packet that has to travel from node (r, c) of a 2n input butterfly to
node (r′, c′). In this case one possible path consists of 3 segments as follows. The message is first
moved to node (r, 0) in the same row. Then it uses the unique forward path in the butterfly to
go to node (r′, n). Then it moves within the row to get to (r′, c′). As you can see, this is not the
shortest path; however it is intuitively simple.

12.4 Scheduling

The basic question of scheduling is “when should each packet be moved?”. We implicitly assume
that the packet paths have been fixed by the path selection algorithm, so that the input to the
scheduling problem is a set of packet paths.

The simplest scheduling strategy is FIFO. Suppose a processor holds several packets requiring
to go out on a single link. It then checks if the processor on the other end has space to receive
a packet, and if so, sends out the packet that waited longest. Another scheduling strategy is to
transmit packets that have the longest total waiting time in the entire system (as opposed to FIFO

which only considers the waiting time at the current node).
Another strategy is “farthest to go first”. In this strategy, of all the waiting packets, the one

whose destination is the farthest is transmitted first. This strategy is successful for message routing
on 2 dimensional meshes[6].

Finally, each message may be assigned a priority. If several messages are waiting, the one with
the highest priority might be chosen earliest. Priorities could be assigned by the sender processor
based on some programming consideration (e.g. a message storing data might be assigned a lower
priority than a message that is meant to release a lock).

12.5 Buffer Management

Each node in a routing network will have buffers to hold messages in transit. How should these
buffers be managed, i.e. allocated to incoming messages? The primary consideration is avoiding
deadlocks.

Perhaps the simplest strategy is to partition the set of available buffers among the incoming
edges. Each incoming edge is thus assigned a queue of buffers; requests to transmit messages on an
edge are accepted only if the associated queue has a buffer available. In addition, each node has
a special queue called an initial queue; this queue will contain at the start all the messages that
originate at that processor. This strategy works well on networks like multidimensional arrays and
hypercubes. It can be proved (exercise) that there are no deadlocks possible. We will call this the
natural buffer management strategy.

Unfortunately, the strategy does not work on networks like a torus, or even a simple ring.
Consider an N processor ring in which each edge is associated with a queue consisting of a single
buffer (capable of holding one message). Now consider the state in which each processor i sends a
message to processor i+ 2 mod N . Initially, the messages are in the initial queue of each processor.
After one step all the messages will move one step to the right (i.e. in the direction of processor
i+1 mod N from processor i). At this point no movement will be possible. This is because processor
i will request to transmit to processor i + 1; but processor i + 1 will not accept this request since
the queue associated with its left edge is full. This will be the case for all processors. Notice that
if the ring was an array, this case would not pose a problem.

The deadlock described above can be explained by using a buffer dependency graph. This is a
directed graph in which each queue is a vertex and there is an edge from queue i to queue j iff it
is conceivable that some message in queue i might have to be moved to queue j (in one step). A
routing network is susceptible to deadlocks if its buffer dependency graph contains a cycle. On the
other hand, if the buffer dependency graph is acyclic, no deadlocks are possible.

As will be seen, the buffer dependency graph of the ring consists of two cycles, one going left
and the other right. In the example described above, we used the rightgoing cycle to produce the
deadlock. Can we design deadlockfree routing algorithms for the ring? One possibility is to ignore
the wraparound connection and treat it as a linear array. This solution is very likely wasteful; in
the routing problem described above processor N − 1 would need N − 2 steps to send its message
to processor 1, even though N − 1 and 1 are only 2 links apart.

A better solution is as follows. We let the ring simulate a (virtual) linear array of 2N processors.
Processor i of the array is simulated by processor i mod N . Thus all processors simulate 2 array
processors. Each array processor has at most 2 queues (one left and one right); the ring processor
thus needs to allocate upto 4 queues to simulate the queues of the array processors alloted to it.

The ring processors use the simulated system for sending and receiving messages as follows.
Suppose ring processor i wishes to send a message to ring processor j using a rightgoing path. Let
d denote the length of this path. This message transmission is accomplished using the simulated
array as follows. Processor i constructs a message with destination i+ d and places it in the initial
queue of array processor i which it is itself simulating. The message moves to array processor i+ d,
which as it turns out is simulated by processor j! This is obvious if j = i+ d; the other possibility
is that j = i+ d mod N ; but in this case array processor i+ d will also be simulated by processor j.
Leftgoing messages are treated analogously. If j were to be reached by a left going path of length
d, then processor i would create a message with destination j but place it in the initial queue of
array processor i+N .

To prove that this system is deadlock free, we need to draw its buffer dependency graph. It is
easily seen that this graph is nothing but a left going array with 2N processors, and a right going
array with 2N processors. This is clearly acyclic.

This idea can be extended for designing deadlock free buffer management strategies for other
networks also. In the literature, this idea is often referred to as the virtual channels idea.

12.6 Basic Results

We present some elementary upper and lower bounds.
The path selection algorithm puts some natural lower bounds on the time to solve a routing

problem. Let d denote the length of the longest path as selected by the path selection algorithm.
Let c denote the congestion of the problem, i.e. the maximum number of messages passing through
any link in the network. Then the time must be at least max(c, d), since time c is needed to send
out all the messages passing through the most congested link, and the message needing to travel a
distance d must take at least d time steps.

This raises the question: given a set of messages and their paths can we route them in time
max(c, d)? Notice that (c+ d)/2 ≤ max(c, d) ≤ c+ d. The basic question then is, can we schedule
message movement so that all packets can be moved in time O(c+ d), which is the best possible to
within constant factors?

We can derive a simple upper bound if we assume that we have unbounded buffer space at each
processor. In this case it is easy to see that the only reason a message will not move is if the link
it needs is alloted to some other message. With this observation it follows that each message will
wait at most c time steps at each link on its path. Since no message travels more than d links, the
total waiting time for any message is at most O(cd).

Better upper bounds are known, but these use involved arguments which we will not cover.
Good references are [6, 7, 8]. We will examine some special cases below.

12.7 Case Study: Hypercube Routing

Hypercubes are a popular interconnection network for parallel computer design, and hence message
routing on hypercubes has been intensely studied.

A variety of strategies have been used for path selection, scheduling and buffer management.
Here we will examine in some detail the simplest possible strategies. In particular, we will consider
a routing algorithm in which path selection is done using the greedy path (correct bits from least
significant to most), first in first out scheduling is used, and the natural buffer management strategy

is used. We will further assume that the queue associated with each incoming edge in each node is
unbounded.

We consider the so called permutation routing problem. Suppose that each node in the hypercube
holds a single message to be sent to a unique node. How long does it take to finish delivery?

The answer turns out to depend very strongly upon the precise permutation being routed. For
example, suppose each node i sends its message to node i+ c mod N , for some constant c. It turns
out that for this case, the greedy paths assigned to the messages are edge disjoint! Thus each
message will be able to move 1 step towards its destination in each step, so that in logN steps, all
messages will get delivered.

The proof that messages have edge disjoint paths is by contradiction. Suppose that messages
originating in nodes u and v pass through the same edge e. Let w = u + c and x = v + c
be the destinations. Further let u0u1 . . . un−1 denote the bits in u, from the least significant to
the most, and similarly for other nodes in the hypercube. Now suppose the edge e lies along
dimension k. Since it lies on the path from u to w, we know that one of the endpoints of e must be
w0w1 . . . wk−1uk . . . un−1, and the other w0w1 . . . wkuk+1 . . . un−1. But since e is also on the path from
v to x, we have w0w1 . . . wk−1uk . . . un−1 = x0x1 . . . xk−1vk . . . vn−1, and w0w1 . . . wkuk+1 . . . un−1 =
x0x1 . . . xkvk+1 . . . vn−1. In other words, w0 . . . wk = x0 . . . xk. But u = w − c, and v = x − c,
and hence the k least significant bits of u and v must also be identical. But we also know that
vk . . . vn−1 = uk . . . un−1. Thus u and v are the same node, giving a contradiction.

Greedy routing is however much worse for some permutations. Consider the bit reverse permu-
tation: node x0x1 . . . xn−1 sends to node xn−1 . . . x0. We will show that in this case high congestion
is produced in the network. Let m = n/2. Consider nodes having the bit pattern y0, . . . ym−10m,
i.e. bit patterns in which the most significant m bits are 0. These nodes will send a message to
0mym−1 . . . y0. Notice that all such messages will pass through node 0 (after the least significant m
bits are corrected). But the number of such messages is simply the number of choices for y0 . . . ym,
i.e. 2m = 2n/2 =

√
N . Thus as many as

√
N messages will pass through node 0, leading to con-

gestion
√
N/ logN on one of its edges. Thus the total time would be at least

√
N/ logN , which is

much larger than logN as in the above example.
An interesting question then is which of the two times is more common,

√
N/ logN , or logN . It

turns out, that if the permutation to be routed is selected at random from the space of all possible
permutations, then the time would be O(logN) with very high probability[6]. This suggests that
the routing scheme as defined might work fairly well in practice.

12.8 Case Study: All to All Routing

In the all to all routing problem each node i in an N processor parallel computer has N messages
xij, where xij is to be sent to processor j. This problem arises extremely frequently in practice.
The interesting issue in designing a routing algorithm for this problem is the scheduling strategy.
Since each node holds several messages at the very outset, in what order should they be sent?

One possibility is to use the order in which the messages are stored in the initial queue in
each node. A natural order in which messages are stored in processor i is xi0, xi1, . . . , xiN−1. This
order would be disastrous, since all the messages to processor 0 would be injected first into the
network. Since processor 0 can only accept at each step as many messages as the network degree,
the time just to deliver these messages would be N/degree. Further, all these messages to processor
0 would wait in the network and obstruct the injection of subsequent messages. The precise delays

caused by the scheme depend upon the structure of the network, and the path selection/buffer
management strategies. But it is easy to see that the scheduling strategy will work badly on almost
every network, and this has also been experimentally observed.

A better scheduling strategy is to have processor i send out its messages in the order xii, xii+1, . . . , xiN−1, xi0, . . . , xii−1.
The first message sent out by each processor goes to itself, so it is immediately removed from the
network. The next set of messages is formed by processor i sending to processor i + 1; thus each
message in this set has a unique destination! This situation is very different from the one considered
earlier, in which each set consisted of messages with an identical destination. As it happens this
scheduling strategy will very likely work extremely well on almost all networks. On hypercubes for
example, each batch will be routed in time logN by the argument of the preceding section. Subse-
quent batches will get injected in a pipelined manner, so that the total time will be N − 1 + logN .

The scheduling scheme suggested above works only for the case in which each processor sends
a message to every other processor. What if each processor sends a messages to almost every
processor, but not all? We could still construct a schedule which would guarantee that each batch
of messages would have messages going to distinct processors. But this would require us to know
the precise message pattern in advance. One way to avoid the need for this global knowledge is
to have each processor send its messages in random order. Experimentally, this strategy has been
found to work well. It can also be justified theoretically using ideas from [6]. But this is beyond
the scope of our course.

12.9 Other Models

In most other models of message routing, each message is not considered to be atomic, but instead
consists of a sequence of flow-control units, or flits. A single flit can be sent across a link in unit
time. Typically, only the few initial flits hold information regarding the message destination, while
the rest hold the data. This makes it necessary to transmit flits of a message contiguously. There
are several variations on precisely how this is done.

One common model is the circuit-switched model. In this model, before the message actually
moves, a path between the source of the message and its destination must be selected and reserved
for the message. Once the path is reserved, several message may be sent along it, until the path is
deallocated. Identification, reservation and deallocation of paths is done using auxiliary messages.
Auxiliary messages (also called control messages) are typically only a few flits long. The advantages
of circuit switching are (1) low buffering: since the path is allocated in advance, all the links are
known to be available for transmission, thus little buffering (a few flits) is needed at intermediate
nodes. This is in contrast to packet switching, where entire messages must be buffered at interme-
diate nodes. Note that the control messages are only a few flits long, so very little buffering suffices
for them. (2) Low delay once the path is reserved. The major disadvantages are (1) the entire
path must be reserved before message transmission can begin on any link, leading to idle links (2)
Reserving the entire path might take long, because of other messages simultaneously contending
for links.

Two models attempt to get the best of packet switched and circuit switched routing. The first
is called virtual cut-through. In this, the process of selecting and reserving the path is overlapped
with the movement of the message. In particular, the source sends out a control flit which moves
towards the destination, and as it does so reserves the links that it traverses. This is unlike circuit
switching in which the message waits initially until the entire path is reserved. It is conceivable that

the control flit which is attempting to reserve links gets blocked at some intermediate node, because
all the links in the direction of the source might be in use. In that case the message will travel to
that node and wait there. The final optimization is that as the last flit of the message is transmitted
across any link, it marks that link as dereserved. Thus, virtual cutthrough doesnt reserve links and
leave them idle. It however needs to be able to buffer entire messages at intermediate nodes on the
path of any message.

The wormhole routing model is similar to virtual cutthrough. The only difference is that every
node has buffer space adequate to buffer only a few flits. As in virtual cutthrough a message starts
moving as soon as the initial control flit advances and selects a path. If the control flit is forced
to wait at any node, then the entire message must wait behind it. In virtual cutthrough, the node
in which the control flit is waiting has enough space to allow the entire message to travel into it;
in wormhole routing, the buffer space is only a few flits. So in wormhole routing, the message
buffers in occupies several nodes as it waits. Further, since we require the flits of any message
to be transmitted contiguously on any link, no other messages can be transmitted along the links
that have been reserved. Thus, wormhole routing is closer to circuit switched routing than virtual
cutthrough.

Notice, that if the length of the message is exactly 1 flit, then wormhole routing and virtual
cutthrough are essentially the same as packet routing.

Leighton’s text[6] is a good starting point for study of routing algorithms. Also useful are the
papers [14, 8, 7] and the references therein.

Exercises

1. Suppose that on the two dimensional
√
N ×

√
N mesh paths are selected as described in the

text, i.e. correct the y coordinate, and then the x coordinate. What is the maximum possible
congestion for permutation routing? Suppose we use FIFO scheduling and the natural buffer
management scheme, with each queue having length

√
N . How long will permutation routing

take in the worst case?

2. Consider the permutation routing problem on a 3 dimensional mesh of N1/3 × N1/3 × N1/3

processors. Suppose that messages are moved by correcting the coordinates in some fixed
order. What is the worst possible congestion?

3. Draw the buffer dependency graph for a
√
N ×

√
N mesh.

4. Suppose each queue in the example of Section 12.5 can hold 2 messages. Can you construct
an example in which deadlocks will still be produced?

5. Show that deadlocks are possible for the natural buffer management strategy on the Butterfly
for the path selection strategy described. Devise a strategy that avoids deadlocks.

Chapter 13

Permutation routing on hypercubes

Suppose each processor x in an N = 2n node hypercube as to send a packet to a unique processor
π(x), i.e. π is a permutation. How can we do this, so that the time taken is as small as possible in
the worst case, i.e. over all π?

As discussed earlier, an algorithm will have to have a path selection strategy, a scheduling
strategy, and also a buffering strategy. It is natural to consider canonical paths. However, we have
seen before that with canonical paths we will get congestion Ω(

√
N) in some edge, thus the time

will have to be Ω(
√
N). If we want to do better, we must use a different path selection strategy.

It turns out that any deterministic path selection strategy suffers from a similar problem: it will
produce high congestion in some edge for some π.

By using randomization, as proposed by Valiant, we can do better. Here is Valiant’s algorithm.
It has 2 phases. The algorithm is as follows.

1. Phase 1: Each processor x picks independently and uniformly randomly a processor ρ(x).
Obviously ρ is unlikely to be a permutation. The packet at processor x is sent to processor
ρ(x). ρ(x) is called the random intermediate destination.

2. Phase 2: Each packet is forwarded to the correct destination.

In both phases, we use canonical paths, obtained by correcting bits from lsb to msb. Packet
scheduling can be done anyhow, the only requirement is that some packet must be sent on a link if
one is available to traverse on that link.

Theorem 6 (Valiant [13]) Valiant’s algorithm finishes in time O(logN) with high probability, for
any π.

Proof: In Lemma 10 we will show that if d packets pass through the path of any packet p then the
packet p will be delivered in time at most logN + d.

In Lemma 11 we will show that for any packet p in any phase, the number of distinct packets
passing through its path will be O(logN) with high probability.

Since there are only N packets, it will follow that all packets will be delivered in time O(logN).

Lemma 10 Consider the path of any packet p. If at most k packets pass through any edge of the
path and enter the path at most once., then p will wait along the path for at most k steps.

75

Proof: Draw a space time graph. y axis is the path of p, and x axis is time. Assume unit time =
unit distance = length of edge. So each packet will have a trajectory that is made of lines oriented
at 45 degrees to the x axis, and parallel to the x axis. Suppose p is in its origin node at t = 0.
Suppose p reaches its destination at some time T . Let the path have length d.

Consider lines inclined at 45 degrees starting at x = 0, 1, ..T − d, going up to y = d. Each such
line must be occupied by the trajectory of p at least for a point; because the trajectory of p must
cross these lines. Consider the topmost packet occupying these lines. Let p′ be one such packet.
Suppose it is the topmost packet in several lines, the leftmost amongst which starts at t. Suppose
the packet wants to go to the end of the path. In this case it can do so unhindered along the line.
Then clearly it must appear at most once as the topmost packet. Suppose it does not go all the
way to the end of the path. In this case it must go unhindered to the point at which it leaves the
path. So even in this case it appears exactly once as the top most packet. Thus we have identified
T − d− 1 distinct packets passing through the path, which is the delay faced by p.

Lemma 11 The number of distinct packets passing through the path of any packet p is O(logN)
with high probability.

Proof: Suppose the path is from x = xn−1 . . . x0 to y = yn−1 . . . y0.
Because of the correspondence between paths on the hypercube (correcting bits lsb to msb) and

paths on a 2n input butterfly, we will visualize the problem on the Butterfly.
On the Butterfly this path starts from input node x and goes to output node y. Suppose we

start moving backward from output node y. Then as we move back, in each level we have two
choices. So potentially we can reach 2n input nodes as we come back all the way to the inputs. But
in fact we know that each input node has a path that reaches y. So all the nodes reached going
backward from y must be distinct, i.e. if you follow the edges backward from y, they form a tree.
So then it follows that if you diverge from the path at level i, you will reach 2i nodes, which will
be distinct from the 2j nodes that you will reach diverging form level j 6= i.

In other words, each packet can enter the path from input x to output y at most once. So if we
want to know how many different packets touch the path, we can ask how many packets enter it.

Let p′ be some packet which can potentially enter the path of p at level i. There are 2i such
packets. We will find the probability that p′ actually enters the path. Instead of picking ρ in one
shot, suppose we pick it bit by bit, as the packet moves. Then to enter the path of p, at level i, a
packet must pick i bits just right. So Pr[p′ enters the path] = 1/2i.

Let C = number of packets which enter the path of p. Let Cq = random variable taking value
1 if packet q enters the path of p. This is defined for every q that can possibly enter the path.

Cq is a Bernoulli random variable. All Cq are independent because whether they intersect path
of p is determined by their own random bits.

So C =
∑
q Cq

E[C] =
∑
q E[Cq] =

∑
i 2

iE[Cq, q entering in level i] =
∑
i 1 = n,

Now all that remains is to apply Chernoff bounds.1

Pr[C > k logN] < (e/k)k logN < 2k logN = N−k assuming we pick k > 2e.

1Suppose X =
∑
iXi is a sum of independent 0-1 random variables Xi, each having probability pi of being 1.

Then µ =
∑
i pi is the expected value of X. Then Pr[X > kµ] < (e/k)kµ.

h(k) = max(k, 2e). Thus our definition is satisfied.

The idea of first sending each packet to a random intermediate destination and then forwarding
it to the correct destination in two phases works for other networks besides the hypercube.

Exercises

1. Show that the number of packets passing through any edge of the hypercube isO(logN/ log logN)
w.h.p. What is the expected number of packets? Do you understand why the high probability
bound is different from the expectation?

2. Consider the problem of routing permutations in a n × n × n array of processors. Here is
the path selection algorithm. Suppose the processor (x, y, z) is to send a packet to processor
(x′, y′, z′). This packet is sent using the following path:

(x, y, z)−−(x′′, y, z)−−(x′′, y′, z)−−(x′′, y′, z′)−−(x′, y′, z′)

where x′′ is a random number between 1 and n picked independently by each processor. Give
high probability bounds on the max congestion of the edges.

Note that the destination of each packet is unique, and chosen deterministically. Your bounds
must be for the worst way of choosing the destination, if needed.

3. Suppose each vertex in a N = 2n node deBruijn graph sends a packet to an independently
uniformly randomly chosen vertex. Show that each link will have congestion O(logN) w.h.p.
You should be able to derive this result directly, i.e. by considering the algebraic definition
and arguing which processors can potentially contribute packets and with what probability.
You should also be able to make the derivation by considering the relationship between the
Butterfly, Omega and deBruijn networks.

Chapter 14

Queuesize in Random Destination
Routing on a Mesh

We study the following problem. Each processor in a
√
N ×

√
N mesh holds a single packet which

has a destination which is chosen uniformly randomly from all processors. The packet moves to
the correct column first, and then to the correct row. The questions are: how much time will
be needed, and how much can the queues build up, using appropriate scheduling strategies (e.g.
FIFO, farthest to go first, or whatever). During the analysis we will assume that the queues are
unbounded; however, if we can show that with high probability no queue builds up too much, then
we can allocate short queues and expect that packets will never be rejected because of full queues,
and thus the time taken will also be same as before.

14.1 O(
√
N) Queuesize

Since each processor starts with just one packet, they can all start moving horizontally right at the
beginning. Since no new packets will come in in any of the later steps, once a packet starts moving
horizontally it can go as far as it wants horizontally without waiting. At the point at which the
packet turns, it might have to wait because there may be vertically moving packets with which it
must compete for transmission. Suppose we use the following strategy: give preference to packets
already moving vertically over packets which are turning. With this, once the packet starts moving
vertically, it will not be delayed subsequently.

So the only question is, how long is a packet delayed at the point at which it turns? Clearly, this
will be no more than the number of packets passing through any processor. This is clearly bounded
by O(

√
N).1 Thus we have the following result.

Lemma 12 By giving priority to packets moving vertically, routing will finish in time O(
√
N) with

high probability. During this period no queue will grow beyoud O(
√
N).

1It is exactly
√
N in horizontal edges, and in vertical edges this is true with high probability using a usual Chernoff

bound argument.

78

14.2 O(logN) Queuesize

The bound above can be tightened by getting a good estimate of the number of packets turning at
any node – clearly the delay is only this, and not the total number of packets through the node.

It is an easy exercise to show that the number of packets turning has expected value 1, and is
a sum of independent 0-1 random variables. Thus with high probability this will be O(logN).

14.3 O(1) Queuesize

The observation in the preceding section is also very conservative. Suppose that queues are at
the inputs to the links. Suppose some queue on the downward going link in some vertex v builds
up to p packets. What can we conclude? A queue builds up only when the number of packets
arriving are more than the ones leaving. Thus there must have been at least p instances during
which packets arrived from above as well as from the row of v. Thus p packets must turn in v, and
furthermore, during the period in which these packets arrive, there must be a continuous stream
(burst) of packets leaving out of v, otherwise we know that the queue has emptied.

14.3.1 Probability of Bursts

Lemma 13 The probability that some edge has a packet transmission for 9 logN consecutive steps
is O(1/N).

It is easier to prove this lemma if we allow each link to carry an unbounded number of messages
at each step, rather than just one (per direction) , as at present. We will call the old model the
Standard model, and the new, the Wide channel model. Note that in the wide model packets will
never wait. So all routing will finish in time equal to the length of the longest path, certainly
O(
√
N).

We first prove a Lemma relating the two models.

Lemma 14 If one packet leaves processor (u, v) along the downward edge at every time step during
the (maximal) interval [t+ 1, t+ k], with farthest to go first strategy in the standard model, then k
packet will leave (u,v) during [t+ 1, t+ k] in the wide model too.

Proof: Consider packet pi passing (u, v) at ti ∈ [t + 1, t + k] in the standard model. Suppose pi
turned in some node (w, v) at time Ti. Then since there is no waiting on the horizontal portion
even in the standard model, pi must turn at Ti in the wide model as well. Suppose it leaves (u, v)
at time wi in the wide model. Then we show that in the standard model, some packet must be
leaving (u, v) at every step during the interval [wi, ti].

The packet arrives ti − wi steps earlier in the wide model – this is thus the amount of time pi
spends waiting during its vertical movement. Consider the first time pi waits. As pi waits, it can
only be because some p′ having destination further than pi is transmitted instead of it. But then
p′ would have to leave (u, v) at time wi in the standard model, unless it was itself delayed by some
p′′. But in turn that would have to arrive at wi and so on. Thus we have shown that some packet
must leave (u, v) at wi even in the standard model. Similarly we can identify packets which must
leave at all the intermediate steps.

But [t+ 1, t+ k] is maximal, and hence [wi, ti] ⊆ [t+ 1, t+ k] In other words, wi ∈ [t+ 1, t+ k].
Thus every pi will arrive at (u, v) during [t+ 1, t+ k] in the wide model as well.

Proof of Lemma 13: Because of Lemma 14 it is enough if we prove this for the wide model.
Consider any outgoing edge from processor (u, v), say downward. Suppose that k packets appear

on the edge during [t+ 1, t+ k], for k = 9 logN . Call this a D(u, v, t) event.
We first estimate the probability of a D(u, v, t) event. Given a packet leaving at t+ i, we know

that it must have originated at distance exactly t + i, somewhere above. There are 2 choices for
this in each row r for 1 ≤ r ≤ u. Now we need to estimate the probability that each such packet
will in fact pass through (u, v). For that the packet must have as destination some vertex (w, v) for
u ≤ w ≤

√
N . Thus this probability is (

√
N −u)/N . Thus the expected number of packets through

downward edge of (u, v) during the interval [t+ 1, t+ k] is k · 2u · (
√
N − u)/N ≤ k/2.

Noting that the packets through (u, v) during [t+1, t+k] is a sum of zero-one random variables,
one for each packet, we get this number, R to be at most

Pr[R = k] ≤ e(1− 1
2
−ln 2)k ≤ N−5/2

But there are O(N) choices for (u, v) O(
√
N) choices for t, and hence the probability of some

D(u, v, t) event is at most O(N3/2 ·N−5/2) = O(1/N). Considering the upward transmissions only
doubles this probability.

14.3.2 Main Result

Theorem 7 If the farthest to go first rule is used to decide which packet to transmit first, then rout-
ing finishes in time O(

√
N) and no queue size exceeds 4, with probability at least 1−O(log3N/

√
N).

Proof: Say a vertical edge gets a burst if more than 9logN packets pass consecutively through it.
Lemma 13 assures us that no edge has a burst with probability 1−O(1/N).

We will say that a (q, t) event happens if queue q builds up to 4 at time t. Clearly, a packet
must turn at time t into q. We will bound the probability that some (q, t) event happens given that
no edge has a burst.

The number of (q, t) events is O(N3/2) since there are O(N) ways to choose q, and O(
√
N) ways

to choose t since the routing must finish it that much time.
Next we calculate the probability that (q, t) happens. The last of the packets turns at time

t1 = t, there must be 3 others turning into q in a time window of size 9 logN before t. Thus there
are at most (9 logN)3 choices for the times t2, t3, t4 when these packets turn into q. Note however,
that if a packet turns into q at some ti, then it must have originated at a node in the same row
as q, but at distance ti, since during the horizontal movement, the packet does not wait. So there
are 2 choices for where each packet originated, or 24 = 16 ways to decide the origin of all 4. Note
however, that the probability that the packet turns in q is 1/

√
N . So the total probability of a (q, t)

event is
(9 logN)3 · 16 · (1/

√
N)4 = O(log3N/N2)

So the probability that some bad event happens is O(N3/2) ·O(log3N/N2) = O(log3N/
√
N).

But now the probability that some (q, t) event happens whether or not there is a burst is at
most O(1/N) +O(log3N/

√
N) = O(log3N/

√
N).

Chapter 15

Existence of schedules, Lovasz Local
Lemma

Suppose you have a graph + set of paths whose congestion is c and longest length d. Then there is
a schedule that finishes in time O(c + d) using O(1) size queues on each edge. This is a beautiful
result due to Leighton, Maggs, and Rao[9].

We will prove a simpler result.

Lemma 15 (Scheideler[11]) O(c) time suffices if c > 9d log c, with queues of size c/d.

Note that this is still better than the ”Obvious result” : cd time, queuesize c. However, the
obvious result is backed by a distributed algorithm (keep moving packets so long as possible and
necessary), whereas what we give is only an existence proof. However the time bound as well as
queue size are worse than the schedules promised in the lemma above.

Proof of the Lemma has many of the ingredients of [9].
Here is an outline of the proof. We present a randomized ”algorithm” for constructing the

schedule: Not an algorithm in the standard sense, where we require that the construction succeed
with substantial probability. However we show that the construction will succeed with non-zero
probability. Thus by trying out all possible random choices you will be able to find the schedule.
However, since these are too many, we will be content to consider this to be a proof of existence.

Algorithm:

1. Start with a ”wide” model, width c. In this model, no packet gets delayed and everything
finishes in time d.

2. Insert a random delay si at the start of each packet i where si is picked independently and
uniformly from the range 1..∆. Packets will still not get delayed in between, and every packet
will finish in time d+ ∆.

3. If the congestion of any edge at any time is more than f then declare failure and halt.

4. Simulate each step of the wide model using f steps of the standard model. Queues of size f
will be needed at each vertex.

Final Result, f(d+ ∆) time, using queues of size f .

Lemma 16 The above procedures succeeds with non-zero probability.

81

For each edge e and time t define (e, t) to be the (bad) event that more than f edges traverse e
at time t in the wide model.

Clearly we want the probability that no bad event occurs.

15.0.3 Some Naive Approaches

Let p denote an upper bound on the probability of any single bad event. The total number of such
events is at most nd(d+ ∆) where nd is the maximum number of edges possible in the network. By
choosing f to be large, it is possible to ensure that nd(d + ∆) · p < 1. This would establish that a
schedule exists for the chosen f . Exercises ask you to find out what f is needed for this. You will
see that f is too large – the length of the schedule f(d+ ∆) will not be O(c+ d).

So we need a finer argument.
Notice that if the bad events are independent, then clearly none happens with probability at

least (1− p)nd(d+∆). However, the events are not independent.

15.0.4 The approach that works

The important observation is that each event is related to only a small number of other events, and
independent of most events. Specifically, (e, t) and (e′, t′) are related only if e, e′ are on the path of
the same packet. Thus there are c ways to choose this packet, and of the d edges on its path we
may choose any. t′ can be chosen in any of the d + ∆ ways. Thus for any (e, t) there are at most
cd(d+ ∆) other events that are related.

Lemma 17 (Lovasz Local Lemma) Suppose we have some events x1, x2, . . . , xm. Each event
has probability at most p of happening. Each is mutually independent of all but R other events.
Further 4pR ≤ 1. Then the probability that none of the events x1, . . . , xm occurs is strictly positive.

Proof: We know

Pr(x̄1x̄2 . . . x̄m) = Pr(x̄1|x̄2 . . . x̄m)Pr(x̄2 . . . x̄m) = (1− Pr(x1|x̄2 . . . x̄m))Pr(x̄2 . . . x̄m)

Applying this idea several times we get:

Pr(x̄1x̄2 . . . x̄m) = (1− Pr(x1|x̄2 . . . x̄m)) . . . (1− Pr(xm)) ≥ (1− 2p)m

where the last step comes from Lemma 18. But 1− 2p > 0 since 4p ≤ 1

Lemma 18 For any y, y1, . . . , yk ∈ {x1, . . . , xm} and y 6= yi we have Pr(y|ȳ1 . . . ȳk) ≤ 2p.

Proof: The proof is by induction on k. For the base case note that Pr(y) ≤ p ≤ 2p.
Renumber events so that the r ≤ R dependent events for y come first. So our probability is

Pr(y|ȳ1 . . . ȳrȳr+1 . . . ȳk) =
Pr(yȳ1 . . . ȳr|ȳr+1 . . . ȳk)

Pr(ȳ1 . . . ȳr|ȳr+1 . . . ȳk)

Noting that Pr(A|BC) = Pr(ABC)/Pr(BC) = Pr(AB|C) Pr(C)/Pr(BC) = Pr(AB|C)/Pr(B/C).
Consider the numerator first.

Pr(yȳ1 . . . ȳr|ȳr+1 . . . ȳk) ≤ Pr(y|ȳr+1 . . . ȳk) ≤ p

with the last inequality arising because y is mutually independent of yi. Consider the denominator.

Pr(ȳ1 . . . ȳr|ȳr+1 . . . ȳk) = Pr(y1 + . . .+ yr|ȳr+1 . . . ȳk) = 1−Pr(y1 + . . .+ yr|ȳr+1 . . . ȳk) ≥ 1−
i=r∑
i=1

Pr(yi|ȳr+1 . . . ȳk)

But using the induction hypothesis we know Pr(yi|ȳr+1 . . . ȳk) ≤ 2p. Thus

Pr(ȳ1 . . . ȳr|ȳr+1 . . . ȳk) ≥ 1− r · 2p ≥ 1− 4Rp ≥ 1/2

The last inequality follows since 4Rp ≤ 1. But then putting together what we know about the
numerator and the denominator, we get

Pr(y|ȳ1 . . . ȳrȳr+1 . . . ȳk) ≤
p

1/2
= 2p

Now Lemma 15 can be proved, as the exercise shows.

Exercises

1. Express p as a function of f . What bound will you get on the time and queuesize if you choose
f so that nd(d+ ∆) · p < 1?

2. Use ∆ = dδ and δ = 3

√
c/6d log c, and f =

(
1 + 1

δ

)
C
dδ

and prove Lemma 15.

Chapter 16

Routing on levelled directed networks

Packet routing is a fundamental problem in parallel and distributed computing. Here we consider
a formulation of it on levelled directed networks[7]. This formulation is interesting because routing
problems arising from many applications on many networks can be formulated as routing problems
on appropriate levelled directed networks, e.g. permutation routing (worst case) on several networks.
The problem of implementing coarse grained models on networks can also be formulated in this
manner.

A levelled directed network with levels 0 . . . L is a directed acyclic graph in which each node v
is assigned a number Level(v) ∈ [0, L], such that Level(v) = 1 + Level(u) for any edge (u, v). There
are N packets distributed amongst its nodes. Each packet has an assigned path in the network
along which the packet must be moved, subject to the following restrictions: (i) it takes one time
step to cross any edge, (ii) only one packet can cross any edge in one time step, (iii) the decision
of which packet to send out along an edge (u, v) must be taken by node u based only on locally
available information, i.e. information about paths of packets that are currently residing in u or have
already passed through it. The packet routing algorithm may associate small amount of additional
information with each packet which can be used while taking routing decisions and which moves
with the packets. It is customary to characterize a routing problem in terms of two parameters: d,
which denotes the length of the longest packet path, and c, which denotes the maximum number
of packet paths assigned through any network edge. Clearly max(c, d) = Ω(c+ d) is a lower bound
on the time needed. The question is how close to this can an algorithm get.

Assuming that each processor has unbounded buffer space for holding messages in transit, we
will show that with high probability packet routing can be finished in time O(c + L + logN),
where c denotes the maximum number of packets required to pass through any single edge. If
d = Ω(L + logN), as is the case in the problems arising in the use of this framework as in [7], our
result is clearly optimal to within constant factors. Our time bound actually holds even if the buffer
space is bounded[7], but the proof as well as the algorithm are slightly more complex.

Deterministic algorithms are not known to work very well for this problem. In fact, Leighton,
Maggs, and Rao[9] show that in general Ω(cd

log c
) time is necessary for a large natural class of deter-

ministic algorithms that includes FIFO (send first the message which arrived first into the node),
farthest to go first (send first the message which has the longest distance yet to go) and several
others. The best known upper bound for deterministic algorithms is O(cd). This is applicable for
almost any algorithm which sends some packet on every link if possible:1 no packet need wait for

1Algorithms which may hold back packets even though a link is free are interesting when the buffer space in the
receiving nodes is bounded. In fact, in this case it sometimes makes sense to withhold transmission even on occasions

84

more than c− 1 steps to let other packets pass at each of the at most d edges along it’s path. This
bound is substantially worse than O(c+ L+ logN) for the typical setting.

16.1 The Algorithm

If we could somehow partition our packets into c batches, such that each batch gives rise to con-
gestion 1, then we could have a very simple algorithm. We let the ith batch start moving at step i.
The packets in batch i would cross edges in level l in step i + l, and there would be no contention
anywhere! The batches would be perfectly pipelined. The algorithm which we describe next, could
be thought of as forming batches randomly. By ensuring that the ith batch always moves before
the i + 1th batch, and using a few more ideas to expedite the movement, we can show that with
high probability the time is O(c+L+ logN). Essentially our result shows that perfect batching is
not needed; approximate batching is good enough.

We assume that each node has a queue at each input. In each node there is an additional queue
called the initial queue, which contains the packets that originate at that node.

In the initial queue, there also is an EOS (end of stream) packet, whose purpose will become
clear later. The algorithm also uses so called ghost packets, whose creation and processing will be
described shortly. The EOS packets are considered to have rank ∞.

Our routing algorithm, following [7, 10], is simple but randomized. For each packet we choose a
rank independently and uniformly randomly from the range [1, ρ] where ρ is a number which will be
fixed later. The rank of a packet can be considered to be its batch number as discussed informally
above.

The basic idea is to send out packets in non-decreasing order of their ranks on every link. The
nodes in level 0 can certainly do this; they just need to sort the packets they have by their rank
and then send them out. At other nodes, this can be done inductively. We assume that each node
receives packets in rank order over its incoming links. Each node could wait for all packets to arrive,
and then merge the streams of packets and then send them out. This is of course very inefficient;
each node should send out packets as soon as it possibly can.

The key idea in this is as follows. Each node waits until there is at least one packet in each
incoming queue. Note that nodes in level 0 have no incoming queues, and so do not wait. If a
packet is present in each node, a smallest rank waiting packet over all queues is chosen, and it is
sent on the link its needs to traverse. At the same time, a special ghost packet of the same rank is
sent on all other outgoing links. A ghost packet of rank r arriving at a node v on link l is used to
inform v that subsequent packets on link l will have rank at least r. Suppose now that all other
incoming queues in v have packets waiting, and the smallest ranked among them has rank less than
r, then this smallest ranked packet can be sent out.

One more idea is need. A node must know when the stream of incoming packets ends. For
this we place an EOS (end of stream) packet at the end of each initial queue. After sending other
packets, the EOS packet is sent indicating that no other packets will be sent. We can think of the
EOS packet as having rank ∞, so that other packets always get to go first.

We now formally state the invariant maintained by our algorithm.

On each link, packet transmission commences at a certain step. Packets are transmit-
ted without interruption till an EOS packet is transmitted. Each packet is either a real

when unused buffer space is available in the receiving node[6, 7, 10].

packet or a ghost packet. The ranks of the transmitted packets form a non decreasing
sequence.

One clarification is necessary regarding ghost packets. Suppose a ghost packet g with rank r arrives
into a node v at certain time instant t on link l. At step t+ 1 if g is the smallest ranked packet in
v, then it will be replicated and forwarded on each outgoing link. If it is not the smallest ranked
packet, then we simply destroy it. We do not need to retain it for the next step, because in the
next step, some other packet of rank at least r will arrive into v on link l which could instead be
transmitted.

In the above description, we assumed that queues are unbounded. In reality queues will have a
certain finite size. If a certain queue is full, then we must notify the upstream node to not transmit.
With this amendment, the algorithm can also handle finite size queues, although for the analysis
given next, we ignore this aspect.

16.2 Analysis

The analysis is based on a delay sequence argument.
Suppose some packet p was delivered at step T . We follow p back in time and identify another

packet p′ which is responsible for causing p to be not delivered earlier. We then follow p′ back in
time and identify packet p′′ and so on. We then show that the identified packets must have non
increasing ranks, which we then show is unlikely if T is large.

16.2.1 Events and Delay sequence

By (u, v, p, r, t) we will denote the event that a packet p gets assigned rank r and gets transmitted
on link (u, v) at step t. Suppose (u, v, p, r, t) happens for t > 1. Then one of the following is true.

1. At step t−1, p arrived into u, or a packet p′ whose ghost p is arrived into u from some w. Thus
(w, u, p′, r, t−1) happened. We will say that (u, v, p, r, t) is transit delayed by (w, u, p′, r, t−1).

2. Suppose p was not transit delayed, but at step t− 1, some other real packet p′ of rank r′ ≤ r
was transmitted out of u. Thus (u,w, p′, r′, t − 1) happened. We say that (u,v,p,r,t) is rank
delayed by (u,w, p′, r′, t− 1) is rank delayed by (u,w, p′, r′, t− 1).

3. At step t−1, no real packet was transmitted out of u, but some ghost packet p′ of rank r′ ≤ r
was transmitted. Thus (u,w, p′, r′, t − 1) happened. We say that (u,v,p,r,t) is rank delayed
by (u,w, p′, r′, t− 1) is rank delayed by (u,w, p′, r′, t− 1).

Let the last real packet be delivered at step T . Then we will have a sequence E = (E1, . . . , ET)
with Et = (ut, vt, pt, rt, t), where Et−1 is either a rank delayer or transit delayer of Et. We note its
following properties:

1. Either ut = ut−1, or (ut−1, ut) is an edge in the network.

2. uT , . . . , u1 are on some backward path P through the network. This is not necessarily the
path of any packet.

3. At least δ ≥ T −L events Et are rank delayed by Et−1. This is because we can only have one
transit delay per edge in the path P , and there are at most L edges in P .

4. r1 ≤ r2 ≤ . . . ≤ rT .

Abbreviated delay sequence Consider E ′ ⊆ E consisting only of rank delayed events. Clearly
all the packets in such events must be distinct. Also, all packets must be real, because ghost packets
do not wait but get discarded if they are not transmitted immediately. Clearly E ′ must have length
at least T − L, and must satisfy properties 2 and 4 above.

Let P be a backward path in the network. Let u1, . . . , uδ be vertices on P such that ui is to
the right of ui−1 or ui = ui−1. Let pi be a real packet passing through ui. Let r1, . . . , rδ be a non
decreasing sequence of numbers in [1, ρ]. Then a (P, u1, . . . , uδ, p1, . . . , pδ, r1, . . . , rδ) delay sequence
is said to happen if pi is assigned rank ri during execution.

Clearly, if some packet is delivered at step T , then a (P, u1, . . . , uδ, p1, . . . , pδ, r1, . . . , rδ) delay
sequence must happen, for δ = T − L.

16.2.2 Main theorem

Theorem 8 With high probability the time T required to finish routing is O(c+ L+ logN).

Proof: If the delivery time is T , then we know that some (P, u1, . . . , uδ, p1, . . . , pδ, r1, . . . , rδ) delay
sequence where δ = T − L must happen. The probability of the delivery time being T is at most
the probability that some delay sequence of length δ happens. The probability of some delay
sequence happening is in turn at most the product of the number of possible delay sequences and
the probability of a fixed delay sequence happening.
Number of delay sequence events This is simply the number of ways of choosing (ui, vi, pi, ri)
for i = 1 to δ such that properties 2,4 above are satisfied. To ensure this, we use an indirect
procedure that first chooses a path in the network, then chooses each edge from the path. Each pi
is then constrained to be one of the packets through the chosen (ui, vi). Finally the ri are chosen so
that they are non-decreasing. The path must begin at the origin of some packet. Thus the origin
can be chosen in N ways. Each consecutive edge on the path can be chosen in ∆ ways, where ∆
is the degree of the network. Thus the total number of ways in which the path can be chosen is
at most N∆L ≤ 2δ∆δ, assuming δ ≥ logN,L. Given the path P , we can select ui by specifying
the level in which ui lies. The levels of all uis form a non decreasing sequence. Thus they all can
be chosen in

(
L+1+δ−1

δ

)
≤ 22δ ways, assuming δ ≥ L. Given ui, we must choose pi to be one of

the packets through it. Since each edge has congestion at most c, there are at most c∆ packets
through every vertex. Thus all pi can together in (c∆)δ ways. Finally the ranks of the packets must

be chosen in non-decreasing order, i.e. in
(
ρ+δ−1
δ

)
≤
(

2ρe
δ

)δ
ways assuming ρ ≥ δ. The number of

abbreviated sequences of length δ is thus no more than
(
2∆ · 4 · c∆2ρe

δ

)δ
.

Probability of fixed sequence The events in each sequence concern distinct packets. Any event
(ui, vi, pi, ri) occurs if pi gets assigned rank ri. Thus all events together happen with probability at
most 1

ρδ
.

The probability of some abbreviated delay sequence occurring is thus at most(
2∆ · 4 · c∆2ρe

δ

1

ρ

)δ
≤
(

16ec∆2

δ

)δ

So choose T = 2L+ 32ec∆2 + k logN . Noting δ = T −L we have the probability of time T at most
N−k.

Note that we must choose the ranks to be in the range [1, L+ 32ec∆2 +k logN]. The rank must
be included in each packet; however the number of bits needed is just the log of the range, and is
thus small.

16.3 Application

The theorem proved above enables us to devise good packet movement algorithms for many net-
works. This can be typically done in two parts:

1. Fix a path selection algorithm which likely produces low congestion. This may require random
intermediate destinations.

2. Devise a levelled directed network which contains the possible paths. The levelled directed
network should be simulatable by the original network with O(1) slowdown. Also, the levelled
directed network should not have too many levels.

It is usually possible to use the above to get algorithms that deliver packets in time proportional
to the natural lower bounds.

16.3.1 Permutation routing on a 2d array

Our first example is permutation routing on a
√
N ×
√
N 2d array. The natural lower bound, based

on diameter or congestion, is Ω(
√
N).

If we send packets directly to their destinations say by going to the correct column and then to
the correct row, then the congestion is

√
N even in the worst case. This is because the congestion

in each row edge comes only from the processors in that row, and there are only
√
N of these. The

congestion in every column comes only from packets destined to processors in that column. Since
each processor is the destination of a single packet, this congestion is likewise at most O(

√
N).

Thus it appears we do not need randomization in path selection.
Now we must view the packet movement as happening on a levelled directed network. For this we

consider a levelled directed network which is in 4 parts. Each part is a copy of the original network.
In the first copy the edges are directed left and up. In the second, right and up. In the third, right
and down. In the fourth left and down. Each copy is a levelled directed subnetwork, with 2

√
N − 1

levels. The copies will be simulated by the original network. This will thus give a slowdown of 4.
Note however, that every message has its destination in either the northwest, northeast, southeast,
southwest quadrants relative to the origin. Thus one of the 4 copies respectively should be able to
deliver the message.

The congestion in each copy is at most
√
N and the number of levels is 2

√
N − 1. Thus

using random ranks, ghosts etc. we are guaranteed that all packets will get delivered in time
O(c+ L+ logN) = O(

√
N) time with high probability.

16.3.2 Permutation routing on a Butterfly

The butterfly has N = (n+ 1)2n nodes.
We could use canonical paths to move packets in a Butterfly. However, we also know that there

exist permutations (e.g. bit-reverse of the row number) for which the congestion can be as high as√
N . Thus we cannot use the direct paths, since we want our algorithm to work for all possible

permutations π.
Here is a possible path for a packet originating at input (r, c) and destined for (r′, c′). It first

uses backward butterfly edges to move to (r, 0). It then uses the forward butterfly edges to move
to (r′′, n) where r′′ is randomly chosen independently for each packet. The packet then moves to
(r′, 0) by using the backward butterfly edges. Finally the forward butterfly edges are used to move
to (r′, c′).

It should be possible to show that the congestion due to this in every edge is O(n) with high
probability.

Now we use a levelled directed network having consisting of 4 copies joined serially: a reverse
butterfly network, a butterfly network, a reverse butterfly, and a forward butterfly. This network
has 1 + 4n levels, and can be simulated by the original network with a slowdown of 4. Thus the
packet delivery must finish in time O(c + L + logN) = O(logN) with high probability, given that
congestion is O(n) w.h.p. But if two events happen with high probability, then their intersection
also happens with high probability.

Exercises

1. We used 4 copies of the original network to do permutation routing on a
√
N ×

√
N mesh.

This forces a slowdown of 4. Can you do this using a slowdown of only 3? Hint: Use a logical
network consisting of a 2

√
N × 2

√
N mesh from which one quadrant of size

√
N ×

√
N has

been removed.

2. Suppose each processor in a n×n×n mesh sends a message to a randomly chosen processor.
Show that you can find paths on a levelled directed network with congestion O(n) using only
4 copies. This will require an extension of the idea of problem 1. Note that if you extend the
idea in the text, you will need 8 copies.

3. Design an algorithm for permutation routing on a d dimensional mesh with side length n. Your
algorithm should run in time O(nd). You can assume that in a single step each processor can
send messages on all its d links. You may also assume that in a single step it can also perform
O(d) operations locally (e.g. such as comparing packet priorities).

This builds up on the previous problems.

4. In this problem you will devise a sorting algorithm based on routing. The number of keys is
N , the network is a P = 2p(p+ 1) processor butterfly, with N = kP . You are to fix the value
of k and other parameters which will emerge later so that the time taken by the algorithm is
O((N logN)/P), i.e. so that the speedup is linear. It is of course desirable to have k as small
as possible. Here is the outline of the algorithm.

(a) Select a sample of size about S out of the N the keys. You may do this in any way you
think convenient for the analysis: the possibilities are (a) Pick S randomly from N with

repetition. (b) Same, without repetition. (c) Pick each key with probability S/N . In
this case the expected number is S, and the sample will have size essentially S with high
probability, but you will have to prove this.

(b) Sort the sample using some convenient method, say odd-even merge sort. Remember
that S need not be P (though it possibly is a fine choice – you might start with that for
convenience) – and hence the odd-even merge sort will have to be simulated on the P
processor network.

(c) From the sample of size S, select every dth element, to form a splitter set R. It is sug-
gested that this be done so that at least one element from any set of Ω(N/R) consecutive
keys appears in the set with high probability. This property is important for the last two
steps.

(d) Distribute the splitters so that first column of the reverse butterfly has the median, next
has median of top half and median of bottom half and so on.

(e) Perform splitter directed routing. Evaluate the congestion and estimate the time taken
using the levelled directed network theorem.

(f) Locally sort the elements. Actually, you should not sort the elements in just the last
column of the reverse butterfly, but spread the elements into a row and then sort them
separately in each row.

(Hint: Start by choosing d = k = logN or thereabouts and increase only if really needed.)

5. Suppose you are given a circuit consisting of gates with at most d inputs and one output.
Each gate works as follows: it waits until all inputs are available and then generates the
output (which is connected to the input of at most one gate). The gates in this problem
behave probabilistically (this is to model asynchronous circuit behaviour). The time required
to generate the output after all the inputs are available is an independent random variable,
taking the value 1+ε with probability p and the value ε with probability 1−p. The parameters
ε and p are common to all gates, but may depend upon, say the number of gates. In other
words, in the analysis they should not be treated as constants. The delay of a circuit is defined
as the time taken by the output to be generated after all inputs have arrived.

(a) Consider a circuit which is just a long chain of h unary gates. There is a single input and
single output. In the best case, the output will have a delay of hε, and in the worst case, the
output will have a delay of h + hε. What is the expected delay of the output? (b) What is
the probability that the delay in the above circuit will be at least h/2 (c) Consider a circuit
whose graph is a directed tree, with at most h gates are present on any path from any input
to the output. The gates may have degree upto d, but the number of inputs is N . Show that
the circuit delay is O(hp+hε+logN) with high probability. Give a delay sequence argument.

Chapter 17

Introduction to PRAMs

Many objects, such as sparse graphs, are efficiently represented using pointers or equivalent notions.
It is thus useful to consider parallel algorithms for pointer based representations. But for this, we
need the notion of a shared address space, accessible to all processors. This is formalized as a
Parallel Random Access Machine (PRAM). A PRAM consists of

1. Multiple independent processors. Each processor has its own local control and local memory.

2. Shared global memory. Can be accessed by all the processors in each step. At each step each
processor can perform the following steps

(a) Read from or write to arbitrary location in global memory.

(b) Perform some computation according to its local control and its local memory.

Several variations of the model have been defined based on whether or not multiple processors
are allowed to access the same memory location in the same step.

• EREW (Exclusive Read Exclusive Write): All processors must access distinct memory
locations at each step.

• CREW (Concurrent Read Exclusive Write): At each step several processors may read
the same memory location. However, no two processors may write to the same location.

• CRCW (Concurrent Read Concurrent Write): Concurrent reading is allowed. Concur-
rent writing is also allowed; there are different variations of the model which determine how
this can be done:

– Common: Several processors may are allowed to write same location if they write same
value.

– Arbitrary: Several processors may are allowed to write same location, and one of the
values gets written. It is the job of the programmer to ensure that the program is correct
no matter which value got written.

– Priority : The highest priority processor succeed in writing a memory location when
more than one processors tries to write same memory location.

– Combining : Value written by the processor is combined by using some possibly com-
mutative and associative operator.

91

If a program designated for a certain type of PRAM violates the stated restrictions, then it
is deemed to be an invalid program.

Theorem 9 Any step of N processor PRAM can be simulated in O(N) steps on a uniprocessor.

Proof: The uniprocessor keeps track of the programme counters of all PRAM processors. In O(1)
time the execution of a single instruction on any of the PRAM processors can be simulated, and
hence in O(N) time we can simulate the execution of all the N processors.

This means that using an N processor PRAM we can get a speedup of at most O(N).

Theorem 10 Any step of a bounded degree network with N processors can be simulated in O(1)
steps on an N processor PRAM.

Proof: Designate a location in shared memory for each link. Run the program of network processor
i on PRAM processor i. For communication, write and read from the designated location instead
of sending and receiving from a link.

This means that all the algorithms that we have developed for networks will get implemented
in the same amount of time on PRAMs.

17.1 Simulation of PRAMS on Networks

Let m denote the size of the global memory of the PRAM and N the number of processors.
We can simulate such a PRAM on a network of processors. Each location of the PRAM is

mapped to some location in the memory of some processor in the network model. Then reading
or writing a memory location in PRAM is accomplished using packet routing. For example write
”x” to y can be processed as send ”x” to processor that is holding location y (upon receipt of this
message the processor writes x in the required location in its memory).
Example: PRAM address x is mapped to (x mod N) memory location of processor (x div N
). But in this case if ith processor reads/writes memory m+ i then all the requests will be send to
processor m and it will be a bottleneck.
Better Solution (Randomized): Use random hash function to decide where PRAM address x
is to be stored. By this kind of mapping above mentioned problem can be solved. But a processor
can be bottleneck if all the processors reads/writes same memory location. To overcome this, we
can use idea similar to the random rank/ghost messages scheme for packet routing algorithm in
level directed network.

In this case if all the processor chose rank of their packet (containing read/write request) such
that, if processor i and j wants to read/write same location then, they chose same rank. Now
intermediate processors can easily identify read/write request for same memory location, for read
it can only send one request and it can also process multiple write request depending on the CW
model.
Summary: Any variety of N processor PRAM can be simulated in O(logN) steps on an N node
Butterfly, or O(

√
N) steps on an N node 2 dimensional mesh, and similarly for other networks.

17.2 Comparison of CREW and EREW

Suppose one processor in a PRAM holds a certain value which is to be broadcasted to all others, say
because all others need to use the value. On a CREW PRAM this is easy: the processor holding
the value writes it into a certain pre agreed upon location, and other processors read from that
location. An EREW PRAM will take θ(logN) steps. The upper bound algorithm is as follows:
the N processors simulate a balanced binary tree rooted at the node holding the value. Thus in
time O(logN) the value is received by every processor, i.e. stored in a distinct location for each
processor.

17.3 Comparison of EW and CW

Consider a problem, Input: array of bits, compute OR of all the bits. The answer is to be computed
in some location R in shared memory.

CW model can do this in O(1) time as follows. First processor all write a 0 in location R. Then
in parallel for all i, every processor i reads the ith input bit, and writes a 1 into R if the input bit
read was a 1.

Clearly, after execution, R contains the desired result. Further, the common variety (weakest)
CRCW PRAM is needed for this.

It is possible to prove that O(1) time is not sufficient for solving this problem on the CREW
model.

Exercises

1. Show that any step of a N processor CRCW PRAM can be simulated by an N processor
EREW PRAM in O(logN) time. You may assume that an N processor EREW PRAM can
sort N keys in O(logN) time.

2. Show how an N processor CRCW PRAM can compute the AND of N bits in O(1) time.

3. Show how an N2 processor CRCW PRAM can compute the maximum of N numbers in O(1)
time. (Hint: use the ideas from the previous problem.)

4. Show how an N processor CRCW PRAM can compute the maximum of N numbers in
O(log logN) time. (Hint: use the ideas from the previous problem.)

Chapter 18

List Ranking and Applications

We consider (i) the list-suffix problem which is a generalization of the list ranking problem, (ii) the
expression-tree evaluation problem which uses list-ranking.

The list suffix problem is similar to the vector suffix problem, except that the input is presented
as a list. In particular, given a list of numerical values, we must compute another list such that the
the ith element in the new list is the sum of input list elements i through the last element. The list
ranking problem is a special case when the values are all 1.

The input list is specified using two arrays of n elements: Value[0..n− 1] and Next[0..n− 1],
respectively holding the values of the elements, and pointer to the next element of the list. If the
last element of the list is stored in Value[j] and Next[j], then we have Next[j]=NIL. Say the output
is to be stored in a list Answer, with Answer[i] holding the sum of the elements starting from the
element stored at index i.

As an example, suppose n = 5, and Next[] contains the values 4, NIL, 3, 0, 1 and Value[] contains
10, 20, 30, 40, 50 respectively. Then this corresponds to a list starting at index 2, with the values in
list order being 30, 40, 10, 50, and 20. The suffix of this list will have the elements 150, 120, 80, 70,
20. But these would need to be in the array Answer[i]n the order 80, 20, 150, 120, 70.

At first glance, following a set of pointers seems inherently sequential. Wyllie’s makes progress
using a technique often referred to as pointer doubling. This technique is useful in other circum-
stances also.

18.1 Wyllie’s Algorithm: n processors, O(log n) time

The program for processor i consists of repeating the following basic step log n times:

If Next[i] 6= NIL, then
Value[i] = Value[i] + Value[Next[i]]
Next[i] = Next[Next[i]]

The answer is computed in Next[] itself, rather than in a new array.
Note that the execution is very strongly synchronous. In particular, reading of data and writing

of data is synchronized. Thus for example, all the processors that execute the last statement read
the value of Next[Next[i]] at the same time, and only after that all write the value of Next[i] at the
same time.

It is easy to see that after t steps either (i) Next[i] points to the 2tth element in the list from
element with index i and Value[i] is equal to the sum of the values in the list from i (inclusive)

94

down to Next[i] (exclusive); or (ii) Next[i] points to NIL and Value[i] is equal to the required suffix.
Thus for every element the suffix will be computed in log n steps. You should be able to argue that
at each step each processor accesses a distinct memory location, i.e. this is a valid EREW program.

This algorithm gives a speed up of n/ log n. Clearly, we cannot reduce the time below Ω(log n).
But we can reduce the number of processors to make the algorithm more efficient.

18.2 Efficient Randomized Algorithm

We will uses p = n/ log n processors. We will assume that the input is given as a doubly linked
list, i.e. an additional array Prev[] is also given, where Prev[i] gives the index of the previous list
element. This is really not necessary, because it is easy to see that we can construct Prev[] in
O(log n) time using n/ log n processors.

The algorithm works as follows.

1. Select a set of list elements that are non adjacent.

2. Eliminate the selected elements from the list. Let Next[p] = q and Next[q] = r. Then by
eliminating q we mean setting Next[p] = r and Value[p] = Value[p] + Value[q]. Notice that
after this, the element q is no longer in the list; but the answers for the rest of the elements
have not changed.

3. Repeat the first two steps until only one element remains, in which case the suffix for the one
element list problem is trivially the value in the element.

4. Fill in values for the elements eliminated in the preceding steps, in the reverse order of their
elimination. Thus for q eliminated in a certain step, we would set Value[q] = Value[q] +
Value[Next[q]]. As can be seen, Value[q] now holds the suffix sum from q as we wish.

Note that in step 4 each processor works on the same elements as it did in step 2, and takes the
same amount of time. So for the purpose of analysis we may ignore step 4. Further, eliminating a
selected element q requires back pointers. We can in fact construct back pointers for all elements in
O(log n) time. Further, when we do the elimination the back pointers also must be updated. This
only increases the time by a constant factor.

There are two important questions: how is the work of eliminating elements distributed amongst
available processors, and how to select a (large) set of non-adjacent elements?

The work is distributed as follows. Each processor is assigned log n elements which it is expected
to eliminate during the course of the algorithm. This assignment is done very simply: processor i
is given elements stored in positions i log p through (i + 1) log p − 1. We will refer to the elements
assigned to each processor as being in its queue.

The step of selecting elements for elimination itself happens in 3 substeps: (i) Each processor
marks the element at the head of it’s queue as a candidate. (ii) Each processor flips a coin and
stores that along with its candidate. (iii) A candidate is rejected if either its own coin is TAIL, or
it so happens that the preceding element in the list is also candidate having a coin HEAD. In other
words, a candidate is selected for elimination if its coin is a HEAD, and either the previous element
in the list was not a candidate or had a TAIL if it was a candidate.

Theorem 11 After O(log n) steps each processor finishes all its elements with high probability.

Proof: Let Ti denote the number of iterations (of steps 1 and 2) needed by processor i to elimate
all its elements. Then we need to show that T = maxi Ti = O(log n) with high probability. Thus T
is a parallel composition of at most a polynomial number of random variables Ti (in fact n/ log n
variables), and so it suffices to prove for every i that Ti = O(log n) w.h.p.

Consider any fixed i. We will estimate Pr[Ti > C log n]. This is simply the probability that
processor i is unsuccessful at least (C − 1) log n times in C log n attempts. This would be easy to
estimate if success/failure in consecutive attempts were independent; however this is not so: if a
processor fails to eliminate in a given step, it is somewhat more likely to fail in the next step as
well. However, the amount of correlation between successive events is not large, as we will see.

For the purpose of analysis, assume that in each iteration a coin is flipped for each element in
the entire list, not just for the elements that are candidates for elimination. Say a processor is
unlucky in a given attempt if it either gets a TAIL for its element, or the element preceding it in the
list gets a HEAD. Else it is said to be lucky. Whenever a processor cannot eliminate its element, it
must have been unlucky (though the converse is not true). Since coins are flipped afresh for each
iteration, whether or not a processor is lucky in a given attempt is independent of its fortunes in
other attempts.

For any iteration the probability of processor i being unlucky is 3/4. Thus the probability of
being unlucky at least (C − 1) log n times is atmost(

C log n

(C − 1) log n

)(
3

4

)(C−1) logn

=

(
C log n

log n

)(
3

4

)(C−1) logn

≤
(
Ce

(
3

4

)C−1
)logn

using
(
n
r

)
≤
(
ne
r

)r
. But by choosing C large enough Ce

(
3
4

)C−1
can be made arbitrarily small, and

the whole expression can be made smaller than n−k for any k.

18.3 Deterministic Algorithm Using Coloring

We can decide which nodes of the list to eliminate at each step by making use of a coloring of the
nodes. We will say a coloring is valid if no two adjacent nodes are colored the same. Therefore, we
can eliminate all nodes of a given color in one step.

Theorem 12 An n element list can be six colored in log∗ n steps using n processors.

Initially, set Color(i) = i. In each phase, we will recolor each node. Suppose c1 is the color of
node i and c2 is the color of node Next[i]. Scan the binary representations of c1 and c2 from the
right. Let k be the index where they first differ. The indices are numbered from the right, with the
least significant bit having index 0. Let b be that bit in c1. Recolor node i so that Color(i) = 2k+b.

Example:
c1 = 41 = 0101001
c2 = 105 = 1101001

In this case, k = 6, b = 0, and the new value of Color(i) is

12.

We must show that this procedure gives a valid coloring. That is, that no two adjacent nodes
have the same color. Suppose as above that nodes i, Next[i] and Next[Next[i]] have colors c1, c2, c3

initially. Suppose using the procedure above we get new colours d1 = 2k + b and d2 = 2k′ + b′ for i
and Next[i]. We thus know that (i) bit k of c1 is b, while bit k of c2 is b̄, (ii) bit k′ of c2 is b′ and bit

k′ of c3 is b̄′. Now if k 6= k′, clearly d1 6= d2 and so we are done. If k = k′ then we have bit k of c2

to be b̄ by (i) and b′ by (ii). Thus b′ 6= b. Thus even in this case c′1 = 2k + b 6= 2k′ + b′ = c′2. Thus
consecutive list elements receive different colours if they originally had different colours.

If n is the number of colors initially then 2k+ b is always ≤ 2dlog ne. Repeating this step brings
us down to constant size in O(log∗ n) steps1. For n = 6, 2dlog ne = 6 so we can’t get any smaller.

Theorem 13 List suffix can be done in n
p
log∗ n steps for p = O(n

logn log logn
) processors.

Proof: Algorithm:

1. Six color the list. Takes O(n
p
log∗ n) time.

2. Determine most frequently used color. Takes O(n
p

+ log p) time.

3. Eliminate nodes of that color. Takes O(n
p
) time.

4. Compaction step. Takes O(n
p

+ log p) time.

5. Recurse if the number of remaining elements exceeds p. Otherwise use Wyllies Algorithm.

6. Fill in the values for the elements we eliminated in step 3. Takes O(n
p
) time.

For many of the steps, it is convenient to consider the elements to be distributed among the
processors, i.e. assign elements 1, . . . , n

p
to processor 1, elements n

p
+ 1, . . . , 2n

p
to processor 2, etc.

To determine the most frequent colour, we need to first determine the frequency of each colour.
For each colour we have each processing determining the frequency in its n/p elements. We then
take the sum, this requires O(log p) steps. Since there are only 6 colours, we let one processor
determine which is the most frequent in O(1) time. This information is to be sent back to all
processors. Since this in an EREW PRAM, we cannot just write it into memory and have all
processors read it: we need to copy it by simulating a tree. So that also takes O(log p) time.

Redistribution can be accomplished by compacting the array of elements. Assign 1 to elements
not yet eliminated. Assign 0 to the others. Run an array prefix calculation to find where to move
a not yet eliminated element.

Overall, the time, T (n) can be calculated from the above timing information. Let k = 6
5

and
note that T (p) = log p.

T (n) ≤ n

p
log∗ n+ log p+ T (

n

k
)

≤ n

p
log∗ n+ log p+

n

kp
log∗(

n

k
) + log p+ T (

n

k2
)

≤ (1 +
1

k
+

1

k2
+ . . .)

[
n

p
log∗ n

]
+ (logk

n

p
) [log p]

Note that we recurse only till the number of elements drop down to p, i.e. only log n/p times. Hence
the term log p appears log n/p times. Note that if p = n/(log n log log n) then T (n) = O(n

p
log∗ n).

1The function log∗ n is defined as the number of times you need to take the log of n to get a number smaller than
1. For example log∗ 1020,000 ≈ log∗ 265,536 = 5.

xh
h
h

@
@
@
@
@
@
@
@

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�	

@
@
@
@
@
@R�

�
�
�
�
��

@
@

@
@
@

@
@
@I

xh
h
h

@
@
@
@

�
�

�
�

�
�

�
�	 @@R��� @

@
@
@I

xh
h
h

@
@R �

��

xh
h
h

@
@R �

��

xh
h
h

@
@
@
@

�
�

�
�

�
�

�
�	 @@R��� @

@
@
@I

xh
h
h

@
@R �

��

xh
h
h

@
@
@
@

�
�

�
�

�
�

�
�	 @@R��� @

@
@
@I

xh
h
h

@
@R �

��

xh
h
h

@
@R �

��

Figure 18.1: Euler Tour of a Tree

The speedup is Ω(p/ log∗ n) which is nearly linear since log∗ n is very small even for large n.
Anderson and Miller [2] give a deterministic O(n/p) time algorithm using p ≤ n/ log n processors

(optimal) using a more sophisticated version of this idea.
Even though we have not discussed Anderson and Miller’s algorith, we will assume it is avaiable

to us as a subroutine, for the rest of this chapter.

18.4 Leaf Numbering on a Tree

List suffix has many applications, e.g. generating different numberings of a binary tree. Consider
the problem of numbering the leaves of a tree from left to right. We assume that the input consists
of a tree with n vertices, numbered 1 through n in some order. The edges are represented using two
n element arrays Left and Right, with Left[i] and Right[i] respectively denoting the left and right
children of vertex i.

We first build a list (called the Euler tour) which runs up and down the tree hitting the leaves in
left to right order. Figure 18.1 shows the Euler tour (arrows connecting circles) of a tree (nodes are
indicated by solid discs). A prefix calculation on such a list where leaves have value 1 and internal
vertices have value 0 then gives us the numbering for the leaves.

To construct such a list, we associate each tree vertex with three nodes, L (left), R (right), and
B (bottom). Node L of a vertex v points to node L of the left child of v if any, else it points to
node B of v. Node B of v points to node L of the right child of v if any, else it points to node R
of v. Node R of the root is null, else it points to node R of the parent of v. Figure 18.1 shows an
example.

Using p processors, the nodes together with their connections can be constructed in n/p steps.
The prefix takes an additional n/p steps, provided p ≤ n/ log n.

@
@
@
@
T2
�
�
@
@

�
�

�
�

T1
�
�
@
@

�
�

�
�a1, b1, c1, d1

@
@
@
@
α

�
�
�
�

�
�

�
�a2, b2, c2, d2

- @
@
@
@
T2
�
�
@
@

�
�

�
�

T1
�
�
@
@

�
�

�
�a3, b3, c3, d3

Figure 18.2: Raking a Leaf

18.5 Evaluating Expression Trees

Suppose we are given an n-node binary tree in which each internal node is an operator + or ×, and
leaves are integers. We can evaluate the expression represented by the tree in O(log n) time using
n/ log n processors[5].

We only describe the main idea, slightly adapted from [5]. The basic operation is called raking,
and it eliminates a single leaf of the tree in O(1) time using one processor. As will be seen, given a
left-to-right numbering of the leaves, we can rake all the odd numbered leaves in a constant number
of steps. Subsequently we can rake all leaves having numbers 4i + 2 for all i; in the step following
all leaves numbered 8i+ 4 for all i and so on to get the required time bound.

For the raking operation we use a generalized representation for each tree node as follows. Each
tree node is represented by a quadruple (a, b, c, d). Given values x and y of its children, the value
that is computed by applying the general operator is axy + bx + cy + d. In this framework, we
can represent a × node by setting a = 1 and b = c = d = 0. Likewise a + node is obtained for
a = d = 0 and b = c = 1. The operation of raking a leaf whose value is α is shown pictorially in
Figure 18.2. The tree is locally restructured as shown, and we set a3 = a1a2α+a1b2, b3 = b1a2α+b1b2,
c3 = c1a2α + c1b2, and d3 = d1a2α + d1b2 + c2α + d2. The case when T1 and T2 are null is handled
with a minor change. The next idea is to do parallel rake operations. For this, we should ensure
that the nodes involved in the rake operations are disjoint. It is easily seen that all odd numbered
leaves can be raked in two parallel steps as follows: (i) in one step rake all the odd numbered leaves
that are the left children (ii) in another rake all the odd numbered leaves that are right children.
The same idea works for leaves 4i+ 2, leaves 8i+ 4 and so on.

Problems

1. Given the adjacency matrix of an n vertex graph show how an EREW PRAM can construct
the edge incidence list in O(log n) time. Use as few processors as possible.

2. Suppose you have a 6 coloured list of n elements. Show that it can be 3 coloured in time O(n
p
)

using p processors.

3. Suppose you have a k coloured list of n elements. Show that it can be 3 coloured in time
O(k + n

p
) using p processors.

(Hint: First rearrange the list in memory so that the nodes are stored in memory in sorted
order of their colours. Then extend the idea of the previous exercise. The following result
will be useful to perform the rearrangment: n keys each w bits long can be sorted in time
O(2w + n

p
+ log p) using a p leaf completely binary tree.)

4. Show that an n node list can be deterministically ranked using p processors in time O(n
p

+

log n log log n). (Hint: Use deterministic algorithm to colour the list in log n colours, and then
use the result of the previous problem.)

5. Give an algorithm to colour the vertices of a tree such that adjacent vertices have different
colours. Give an algorithm that runs in polylog time using a linear number of processors.
Assume that the tree is rooted, i.e. is specified as an array PARENT, where PARENT[i] gives
the parent of vertex i.

6. Suppose you are given three arrays PARENT, LEFT, and RIGHT that describe a binary tree.
Show how to construct an array DIST where DIST[i] gives the distance of vertex i from the
root by using ideas from the expression tree evaluation algorithm.

7. Suppose an array Next[1..n] stores some m circular lists. Show how you can determine m in
log n time. Can you get linear speedup?

8. The input for this problem is a rooted forest. The input is given as a list of pointers to parents
of all the node in forest, in shared memory. The roots point to themselves. The goal is to find
the size of each tree. Say N is the number of nodes in the forest. Show that an N processor
EREW PRAM can solve the problem in O(logN) time. Hint: convert each tree into binary
tree by replacing each degree d vertex with a binary tree with d leaves.

Chapter 19

Convex Hull in two dimensions

We describe several algorithms for computing the convex hull of N points in the plane: (1) N
processor EREW PRAM algorithm requiring time O(log2N), (2) N/ logN processor EREW PRAM
algorithm requiring time O(log2N), (3) N/ log2N processor Butterfly algorithm requiring time
O(log3N). Algorithms 2 and 3 give linear speedup in the worst case since the time for computing
convex hulls sequentially is θ(N logN).

We also describe Brent’s scheduling principle which is used for automatically generating algo-
rithm (2) above from algorithm (1).

We also consider computing convex hulls on other networks e.g. 2D mesh. For the 2D mesh, we
can show that N the number of points must be extremely large to obtain linear speedup.

19.1 Preliminaries

The input to the algorithm is an array Points[1..N], which holds N points, each consisting of an
x-coordinate and a y-coordinate. We assume that our processors can perform arithmetic operations
on coordinates in constant time.

The convex hull of a set S of points is the smallest convex polygon such that each point is either
on the boundary or in the interior of the polygon. Intuitively, if we have nails sticking out of the
plane at each point, the convex hull is the shape a rubber band wrapped around them would take.
The convex hull can be divided into two parts, an upper hull and a lower hull. The upper hull is
simply the convex hull of S ∪ (0,−∞). The lower hull of S likewise is the convex hull of S ∪ (0,∞).
We shall consider the problem of computing the upper hull; the lower hull can be computed similarly
from which the convex hull can be computed easily.

19.2 Uniprocessor Algorithm

Figure 19.1 gives the uniprocessor algorithm, which we will later parallelize. The algorithm has a
preprocessing step in which the points are sorted by their x-coordinate. After that the algorithm is
recursive. The algorithm computes the upper hull of the left N/2 points and the upper hull of the
right N/2 points. Then the hulls are merged into a single hull.

The procedure Merge takes as input the two hulls. It then computes a ”common tangent” to
the hulls, say it starts at Points[q] in the first hull and ends at Points[r] in the second hull.

101

main program{

Read points into Points[1..N]

Sort Points[1..N] by x coordinate

p = UpperHull(Points[1..N])

Points[1..p] now contains the hull, output it.

}

UpperHull(i, j)

// Returns the p points in the upper hull in Points[i..j]

// Input is assumed sorted, hull is returned in left to right order

// Returns p as the value of the call.

{

k = (i+j)/2

p1 = UpperHull(i,k)

p2 = UpperHull(k+1,j)

p = Merge(i, i+p1-1, k+1, k+p2)

return p

}

Merge(h1s, h1e, h2s, h2e)

// Merges the hullls stored in h1s..h1e and h2s..h2e

// The resulting p points are copied into h1s..h1s+p-1

// Returns p as the value of the call.

{

..Call Uniprocessor Divide and conquer procedure that computes

..indices q, r such that Points[q]--Points[r] is "common tangent"

Points[q+1..q+h2e-r+1] = Points[r..h2e]

return q-h1s+1 + h2e-r+1

}

Figure 19.1: Uniprocessor Upper Hull algorithm

Thus Points[q+1..r-1] must be discarded. Thus points to the right of and including Points[r]

are moved to right of Points[q]. The merged hull has size q-hs1+1 + h2e-r+1 which is returned.
On a uniprocessor, if T (N) is the time for the recursive portion, then it satisfies T (N) =

2T (N/2) +O(logN) +O(N), giving T (N) = O(N logN), which does not change even after adding
O(N logN) for the initial sorting.

19.3 N processor, log2N time algorithm

We assign processors i..j to each UpperHull call on Points[i..j]. We will have the result of the call
returned to processor i. When Merge is called on Points[i..j], the divide and conquer procedure
is executed by processor i (which is also processor hs1). The divide and conquer procedure is
takes O(logN) time. The last step is of copying Points[r..h2s], and this is done by processors
r..h2s. The processors must shift back each element by r-q+1, so they need to know the value or
r-q+1. This can be broadcast to all processors by processor h2s. Since this is an EREW PRAM,
the broadcast will take O(logN) steps.

Exculding the preprocessing step, this gives us the recurrence:

Tp(N) = Tp(N/2) +O(logN)

which has the solution Tp(N) = O(log2N). The preprocessing step requires time O(logN), so the
total time is O(log2N).

19.4 Brent’s scheduling principle

An algorithm is said to be a fixed schedule algorithm if the instruction executed by each processor
at each step is known at the start of execution. The notion of instruction is somewhat unusual in
this definition: we allow conditional instructions of the form “if condition then action”, where the
condition and the action should each be a primitive operation.

Brent’s Scheduling Theorem: Let the number of operations performed by a fixed schedule
PRAM algorithm be N , and let T be the total execution time. Then the algorithm can be executed
in time O(T + N

P
) using a P processor PRAM of the same kind as in the original algorithm.

Proof: We prove the theorem for an EREW PRAM. Let Nt denote the number of processors active
at step t,

∑
tNt = N . We know which processors of the algorithm are active at step t, and hence we

can have the P available processors simulate their execution for step t in time dNt/P e. The total

time is therefore
∑
tO(

⌈
Nt
P

⌉
) = O(

∑
t
Nt
P

+ 1) = O(N
P

+ T). The proof for other kinds of PRAMs is

only slightly more complicated and left as an exercise.

Note that the number of processors involved in the original algorithm do not figure in the final
time.

Example: The prefix of N elements can be computed in O(logN) steps using N processors or-
ganised as a binary tree. Remember that at any time step only processors in a single level are
active, and the total number of operations performed by the algorithm is only O(N). The simple
minded PRAM algorithm simulates the tree execution using N processors, and the simulation is
clearly fixed schedule, with O(N) operations. However, we can use P = N/ logN processors and

apply Brent’s theorem. The time is O(N
P

+ logN) = O(logN). We have thus managed to reduce
the number of processors by a logN factor without increasing the time by more than a constant
factor.

19.5 N/ logN processor, log2N time algorithm

It is slightly tricky to apply Brent’s scheduling principle, because there are conditional checks in
the convex hull algorithm, unlike the algorithm for the prefix. Note however, that we can be
conservative. If we do not know if a processor will be busy at a certain step, we will assume it will
be busy. So now, we can see that the recurrence for Tp(N) contains a logN additive term only
because of the broadcasting of the values. Note that in these broadcast steps the total number of
operations performed is O(N). The total number of operations in each of the other steps is O(N)
too. Thus the total number of operations is N logN over the O(log2N) steps.

We then get the result by choosing P = N/ logN .

Butterfly algorithm attempt 1: We can simulate the PRAM algorithms to run on a P processor
Butterfly; but this will require a slowdown of Ω(logP), and we would not get linear speedup. You
might think that the PRAM simulation stores the data structures of the algorithm in a random
manner among the memories in the Butterfly; and typically it takes Ω(logP) time for access to any
datum, causing the slowdown. However, it seems that even if we carefully decide where to store
the data structures of the PRAM algorithm on the Butterfly a slowdown is unavoidable. This is
because in the merge step we move a lot of data. To get linear speedup we need a slightly different
strategy.

19.6 A Tree algorithm

We show that a complete binary tree with P leaves can compute the convex hull of N points in
time O(N/P), provided N = Ω(P log3 P)! The catch is that we require the points to be input at
the leaves in sorted order. Suppose that the leaves of the tree are numbered 0 through P − 1 left
to right. Then we require that each leaf processor inputs N/P points, and the points input by leaf
i have no smaller x-coordinates than those input by leaf i+ 1. If the input is in sorted order, then
it is possible to compute the convex hull in time O(N) on a sequential processor, so our algorithm
gives linear speedup.

The algorithm is quite similar to the PRAM algorithm, except that the data structures are
modified to reduce data movement. As in the PRAM, the input is read into an array Points[1..N].
The array is distributed amongst the leaf processors, so that leaf processor i holds subarray
Points[si+1..si+s], with s = N/P . As mentioned above, we are guaranteed that the points are
read in sorted order of their x-coordinates.

The algorithm for computing upper hulls is as follows:

Step 1: Each leaf processor i computes the upper hull of the points in Points[si+1..si+s], and stores
the result in an array U(i). Each processor i also maintains three additional integers: Count(i)
which holds the length of U(i). The other two Rank(i) and Size(i) will be explained below, but
they are initially set so that Rank(i) = 0, and Size(i) = Count(i). Notice that this step is entirely
local to each processor, and since the points are already sorted, takes time O(s) = O(N/P).

Step 2: The P hulls are merged pairwise to produce a common upper hull, in a total of p = logP
substeps: 2.1, 2.2, . . . , 2.p. Each substep will be seen to require time O(logP logN), for a total time
of O(log2 P logN) for the entire step.

The key to mergeing hulls quickly is the representation used to store the hull in a distributed
manner. In general, at the beginning of substep 2.i+1, leaf processors j2i through (j + 1)2i − 1
together hold a single hull Uj. In particular, Uj = U(j2i)||..||U((j + 1)2i − 1), where || denotes
concatenation of the sequences. The other data structures maintained by processor x have the
following interpretation. Count(x) denotes the length of U(x), Rank(x) denotes the number of
points appearing in Ubx/2ic before the first point in U(x), and Size(x) denotes the number of points
in Ubx/2ic. The initialization in step 1 is consistent with this interpretation.

We now describe the action of step 2.i+ 1, for i = 0..p− 1.
Step 2.i+1: Let Uj be defined as above, with j even. This step will merge hulls Uj and Uj+1 to
form a single hull U using a binary search like technique as in the PRAM algorithm. The mergeing
process is itself performed by the processor Q in level i + 1 that is the common ancestor of leaf
processors j2i through (j + 2)2i − 1 which together hold Uj and Uj+1. The binary search requires
processor Q to be able to issue requests of the form:

Fetch the kth leftmost point on hull Uj (or Uj+1).

This is performed simply by broadcasting the request to the processors in the left or right subtree
rooted at Q. Each leaf processor x can determine in constant time if it is holding the requested
point using Rank(x) and Count(x), and return the result to Q. The time for a single request is
O(i) = O(logP). The binary search requires a total of O(log s2i) = O(logN) accesses, together
requiring time O(logP logN). The binary search enables processor Q to determine the number n1
of (leftmost) points on Uj, and the number n2 of (rightmost) points on Uj+1 that survive to be
included into U . Q then broadcasts n1 and n2 to its subtree, and each processor x updates U(x),
Rank(x), Count(x) and Size(x), so as to cooperatively store U . After receiving n1 and n2, each
processor in the subtree can perform the update in constant time. Each processor is now ready to
enter step 2.i+2.

The total time for all substeps of step 2 is thus O(log2 P logN). Adding the time for step 1,
we have the total time to be O(log2 P logN +N/P). If we choose N = Ω(P log3 P), we have total
time O(N/P) as claimed.

Notice that we really didnt need a complete binary tree. Any binary tree with height O(logP)
and P leaves will do to get the bounds mentioned above.

19.7 Butterfly Network

We will show that even if the points are not given in a sorted order, it is possible to compute convex
hulls on a P processor Butterfly (processors in all levels) in time O((N logN)/P). For getting
a deterministic algorithm this requires N = Ω(P 1+ε) for some constant ε > 0. For randomized
algorithms we need N = Ω(P log3 P).

The algorithm has two steps: (1) Sort points by x-coordinate, (2) embed a tree of height O(logP)
in the Butterfly and emulate the algorithm given in the previous section.

Step 1 takes time O((N logN)/P) using the Reif-Valiant Flashsort (randomized), or in the
deterministic case using Leighton’s columnsort (we need N = Ω(P 1+ε) in that case). Step 2 can
also be seen take the same time using the analysis of the previous section.

19.8 Other networks

The idea of the Butterfly algorithm can obviously extended to other hypercubic networks.
If the points are input in an arbitrary (unsorted) order, then linear speedup is acheived on non-

hypercubic networks such as the mesh only with very few processors as compared to the number of
points. This is because sorting can be reduced to computing convex hulls (see Preparata-Shamos).
On a mesh sorting takes time θ(N/

√
P) because of the bisection width bound. Thus for linear

speedup on sorting (and convex hulls) we must have N/
√
P = O(N logN/P). This implies that

P = O(log2N), i.e. very little parallelism.
Similar arguments can be made for other low bisection width networks.

19.9 Exercises

Problem 1. Let P denote a set of n points p0, p1, . . . , pn−1 in the plane, given in sorted order of their
x coordinate. The following is a sketch of an n processor CREW PRAM algorithm for computing
their upper hull.

1.
√
n way recursion: Let Pi = {pi√n, . . . , p(i+1)

√
n−1}. In parallel recursively compute the upper

hull of Pi for all i, using
√
n processors for each recursive call. Let U0, U1, . . . , U√n−1 denote

the upper hulls computed.

2. Computation of common tangents: Find the common tangents between hull Ui and Uj for all
i, j. This is where the concurrent read feature might be important.

3. Mark off the points on each Ui that survive.

4. Compact the points that survive and return them as the joint upper hull.

Show that step 3, determining which points survive can be done in O(log n) time for all i
together. Consider some hull Ui, where 0 < i <

√
n − 1. Is it possible that no points on Ui will

appear in the upper hull of P? Give an example to justify.

Chapter 20

VLSI Layouts

So far we have considered the number of vertices and edges of a graph to be indicative of its cost.
However, when the graph becomes large, other considerations come into the picture. This is because
at the lowest level, a circuit or a computer network is designed by laying it out on the nearly planar
surface of a VLSI (very large scale integration) chip. In this the same resource: chip area, is used
to build processing components as well as wires. To a first approximation, the cost of a chip may
be considered to be proportional to its area. It is conceivable that a network with fewer edges than
another may require more area, and hence should be considered more expensive. So we need a clear
model for estimating the layout area.

To formulate the model we need to understand something about the process used to fabricate
chips, and the imperfections in it. It should seem reasonable that every wire or processor (or really
a gate or a transistor) must have some finite area on the chip. The process by which the wires and
devices are configured on a chip is photographic. A drawing is made of the circuit and is projected
onto the silicon surface coated with photo sensitive materials in various combinations. Light reacts
with the photosensitive material and renders it dissolvable in acids which might subsequently used
to wash it out, leaving behind components that we want. This may be done several times, and in
addition there maybe other processes such as implanting specific dopants into the exposed areas.

The important point is that the photographic and other processes only have a certain finite
geometric precision: whatever gets constructed on the silicon surface may be different from what
was intended by a certain length parameter λ which is a property of the fabrication process. This
implies, for example, that all wires that will be fabricated must have width substantially larger
than λ, so as to ensure that errors will not cause them to be broken. Likewise two wires or other
components should be substantially farther from each other than λ, otherwise they may get shorted
because of errors in the fabrication process.

In the rest of this chapter, we will define the model used to layout networks onto a chip, and
then use that model to layout different networks and compare their area. See the texts [12, 4] for
details.

20.1 Layout Model

Based on the above considerations, Thompson proposed a model for circuit layouts. It is designed
to be simple while representing all the essential features of the layout process. It makes it easy to
analyze layouts mathematically (albeit with a certain over simplification). Indeed the model used
by circuit designer will be more complex, but probably not different in any essential sense.

107

In Thompson’s model, a chip is regarded as a two dimensional grid, with horizontal and vertical
tracks drawn at regular spacing. Each track can accommodate one edge, and each track intersection
can accommodate a node of the network. A node need not be placed in every intersection, instead
the intersection could be occupied by edges connecting distant nodes. In fact, the edges in horizontal
and vertical tracks may cross and will be deemed to not have any electrical connection between
them. An edge may also change direction at an intersection, from running horizontal to running
vertical.

The primary cost measure for the layout is the area of the bounding box of the circuit, defined
as the product of the height and width of the box measured in number of tracks.

Roughly, it may be considered that the inter track separation is λ (something larger, say 3λ will
be better, but we will ignore this constant factor), to ensure that distinct wires or nodes do not get
accidentally connected in the fabrication process. The width of the tracks is also O(λ), for similar
reasons.

The idea of placing a node in a vertex is appropriate if the node is small; if the node is large
(say a processor), it is more appropriate to assign it a bigger region covering several adjacent track
intersections. With this it is also possible to allow more than 4 wires from entering a node. For
simplicity we will assume that a node fits in the track intersection.

20.1.1 Comments

The model may seem too simple and overly rigid, and it is. But it is possible to argue that it is right
in essence: if you get a layout of area A in a more relaxed model, it is possible to automatically
transform it into a layout of area O(A) in the Thompson model.

For example, a more relaxed model might allow wires to run at arbitrary directions rather
than just horizontally or vertically. Note that these would still need to be separated from other
wires/components by distance Ω(λ), and the width of the wires (at whatever orientation) would
also need to be Ω(λ). Any such layout can be digitized, i.e. we magnify it enough so that the
magnified image of each wire contains a continuous sequence of horizontal and vertical tracks from
one end of the wire to the other. Now we simply use this track sequence rather than the original
wire which could be at an arbitrary inclination or even curved. The key point is that the amount
of magnification needed is θ(1), assuming the original wires have width λ. Thus the area required
in the new (Thompson) layout is worse only by a constant multiplicative factor.

Another way in which actual layouts differ from the Thompson model is that they may have
several layers. Indeed modern chips can have wires in as many as 8 or more layers, one on top of
another. One way to imagine this is to consider tracks with depth h, the number of layers, and
allow h wires to be stacked one on top of another in each track. In fact, we may allow h devices also
to be stacked one on top of the other, and each device to have 6 connections, one in each direction.
Suppose a chip of area A is fabricated using h layers. It is possible to show that the same chip can
indeed be fabricated in the Thompson model in area O(h2A)

1. Suppose the layers are in the z dimension.

2. First apply the transformations listed above to ensure that wires run only in the x, y dimen-
sions. For this, we may need to scale the layout by a constant factor.

3. Next, stretch the chip by a factor h along the x, y dimension. This makes the area O(h2A).

4. We will further stretch by a factor of 2 so as to make each device occupy a 2× 2 subgrid.

5. Displace the ith pair of layers by 2iλ in the x, y dimensions each. the width. As a result of
this, no device will be on top of another device. Also no wire along the x dimension will be
on top of a wire along the x dimension. Likewise for wires along the y dimension. Further,
vertical connections between devices can also be accommodated since our devices have been
stretched.

6. Project the layers in the z direction. This will produce a layout with wires crossing at
intersections but not overlapping. So this can now be layed out using two standard layers.

20.1.2 Other costs

It should be mentioned that the model ignores an important electrical issue: long wires have greater
signal propagation delays. If we consider wires to be mainly capacitative, the delay turns out to be
O(logL) where L is the length of the wire. If the wires are capacitative, the delay is O(L2), but it
can be made O(L) by introducing repeaters.

Thus if we have two networks with same total area but one containing longer wires, the one
with longer wires will likely slower (i.e. have a smaller clock speed). However, the basic Thompson
model considers both networks to be equivalent.

To address this somewhat, we will characterize a layout by not only its area, but also the length
of the longest wire in it. In other words, our goal will be to get layouts which simultaneously have
small areas as well as small longest wire lengths.

20.2 Layouts of some important networks

The two dimensional array with N processors clearly has area N .
A 3 dimensional n× n× n array can be layed out in n layers in area n2. By implementing the

procedure above we can turn this layout into a 2 layer layout of area O(n2A) = O(n4) = O(N4/3).
The length of the longest wire in this layout is O(n2) = O(N2/3).

A complete binary tree can be layed out recursively. Place the root at the center of a square.
The 4 subtrees will be layed out in the smaller squares left behind when you remove the central
horizontal track and the central vertical track. The children of the root can be placed in the central
horizontal track, between their children. This gives the recurrence S(N) = 2S(N/4) + 1 for the
layout of an N leaf tree. This solves to S(N) = O(

√
N).

20.2.1 Divide and conquer layouts

The binary tree layout is a special case of a general divide and conquer strategy. For this we need
the notion of a graph bisector.

A set S of edges and vertices of a graph G is said to be a bisector for G if on removing S from
G we have G splitting into disconnected subgraphs G1 and G2 such that the number of vertices in
G1 as well as G2 is at most half of those in G.

We will say that a graph has a f(n) bisector if |S| = f(n) where n = number of vertices in the
graph. We will say that the graph has a f(n) bisector recursively if G1, G2 also have f(n) bisectors
and so on.

As an example, a N node butterfly has a N/ logN bisector, a complete binary tree has O(1)
bisector, and by the theorem of Lipton-Tarjan, any N node planar graph has a O(

√
N) bisector.

Theorem 14 If a bounded degree graph has f(n) bisector recursively, then it can be layed out with
side length S(n) where S(n) = 2S(n/4) +O(f(n)).

Proof: Divide the graph into 4 parts by applying two bisections. Lay out the 4 parts in 4 squares
of side length S(n/4). Now we must insert the removed edges and vertices. For each of these the
side length increases by O(1).

For trees we get S(N) = 2S(N/4) + 1, which is the same recurrence as before. For N node
butterflies we get S(N) = 2S(N/4) + O(N/ logN). This solves to S(N) = O(N/ logN) which is
optimal as will be seen later. For planar graphs we get S(N) = O(N logN).

20.3 Area Lower bounds

The simplest lower bounds come from the bisection width.

Theorem 15 Area = Ω(B2) where B = bisection width.

Proof: Consider the optimal layout. Let its length be l and height h, with h ≤ l. Number the
track intersections in it 1 through A in column major order. Let Pi denote a partition of the layout
consisting of intersections 1 . . . i on one side and the rest on the other. All such partitions have at
most h + 1 ≤

√
A + 1 ≤ 2

√
A wires crossing them. Since there is at most one processor in each

intersection, one of the partitions say, Pj is a bisection of the graph. This partition will be crossed
by at least B wires. Thus B ≤ 2

√
A.

This shows that the area of an n × n × n array must be Ω(n2), which was matched above.
Likewise the area of a butterfly must be Ω(N2/ log2N), also matched above.

20.4 Lower bounds on max wire length

Theorem 16 Max wire length Lmax = Ω(
√
A/d), where A is the minimum area needed for the

layout and d the diameter of the network.

Proof: Consider the smallest possible layout with side lengths l ≥ h. Let s denote an active
element, i.e. a wire or a node on the left edge of the layout, and t an active element on the right
edge. Consider the shortest path in the graph that completely includes the elements s, t. This
path must have length at most d + 2 ≤ 2d. The length in the layout is at least l ≥

√
A. Thus

2dLmax ≥
√
A.

Exercises

1. Show that any N node binary tree can be bisected by removing O(logN) vertices (and incident
edges). Show first that any N node tree can be partitioned into two forests each having at
most 2N/3 nodes by removing exactly one node. Using all this show that any N node binary
tree can be layed out in area O(N).

2. Show that an N node torus can be layed out in area O(N) such that the length of the longest
wire is O(1).

3. Give tight upper and lower bounds to lay out a n× n× n× n mesh. Assume each processor
occupies a 2× 2 region.

4. Write a recurrence to lay out a 2n node hypercube (assume that each processor occupies an
n× n region). Give matching lower bound.

5. Consider a greedy linear layout strategy as follows. Let G be the graph you want to layout.
Place the vertices of G on a line in some carefully chosen order. Then consider vertices left
to right, and for each vertex add the incident edges. For each edge being added use the track
closest to the line that can accommodate it. Suppose the graph has N nodes.

(a) Show that if the graph has bisection width B, the total area of any greedy linear layout
will be Ω(NB).

(b) Consider the shuffle exchange graph on N = 2n vertices. Define the weight of a vertex to
be the number of 1s in its representation. Order the vertices in non-decreasing order of weight
and use the algorithm above. Show that this gives a layout with area N2/

√
logN . Better

layouts matching the bisection bound Ω(N2/ log2N) exist, but they are much more intricate.

You may find it useful to know that
(
n
n/2

)
= θ(2n/

√
n)

Chapter 21

VLSI Lower bounds

What is the best way to build a VLSI chip to solve problem X? Here ”best” could mean having
minimum area or taking the minimum time. And problem X could be anything, e.g. matrix
multiplication, sorting, FFT.

We could exhibit ways to build chips to solve the given problem, and these would constitute
upper bounds, i.e. there exists a chip to solve this problem in whatever area and time that our
design takes. For this, we could use some of the network algorithms that we have developed so far,
e.g. matrix multiplication on 2 dimensional meshes, or FFT on a Butterfly. But we could devise
completely new networks also.

Lower bounds would also be useful, say something like

No matter what network is used, area/time/... have to be at least ...

The concern in this chapter is lower bounds. Suppose A, T denote the area and time needed to
solve a problem. Then it is possible to prove lower bounds of the following 3 forms.

A ≥ f : Often called Memory based bounds. The key argument in this is: “At some point while
solving problem, it is necessary to remember f words.” The chip must have area at least f
to remember f words. Thus the bound.

AT ≥ f : Often called I/O based bounds. If the input/output consists of f words, then A processors
can read/write at most AT words in T steps. Hence the bound.

AT 2 ≥ f : Often called Bisection based bounds. The intuition here is that at most
√
A words can flow

from one half of chip to other half in one step. If your problem needs f words to flow, then
you have the bound.

We begin with a restatement of the model, just to refresh some important points.

21.1 Model

We assume that each processor has O(1) words of memory, and can do 1 word on input or output
per step. It can also send 1 word on each link in each step.

We require that each input word must be read exactly once, in a where and when oblivious
manner, i.e. where/when the word is read/generted must be declared before execution begins.
Input-output schedule:

Terminology

112

Execution: The sequence of events starting at power up and including reading of inputs, compu-
tation and generation of outputs. We note that if a chip has m inputs (words), then it can
only have 2mw distinct executions.

State: The values stored in the processors. For simplicity if we assume that each processor can
store at most 1 word, a P processor chip can have at most 2Pw distinct states.

Behaviour: Values generated as outputs. A chip with n outputs (words) can have at most 2nw

behaviours. By ”behaviour after time t” we will mean the values generated after time t.

Note that the chip Behaviour after time t can be uniquely determined given the chip state at
time t and chip inputs after t. In particular, the values input before time t need not be known if
the chip state at time t is known.

21.2 Lower bounds on chip area

A chip with area A has only A words of memory. If we can prove that f(n) words of memory are
necessary in order to compute some function F taking n words of input, then we can say that the
chip for computing this function must have area f(n). Here is an example. We can prove that Ω(n)
bits of memory are needed to compute the product of n bit integers. This then implies that any
chip that multiplies n bit integers must have area Ω(n).

The key problem is of course, how do we prove that Ω(n) bits of memory is needed to compute
the product? You might perhaps say that we must first read the input, and n bits are needed just
to read each operand. This argument does not account for the possibility that we may start using
up the inputs as we read them: we generate the outputs which depend upon them so that we dont
need to remember too many inputs at any time. This strategy in fact works for addition: we can
read the summands starting from the least significant bits and generate the sum starting at the
least significant bit. At any time during the computation we need to remember only the carry from
the bits that have been processed. How can we be sure that this is not possible for multiplication
too?

The argument for showing that a certain amount of memory is needed for a certain computation
has the following general form. Observe that if a chip produces different behaviours after step t
even if the same input is given after step t, then the chip state must be different in the different
executions. So if there are N executions with different behaviours after step t, even for same external
input after step t, then the chip must be capable of holding logN bits of state, or logN

w
words of

state. Thus it must have area at least logN
w

We next show an example of this for the cyclic shift problem. This will in fact generalize to
several problems including integer multiplication.

21.2.1 Cyclic Shift Lower bound

The inputs to the problem are xn−1, xn−2, . . . , x0, the “data” portion, and s, the “shift amount”.
We will w ≥ log n. The outputs are yn−1, yn−2, . . . , y0, where we require yi = xi+s mod n.

Theorem 17 Cyclic Shift requires A = Ω(n)

We need a Lemma.

Lemma 19 All data words must be read before any output word is generated.

Proof: Suppose yj is generated before xi is read in some execution. Obliviousness implies that the
above is true for all executions.

Set s = i − j mod n. Thus the chip must output yj = xj+s mod n = xi. But then, We can feed
different value for xi after seeing what chip outputs as yj. Thus the chip made a mistake. Hence
we have a contradiction.

⇒ Chip forced to make mistake. Contradiction.
If there exists a time instant t at which chip must have all n data words in memory, then it

must need enough memory to hold them, unless some data compression is possible. Clearly in this
case no data compression is possible. The following proof is just one way of saying that.

Proof of Theorem 17: Let t = time instant after all inputs read and before the any output
word is generated. Such a t must exist because of the above Lemma.

Set s = 0. Now the inputs read after t are same in all executions. We can feed 2nw different
bit patterns for the inputs xn−1, . . . , x0 and these will appear at the data outputs yn−1, . . . , y0. The
each input pattern will lead to a distinct behaviour. Hence the number of behaviours for chip after
time t = 2nw.
⇒ A = Ω(log 2nw

w
) = Ω(n)

21.2.2 Generalizations of the cyclic shift problem

Let X = {x0, x1, x2, . . . , xn−1} denote the inputs to a problem, and Y = {y0, y1, y2, . . . , ym−1} the
outputs. We will say that yi depends upon xj under control c iff there exist two executions in which

1. Distinct values are assigned to input xj.

2. Inputs in X − {xj} are assigned the value c, identical in both executions.

3. yi takes on a different value in the two executions.

We will say yi depends upon xj if there exists c such that yi depends upon xj for control c.
Example: In cyclic shift every output word depends upon every data word.
Implication of dependence: If yi depends upon xj then xj must be read before yi is generated.

We will say that X ′ ⊆ X depends upon Y ′ ⊆ Y if every y ∈ Y ′ depends upon x ∈ X ′.
We will say that {xi1 , . . . , xik} = X ′ ⊆ X flows to {yj1 , . . . , yjk} = Y ′ ⊆ Y under control c if

there exist there exist 2kw executions in which:

1. The value c is given to the inputs in X −X ′.

2. The input X ′ take distinct values.

3. The outputs Y ′ take on exactly the same values as the inputs X ′, specifically, yjl = xil for all
l.

We will say X ′ flows to Y ′ if there exists c such that X ′ flows to Y ′ under some control c.
Example 1: In cyclic shift, the data inputs flow to the outputs. The control c needed for this is 0,
i.e. the shift amount is set to 0. The same control shows dependence of outputs on data.

Example 2: Problem: Addition modulo 2n. The inputs here are A = a0, a1, . . . , an−1 and B =
b0, b1, . . . , bn−1, and the outputs are C = c0, . . . , cn−1, where ai, bi, ci are all bits, i.e. wordsize is 1.
Clearly, A flows to C when under control B = 0. But there is no dependence, you will shortly see
a way to prove this.
Example 3: Here is an artificial problem, again for wordsize 1. The inputs are X = {x0, . . . , xn−1},
and outputs are Y = {y0, . . . , yn−1}. We require each yi =

∑
i yi mod 2 Clearly every yi depends

upon every xj. However, clearly there is no flow from X to Y . The next theorem will show a way
to prove this.

Theorem 18 If Y ′ depends upon X ′ and X ′ flows to Y ′ under some control c then Area = Ω(n),
where n denotes the number of words in X ′.

Proof: Because of dependence X ′ must be read before any Y ′ is generated. Let t = time after
reading X ′ but before generating Y ′.

Consider 2nw executions in which X ′ takes different values. In all these executions we will set
inputs X −X ′ to c. Thus in each, Y ′ takes the same value as X ′, because of the flow condition.

Further, in all executions chip will read the same input (part of c) after step t. But in each it
must produce different output.

Thus at step t chip must have 2nw states. Thus it must be capable of storing nw bits, i.e. have
n processors, i.e. area n.

Note that Addition modulo n can be done in O(1) area, and our synthetic problem can also be
solved in area O(1). Thus both dependence and flow are needed for large area.

21.2.3 Further generalization

Suppose the inputs are X and X ′ = {x0, x1, x2, . . . , xn−1} is a subset of X. Likewise the outputs
are Y , and Y ′ = {y0, y1, y2, . . . , yn−1} is a subset of Y .

X ′ has an f word flow to Y ′ under control c iff there exist 2fw executions in which:

1. The value c is given to the inputs in X −X ′.

2. The input X ′ take distinct values.

3. The outputs Y ′ take distinct values.

If f = n = |X ′| = |Y ′| and we require Y ′ to take exactly the same values as Y ′, then this is the old
definition.
Example: Consider the problem of sorting n 1-bit numbers. Clearly, the inputs do not fully flow
to outputs. However, all inputs that are already sorted will appear unchanged at the outputs. Thus
there are n executions in which the above conditions are satisfied. Thus 2fw = n, i.e. f = log n
since we have w = 1.

Theorem 19 If Y ′ depends upon X ′ and X ′ has an f word flow to Y ′ (under some control c) then
Area = Ω(f).

Proof: Similar to the proof of Theorem 18, and hence omitted.

21.2.4 Integer Multiplication

The integer multiplication problem takes as input two n bit numbers an−1 . . . a1a0 bn−1 . . . b1b0

and the requirement is to generate their 2n bit product c2n−1 . . . c1c0.

Theorem 20 Area required for matrix multiplication = Ω(n) (bit model).

Proof: Choose X ′ : bn−1 . . . bn/2, Y ′ : c3n/2−1 . . . cn
Every bit in Y ′ depends upon every bit in X ′. To see this, let a = suitable power of 2.
X ′ flows to Y ′ under control a = 2n/2, rest of the inputs 0.

21.3 Summary of Area Bounds

Word model: w = θ(log n)
Cyclic shift Ω(n)
Sorting Ω(n)

Bit model:
Integer Multiplication Ω(n)
Addition mod 2n θ(1)
Addition mod 2n − 1 Ω(n).
Convolution Ω(n)
Sorting n integers each 1 + log n bits wide Ω(n)
Sorting n integers each 2 log n bits wide Ω(n log n)
Most of the above have matching upper bounds.

21.4 AT bounds

If the input to a problem (or the output) consists of n words, then AT = Ω(n). This is because the
chip can have at most n processors, and each processor can read at most T words in T steps.

21.5 AT 2 Bounds

Suppose a network is laid out in a chip with sidelengths l, h with l ≥ h. The mere fact that
the network can be thus laid out shows that there are certain communication bottlenecks in it.
Specifically, number the processors in the chip in column major order. Then for any i, processors
1 through i can be separated from the remaining processors using a single vertical cut or a single
vertical cut with a jog. Let CC(i) (canonical cut) denote such a cut. There are only h + 1 wires
going from one side of CC(i) to the other. In one step, only h + 1 words can thus be sent across
any such cut. If we can argue that f words of data must be sent across across some such cut, then
we must have (h+ 1)T ≥ f where T is the computation time. But A = hl ≥ h2 ≥ (h+ 1)2/4. Thus
we will have AT 2 = Ω(f 2).

More formally, define a communication transcript of a cut C as the concatenation of all the words
transmitted across C over time. For canonical cuts, the communication transcript thus contains at
most (h+ 1)T words.

Note that if the part of a chip on one side of a cut produces different outputs in different
executions, then it can be because (1) it read different input values in different executions, or (2)
it received different values from the other side of the cut, i.e. the communication transcript was
different.

Theorem 21 (Transcript theorem) Suppose some canonical cut divides a chip into parts L,R.
Suppose R reads inputs X ′ and L generates outputs Y ′. Suppose there is a f word flow from X ′ to
Y ′. Then AT 2 = Ω(n2).

Proof: From the definition of flow we know that there exist 2fw distinct executions in which Y ′

takes different values even though the inputs X − X ′ are held fixed at some c. But Y ′ lie in L,
and inputs in L receive the same values in all these executions. Thus in order to generate different
values in these executions, the transcripts received by L must be different. Thus there exist 2fw

distinct transcripts. But a canonical cut can have length at most h+ 1, where A = hl, h ≤ l. Thus
the number of possible transcripts is at most 2(h+1)Tw. Thus 2(h+1)Tw ≥ 2fw. Thus (h + 1)T ≥ f .
Thus AT 2 = Ω(h2T 2) = Ω((h+ 1)2T 2) = Ω(f 2).

21.6 Cyclic Shift

Consider the problem of cyclic shifting of n words, as defined earlier.

Theorem 22 Cyclic Shift requires AT 2 = Ω(n2)

Before proving the Lemma, we note that the lower bound is matched by two designs. For
example a

√
n×
√
n mesh gives T = O(

√
n), A = O(n), thus matching the bound. In other words,

if you want T = O(
√
n), then the mesh is optimal, you cannot do it in less area. An n node Butterfly

is also optimal, with T = O(log n), A = O(n2/ log2 n). You will note that an n node hypercube is
not optimal.
Proof: Say a processor P is output-heavy if P outputs ≥ n/3 values. But if such a processor exists,
then the time is at least n/3, AT 2 = Ω(n2) trivially.

So assume that no processor is output heavy. By the Partition Lemma proved below, there
must exist a cut C and constant α such that X ′ = {xi1 , xi2 , . . . , xin/6} are input on one side and
Y ′ = {yi1−α, xi2−α, . . . , xin/6−α} are output on the other side.

Set the shift count to be α, and set all the data inputs other than X ′ to be 0. Under this control
we thus have X ′ flowing to Y ′, i.e. an n/6 word flow.

Thus by the transcript theorem, AT 2 = Ω ((n/6)2) = Ω(n2).

Lemma 20 (Partition Lemma) Assuming no processor is output-heavy, there exists a canonical
cut CC(k) and constant α such that X ′ = {xi1 , xi2 , . . . , xin/6} are input on one side and Y ′ =
{yi1−α, xi2−α, . . . , xin/6−α} are output on the other side, where subtractions are modulo n.

Proof: We first show that if no processor is output heavy, some CC(k) has at least n/3 outputs
generated on either side. To see this let g(i) denote the number of outputs generated on left side
of CC(i). Let CC(0) be the (degenerate) cut with 0 processors to its left. We know that g(0) = 0,
and g(N) = n, where N is the total number of processors. Clearly g is a non-decreasing function.
Let k be smallest such that g(k) ≥ n/3. Since g(k−1) < n/3 and because processor k is not output
heavy, we have g(k) ≤ g(k − 1) + n/3 < 2n/3. Thus there must be at least n/3 processors to the
right of CC(k) as well.

One side of CC(k) must read at least half of the n values xn−1, . . . , x0, say the values of
xi1 , xi2 , . . . , xin/2 . The other side must generate at least n/3 outputs, say yj1 , xj2 , . . . , xjn/3 .

Put a complete bipartite graph on above inputs/outputs. To each edge (xp, yq) assign the colour
p− q mod n.

There are n colours overall. Since there are n2/6 edges, at least n/6 edges have the same colour,
say α. Pick X ′, Y ′ = endpoints of edges with colour α. Note that if xij is one endpoint of an edge
with colour α, then the other endpoint must have colour yij−α as needed.

21.6.1 Summary

The basic ideas are: (a) notion of output heavy processors, (b) showing that there is a canonical cut
that has n/3 outputs on each side (”output partitioning”), (c) colouring argument to show large
flow (d) use of transcript theorem. These are applicable in other problems too, as we will see soon.

21.7 Matrix multiplication

We will show that AT 2 = Ω(n4) for computing R = PQ given n× n matrices P,Q. We follow the
same strategy as for cyclic shift. The key question is: can we show that no matter what the chip
designer does, a large flow must cross some canonical cut?

There are some natural flows to consider. For example, if P is chosen to be the identity matrix,
then R = Q. So Q flows to R. This by itself is not a problem. The designer can read qij and
generate rij in the same processor, and thereby the flow does not have to cross any cut. More
generally, we could choose P to be a shift matrix, i.e. a matrix Si obtained by rotating all rows of
the identity matrix by i circularly. Here is an example for n = 5, i = 1.

S1 =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

R = S1Q is a circular rotation of rows of Q one step upwards: qij flows to r(i−1 mod n)j. By choosing
P to be shifts of all magnitudes from 0 to n − 1, we can effectively force columns to be circularly
shifted by whatever amount we choose. Unfortunately the chip designer can still keep the flow small
as follows. He chooses to read the ith column of Q close to the processors that generate the ith
column of R.

Note however that we can also choose to set Q to shift matrices. This will force rows of R to
be cyclically shifted versions of P . To implement the required data movement without having large

flows to cross any canonical cut, the designer would have to read each row or P close to where the
corresponding rows of R are generated.

Note now that we have two seemingly conflicting requirements: rows of P should be read close
to where rows of R are generated, while columns of Q should be read close to where columns of R
are generated. We show next that both the requirements cannot be simultaneously satisfied.

21.7.1 Proof Outline:

You give me a chip. I will examine it and I will tell you one of the following after examining it.

• Your chip contains some processor that generates at least n2/3 elements of R. This will
trivially prove AT 2 = Ω(n4).

• Your chip contains a canonical cut on one side of which n2/18 elements P ′ of P are read and
on the other side of which n2/18 elements R′ of R are generated, such that P ′ flows to R′. I
will also tell you under what control P ′ flows to R′: this will happen by setting Q to a shift
matrix.

• Your chip contains a canonical cut on one side of which n2/18 elements Q′ of Q are read and
on the other side of which n2/18 elements R′ of R are generated, such that Q′ flows to R′. I
will also tell you under what control Q′ flows to R′: this will happen by setting R to a shift
matrix.

21.8 Proof

If any processor generates n2/3 outputs, then we are done. So assume there is no such processor
for the rest of the proof.

Next we fix the canonical cut π across which we will show a large flow. Assume the chip has
height h length l, h ≤ l. Number intersections in column major order. Let N(i) denote the number
of elements of R generated by processors in intersections 1 . . . i. We have N(0) = 0, N(A) = n2. We
also know that N(i) increases at most by n2/3. Thus there is some j such that n2/3 ≤ N(j) ≤ 2n2/3.
This is our required cut π.

Next, we pose the problem of finding a large flow as a certain graph partitioning problem.
Consider a graph G in which vertices are elements of P,Q,R. The edges indicate possible flow,
with a colour indicating what shift matrix causes the flow as follows. If we choose Q to be a shift
matrix that downshifts by s, we will have a flow from pij to ri(j+s mod n). So for s = 1, . . . , n we will
have an edge (pij, ri,j+s mod n) for all i, j. This edge will have colour s. Likewise if we choose P to
be a shift matrix that shifts by s, we will have a flow from qij to r(i+s mod n)j. So for s = 1, . . . , n we
will have an edge (qij, r(i+s mod n)j) for all i, j. This edge will have colour s′. Thus G will contain
complete bipartite graphs between the jth column of Q to the jth column of R, and complete
bipartite graph between the ith row of P to the ith row of R.

Imagine G to be placed on our chip. We know that at least n2/3 vertices corresponding to R
lie on either side of the cut π. No matter how the other vertices are placed, Lemma 21 shows that
n2/18 edges of a single colour s or s′ cross π. Then we are done: If the colour is s we set Q to be a
matrix that shifts by s, if the colour is s′ we set P to be a matrix which shifts by s. In either case
we have n2/18 from elements of P or Q to R.

Lemma 21 Suppose no processor outputs more than n2/3 values, and n2/3 vertices of R are on
both sides of a canonical cut π. Then no matter how other vertices in G are placed, n2/18 edges of
a single colour cross π.

Proof: We first estimate how many edges of G (of any colour) cross π.
For this we embed the complete directed graph on n2 nodes into G with vertices placed on the

elements of R. We know that both sides have at least n2/3 vertices. So at least n4/9 edges of the
complete graph must cross the cut. If they are embedded in E edges of G with maximum congestion
C, then we have E ≥ n4/9C.

The embedding is as follows. The path from rij to rkl is embedded through pik, ril, qjl.
There are 2 types of edges in G, and two directions for each. The (directed) congestions on each

type/direction is as follows.

1. (rij, pik) : Contributed by paths from rik to rkt for any t. Hence n.

2. (pik, ril) : Contributed by paths from rit to rkl for any t. Hence n.

3. (ril, qjl) : Contributed by paths from rij to rtl for any t. Hence n.

4. (qjl, rkl) : Contributed by paths from rtj to rkl for any t. Hence n.

Thus E ≥ n4/(9n) = n3/9. But there are at most 2n colours. So some colour must have n2/18
edges.

21.9 Sorting

Theorem 23 Sorting 2 log n bit integers requires AT 2 = Ω(n2) in the word model with w = 2 log n.

Proof: We are done if some processor generates at least n/3 outputs. So we assume contrary.
Then as always, we can find a canonical cut which has at least n/3 outputs on both sides.

One of the sides of the cut must read n/2 inputs. Suppose the input is x0, . . . , xn−1 and output
is y0, . . . , yn−1. Wlog suppose the left side generates some n/3 outputs, say Y ′ = {yi0 , . . . , yin/3−1

}
and right side reads inputs X ′ = {xj0 , . . . , xjn/3−1

}. We can now show an almost full flow from X ′

to Y ′ as follows.
We will use the term ”high bits” to mean the most significant log n bits, and ”low bits” the least

significant log n bits.
First consider xj /∈ X ′. We set the high bits of these xj to be the integers {0, . . . , n − 1} −

{i0, i1, . . . , in/3−1}. The low bits are set to 0.
We set the high bits of xjk to equal ik. The remaining bits are set in an arbitrary manner.
On sorting, xjk must appear at yik . Thus we have a flow from the low bits of all xjk to the low

bits of yik . Thus there are 2n(n/3) executions and thus (log 2n(n/3))/(2n) = n/6 word flow.
Thus we have AT=Ω(n2).

Proof: (Alternate) As above we can assume that there is a canonical cut on one side of which
n/3 outputs Y ′ are generated, and on the other n/2 inputs X ′ are read.

Suppose at least a half Y ′′ of the the n/3 outputs Y ′ have indices larger than n/2. In this case,
we set all inputs in X−X ′ to 0. Now as the inputs in X ′ are varied, the outputs in Y ′′ take as value
all possible non-decreasing length |Y ′′| = n/6 sequences on w bit keys. Thus there are

(
2w+n/6−1

n/6

)
distinct behaviours. Thus the number of words in the flow is at least

1

w
log

(
2w + n/6− 1

n/6

)
≥ 1

w
log

(
2w

n/6

)n/6
=

1

w

n

6
log 6n = Ω(n)

for w ≥ 2 log n.
Otherwise at least half of Y ′ must have indices smaller than n/2. Now the result follows by

setting the inputs in X −X ′ to 2w − 1.

21.10 Concluding remarks

AT 2 = Ω(n2), with n the problem size is equivalent to saying that the problem is communication
intensive: (i) most output depends on most inputs in a very detailed manner. (ii) essentially all the
inputs must cross the width of the chip.

For certain problems it is useful to consider communication in and out of small tiles in the chip,
rather than just across a canonical cut.

Another variation is as follows. Consider the problem of determining whether one given bitstring
is a rotation of another given bitstring. In this case there is only a 1 bit answer. So our technique
does not apply. But it is nevertheless possible to show that AT 2 = Ω(n2).

21.10.1 An interesting observation

We showed that multiplying n × n matrices has AT 2 = Ω(n4). This has the following interesting
implication: the time to multiply matrices using n×n array is Ω(n) because for n×n arrays A = n2.
This shows that for the n × n array, the simple algorithm is optimal and cannot be beaten even
if you use Strassen’s algorithm like (or any other) ideas. As you can see, this last conclusion has
nothing to do with VLSI.

21.11 Exercises

1. Show that addition modulo 2n − 1 requires area Ω(n). This is often called “1s complement
addition”.

2. Show that sorting n integers each 1 + log n bits wide requires Ω(n) area in the bit model.

3. Show that sorting n integers each 2 log n bits wide requires Ω(n log n) area in the bit model.

4. Show that multiplication of n bit integers has AT 2 = Ω(n2), assuming wordsize = 1.

Give multiplier designs and estimate if they are optimal for AT 2. Getting optimal designs is
hard, but has been done in the literature.

5. The list ranking problem has as input an array NEXT[1..n] which represents a list. The
output is an array RANK[1..n] which represents the ranks, i.e. RANK[i] is the distance of the
element stored at position i of the array from the end of the list.

Assume that the wordsize w = θ(log n). Show that the list ranking problem has AT 2 = Ω(n2).

(Hint: Let n = 10. Suppose you are told that NEXT[1..3] is read on the left and RANK[8..10]
is read on the right of a small cut of the chip. What can you say about the flow from
NEXT[1..3] to RANK[8..10]? You have to determine the control under which the flow is
maximized. Note that you dont have complete freedom in setting NEXT: it should form a
list.)

6. Show that prefix computation over n numbers has AT 2 = n log n. Hint: Start with an AT
lower bound!

Chapter 22

Area Universal Networks

A network U is said to be universal for are A if (i) U has area O(A), (ii) U can simulate any
network requiring area A with polylog(A) slowdown.

A natural question is to ask whether standard networks, e.g. trees, mesh, or butterfly are area
universal. Given area A, it is possible to build these networks with respectively O(A), O(A) and
O(
√
A logA) processors at most. Noting that the tree has too small a bisection width, the mesh has

too small a diameter, and the butterfly has too few processors, it will be seen that these networks
cannot be universal. Specifically, a tree must have slowdown Ω(

√
A) in simulating the mesh, the

mesh and butterfly a slowdown Ω(
√
A/ logA) in simulating a tree. These are simple exercises.

So we will define a new network, called the fat-tree, and prove that it is area universal.

22.1 Fat Tree

We describe the construction of a fat tree Fl(h), where l, h are integer parameters. The fat-tree
which we ultimately need is Fh(h) which we will denote as F .

Fl(0) consists of a l × l mesh, with one of the corners designated as the root.
For i > 0 a fat-tree Fl(i) consists of 2i vertices v0, . . . , v2h−1 designated its roots connected to

four copies T0, T1, T2, T3 of Fl(i− 1) as follows: the kth root in every Tj is connected to the vk and
vk+2h−1 . Note that v0, . . . , v2i−1 can be thought of as the least common ancestors of vertices x ∈ Tj
and y ∈ Tj′ , j′ 6= j.

The following facts about the fat-tree = Fh(h) are easily checked. The total number of nodes in
the meshes is N = h24h. The total number of nodes is O(N). The diameter is about 6h = O(logN).

Next we define a layout for fat trees. We will use a divide and conquer strategy and let Sh(i)
denote the side-length of the layout for Fh(i). Then we will have for i > 0:

Sh(i) = 2Sh(i− 1) +O(2i)

while for i = 0 we have:
Sh(0) = h

This has the solution Sh(h) = h2h, or in other words the area of the fat-tree F = Fh(h) is O(h24h) =
O(N).

123

22.2 Simulating other networks on Fh(h)

For the simulation, we must first map the given guest network G (requiring area A) onto the fat-tree
F . For this we assume that we are given a square layout of G of area A.

We will use a fat tree with N = A processors at the leaves, i.e. A = h24h. The layout area of
such a fattree was proved to be O(A), as desired for the definition of area universality.

We next give a strategy to map processors of G onto some leaf mesh processor in Fh which will
simulate it. This idea uses the natural divide and conquer strategy. We divide the layout of G into
4 equal square tiles, and assign each tile to one of the fat-trees Fh(h − 1) contained in Fh(h). In
general, a tile of area N/4j is assigned to some fat-tree Fh(h− j). This continues until j = h, where
we are left with a N/4h = h2 area tile, which is simulated directly by the h2 node mesh.

So this maps each processor of G onto a unique leaf mesh processor in F .

22.2.1 Simulating wires of G

Each wire from node u to node v in G is simulated by sending a message between corresponding
nodes u′, v′ of F .

We need to determine a path for this communication. Let U ′ and V ′ denote the root corners of
meshes in the fat-tree in which u′, v′ respectively lie. Then the path from u′ to v′ will start at u′,
go up to U ′ then go to a least common ancestor of U ′, V ′, then down to V ′ and finally to v′. There
will in general be several least common ancestors, and one of them will be chosen at random.

22.2.2 Congestion

Let T be a Fh(i) fat-tree in F . Let T1 be a sub-fat-tree of T . Let a be one of the roots of T and b of
T1. We will estimate the congestion edge (b, a). Suppose (b, a) is used by some message simulating
the wire (u, v). The message goes from u′ to v′ in F . There are two important facts:

1. Since u′ is in T1, u must lie in a tile t of G of area N/4h−i associated with T1. Vertex v′ must
lie outside this tile.

2. Since the path is randomly chosen from u′ ti v′, the message could have passed through any
of the 2i+1 edges connecting the roots of T1 to those of T , and hence the probability that wire
(u, v) is mapped to edge (b, a) is 2−(i+1).

Thus the number of messages passing through (a, b) is a sum of independent zero one random
variables, corresponding to each wire leaving t. Since t has area N/4h−i = h24i its side length is
h2i. Thus even considering the entire perimeter, there can be just 4h2i such wires and variables at
most. Each variable has probability 2−(i+1) of taking value 1, and hence the expected congestion is
4h2i · 2−(i+1) = 2h. With h = O(logN) it is easy to show that the congestion is O(logN) with high
probability, over all the edges in the network.

22.2.3 Simulation time

Now we know that the length of the longest path is 6h = O(logN), and the congestion is also
O(logN). Hence we know that there exists a schedule using which the messages can be delivered
in time O(logN).

Alternatively, we can do this by constructing a levelled directed network, with O(logN) levels.

Exercises

Note that while proving that A cannot be simulated by B, it is necessary to consider all possible
ways of mapping A onto B, hence it is best to show a computation that can be done well by A but
not by B and thereby prove the result.

1. Show that the neither of the mesh, the tree, and the Butterfly all taking area A can simulate
each other with at most polylog slowdown.

2. Conside a mesh on area A. Consider a tree also on area A, layed out using the H-tree layout.
Now consider the union of these two, i.e. each node in the new has mesh connections, as
well as a connection to the parent (if any) in the H-tree layout. Clearly the new graph has
diameter O(logA), bisection width O(

√
A) and number of processors A. Determine whether

this graph is universal (I dont know the answer to this.).

3. What is area of F0(h)? Is this area universal?

4. In this problem we consider F0(h) which we will call the simple fat-tree. The nodes in this
naturally fall into levels, with 2h at level h, and 4h at the leaves. Suppose each node in level
0 sends a message to a randomly chosen node in level h. The message must move using the
unique upward path. Evaluate the congestion in different levels of the network assuming (a)
that messages destined for the same node cannot be combined, and (b) messages destined for
the same node can be combined.

5. How long does it take if each mesh processor sends a message to a random mesh processor
anywhere in the fat tree?

6. Consider a
√
A ×

√
A mesh. It requires layout area A, and we know it can be simulated

with slowdown O(logA) using a fat-tree of area O(A). In this problem we will argue that the
simulation overhead is the same, even if we allow some additional operations in the mesh such
as unit time broadcasting. Using this we will be able to show that the fat-tree can multiply
a
√
A×
√
A matrix by a

√
A long vector in time O(logA).

The additional operations allowed are: broadcasting within rows or columns, and accumu-
lation (i.e. computing the sum) within rows or columns. Clearly, using this the matrix
multiplication can be done.

Here is how accumulation over rows is implemented (broadcast is analogous, as are operations
over columns). Corresponding to each row i we will designate a memory location li. This
will be assumed to be held in some randomly chosen root at level h. Now to implement the
accumulation, the processors in row i simply store their value in location li, specifying addition
as the combining operator. While sending these messages we will use random priorities p(i)
where p is a hash function. Using the levelled directed network theorem we will have at most
one message to any li passing through any link (because messages will get combined). So the
question is what is the link congestion.

Show that the link congestion is O(logA). For this you need to understand how exactly a row
or column is mapped to the fat-tree – specifically, bound the number of different rows that
can get (partially) placed in any single sub-fattree.

Chapter 23

Parallel Programming

When we wish to design a parallel program to solve some problem, the following could be considered
to be the main tasks.

1. Parallelism identification: We need to find a way to solve the problem using operations that
can be performed in parallel. Sometimes we could start with a good sequential algorithm and
identify what operations can be performed in parallel. Or we could design a new algorithm
(e.g. as we did for prefix, sorting, expression tree evaluation) which contain operations that
can be performed in parallel. Note that if we design a new algorithm, the total number of
operations it performs should not be much larger than the best sequential algorithm.

2. Load balancing: We need to assign the parallel operations to different processors. It is desirable
that each processor receive about the same load, i.e. the number of computations it has to
perform.

3. Communication minimization/management: When an operation is designated to be per-
formed on a certain processor, its operands must be communicated to that processor. This
communication must happen efficiently, otherwise the processor might have to remain idle
as it waits for the operands. It is better, in general, if we minimize communication: try as
much as possible to schedule operations on the same processor that generates the operands.
We might try to be more sophisticated and attempt to have data move short distances in the
network, or follow non congested paths.

4. Synchronization: If the programming model uses the notion of shared memory, then we must
make sure that data is written into a shared memory location before a processor tries to read
the location. This can be done in a local way as follows: store some auxiliary information
with each location indicating whether it holds the correct data. A global method is to divide
the execution of processors into steps, and ensure that each processor starts on the ith step
only after all processors finish the i− 1th step. With this, it suffices to ensure that if a value
is written in step i and read in step j, then j > i.

The simplest parallel programming languages will expect the programmer to perform all the above
tasks. Indeed, in this course we have designed algorithms in this manner: we wrote a program for
each processor and decided how to perform the required communication. Our model used global
synchronization typically as mentioned above.

126

However, there could be more ambitious approaches. The automatic parallelization approach
for example expects the user to write a sequential programm, and attempts, using compile time
analysis, to perform all the tasks mentioned above. In addition to deciding what can be done in
parallel the compiler must know the target parallel architecture in order to minimize communication.
For some domains, e.g. those involving dense matrix computations or very structured numerical
computation, powerful parallelizing compilers have indeed been developed.

Note that each of the tasks mentioned above must by done by someone, either by the pro-
grammer, or by the programming system1. It is desirable if the programmer has to do as little as
possible. But for this we either must have (a) sophisticated compilers or runtime systems which
analyze the program being run and perform appropriate load balancing and communication, or (b)
a general load balancing strategy (which does not exploit the specific structure of the program being
executed) is used. The difficulty of course is that sophisticated compilers may not be available, or
general load balancing strategies may not work well enough.

23.1 The map reduce model

The map reduce model is a high level programming model. It allows parallel programs to be written
without explicitly specifying code for processors or communication. The program is written as a
sequence of map steps and reduce steps, which effectively express computation and communication.

A map step takes as input a set of objects. A mapper function must be specified which is applied
to all objects, in parallel. The mapper function could be different for different map steps. When
a mapper function is applied to an object, it can generate one or more key, value pairs. Such key,
value pairs resulting from the mapper function applied to all objects, is considered to be the output
of the map step.

A reduce steps takes as inputs a set of key value pairs. It is useful to consider that there are as
many reducer tasks as the number of different keys. A reducer task for key k operates on all pairs
in which the key has the value k. Furthermore, it is expected that the receiver task be fed the pairs
in sorted order of the values. Each reducer task generates one or more objects, which could be the
end result of the program or could be fed to subsequent map steps.

It is expected that a reduce step starts only after all processors have finished the preceding map
step.

A mappper function or a reducer function could be considered to be defining a process. A key
value pair (k, v) can be considered to be a message v meant for reducer k. Likewise the objects
generated by reducer processes are message to the next round of mapper processes.

Notice that the communication is happening at the level of processes and not at the level
of processors. The map reduce compiler will schedule several processes on a single processor.
If communicating processes get scheduled on different processors, then a communication will be
necessary. One strategy for scheduling is random: each process is scheduled on a randomly chosen
processor, in which case most key value pairs will be transmitted as messages. Note further that
the model provides for synchronization: the reduce operations must start only after the preceding
map operation is complete. A further idea could be to schedule processes where the data resides.
Specifically, a mapper process will be scheduled on the processors whose memory holds the concerned
object. Note that this could also be randomized, i.e. the objects could be placed on a random
processor.

1Many computers have caches, and these also help in communication, but we will ignore such issues for now.

The map reduce system has thus taken over the job of load balancing, communication man-
agement, and synchronization. This could be done using randomization as suggested above, or in
a different manner by some clever analysis if possible. As we will see shortly, the communication
required is slightly complex: some sorting might also be necessary.

The programmer is expected to identify parallelism: by forming the map and reduce functions.
Note that efficiency of the program will be high if each map or reduce function performs more
computation as compared to the number size of the data that it generates or consumes. Designing
such map and reduce functions (more computation as compared to the communication) is thus
the important task of the programmer. It is also important that the map reduce program be
sequentially efficient, i.e. if it is executed on a single processor, the time required is the same as
the best sequential program. Note that this task does not require knowledge of the interconnection
network or even the number of processors. Thus it could be said that the programmer is shielded
from such issues.

23.1.1 Implementation of map reduce programs

Here we sketch a default strategy for implementing map reduce programs on a network computer.
Randomization is used liberally. There is no requirement that the map operation take the same
time on each object, or produce the same number of pairs. Likewise, it is possible that each
reducer receives different number of pairs and generates different numbers of objects. However, for
simplicity, we will assume uniformity.

We consider a simple map reduce program with a single map step and a single reduce step.
Suppose we have N objects in our map operation, each of which generates s key value pairs.
Suppose there are K distinct keys, and t values per key. Clearly Ns = Kt. Suppose a single
reduce operation generates a single object. Suppose a single map and a single reduce take time
Tm, Tr respectively. Clearly Tm > s and Tr > t. Suppose there are P processors. We assume some
parallel slack, specifically we assume N,K are polynomial in P , and also that N,K ≥ P logP .
Thus logN, logK are both θ(logP).

We assume that the inputs to a map operation are located in random processors (or really at
random locations in the memories of randomly chosen processors). Because of the assumed slack,
each processor will hold O(N/P) objects whp (with high probability). The mappers will thus take
time O(NTm/P) whp.

Before any reducer can start execution, we must ensure that all mappers have finished. So a
synchronization is needed. For this we can construct a tree amongst the processors (any small
depth spanning tree is good). After a leaf processor finishes its work, it sends a ”finished” signal to
its parent in the tree. When a non-leaf processor receives ”finished” signals from its children and
finishes itself, it sends a ”finished” signal to its parent. When the root receives a finished signal
from its children and finishes itself, it knows that all processors have finished. It then broadcasts a
”continue” signal to all processors along the same tree. When a processor receives the ”continue”
signal, it can move on to the reduce step. The additional delay introduced due to the above steps
will be seen to be proportional to the network diameter, ∆(P).

A simple implementation of the reduce step is as follows. A reducer for key k is run on a
processor H(k) where H is a hash function. Thus the key value pairs for key k must be sent to
processor H(k). If the number of pairs having the same key is the same for all keys, then this
strategy also balances the communication load. Finally, if the reduces processes take the same
time, the computation is also well balanced.

Suppose now that we have N objects in our map operation, each of which generates s key value
pairs. Suppose there are K distinct keys, and t values per key. Suppose there are P processors.
Suppose the computational part in a single map and a single reduce respectively takes Tm, Tr
respectively. Then with high probability the computation will take time O((NTm +KTr)/P) steps.
The communication is a balanced communication in that each processor will send and receive the
same number of messages with high probability. If L+wg is the time to send out/receive w words
of messages per processor (random destinations) then we have w = Ns/P = Kt/P and so the
communication time will be O(gNs/P +L) with high probability. We have not put ceilings on each
of the fractions above, this is under the assumption that N,K � P . The case of small K can be
handled if the reduction operation is associative, as we see in Section 23.1.2.2

Finally, the synchronization time will be O(∆(P)), where ∆(P) is the diameter of the network.
Assuming the map reduce program is sequentially efficient, then it must takes time Ω(N(Tm +

s) +K(Tr + t)). Thus the speedup of the parallel implementation is

N(Tm + s) +K(Tr + t)

N(Tm +KTr)/P + gNs/P + L+ ∆(P)

For a butterfly or a mesh we have g = ∆(P), L = ∆(P). Thus we get the speedup to be θ(1) if
Tm = Ω(s ·∆(P)) or Tr = Ω(t ·∆(P)).

23.1.2 Commutative associative reductions

If the reduction is associative, the work of a single reducer can be shared amongst many processors.
Thus, we will sort the key value pairs first by key and then by value. We then perform a global

reduction step. The pairs having the same key can be considered to be forming a segment, and we
desire a reduction in each segment. This is a special case of the segmented prefix we have studied,
and can be done efficiently on a tree in time proportional to the network diameter.

Thus the total time reduces to the time required to sort Ns keys. The sequential computation
is dominated by the term N(Tm + s). Thus we need N(Tm + s)/P to be larger than the time to
sort Ns keys for the parallel implementation to

23.2 Example

An important operation in text mining is finding the number of times each word occurs in a corpus.
We will see how this can be expressed in the map reduce framework.

The input given to us is a multiset: the multiset of word occurrences in the corpus. The output
should be a set of (word, count) pairs, i.e. for each word we should have a count of how many times
it appears.

The map operation is simple: for each word w in the corpus, we generate a pair (w, 1), where w
is the key and 1 the value.

If we use the implementation from Section 23.1.1, then we will need one routing operation.
However, the routing operation could be expensive if the word frequencies are very different. In
the extreme case that the entire corpus contains the same word, the routing problem will cause all
messages to go to the same processor, and thus the time taken will be proportional to the number

2The reducer needs to sort the incoming values, the time for which we have ignored. This is acceptable if s is
small.

of words. Thus there will be no speedup. If on the other hand, the words have nearly the same
frequency, then we will have a balanced communication problem, and the time taken will essentially
be the time to route N/P permutations. The synchronization time and even the computation time
will typically be smaller than the communication time.

In this case, the reduce operation is commutative associative, so the implementation of Sec-
tion 23.1.2 will also be possible. In this case the time will be the time to sort N keys, followed by
the time to synchronize, followed by the time to do prefix/reduction on N keys. Clearly the sorting
time will dominate. This time will likely be larger than the time to route N/P permutations, but
probably only by a constant factor. But the constant factor gives you robustness: the time is the
same for all possible word frequencies.

23.3 Additional remarks

The map reduce framework was invented for distributed computing, i.e. it is assumed that the input
will not fit in the memory of any single processor. Second, it is often assumed that communication is
very slow, i.e. the goal is to usually minimize communication time and not worry about computation
time.

Exercises

1. Evaluate the time taken for implementing a map-reduce computation on a fat tree. What is
the condition for efficiency?

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffery D. Ullman. The design and analysis of algorithms.
Addison-Wesley, 1974.

[2] R. Anderson and G. Miller. Deterministic parallel list ranking. In J. Reif, editor, Aegean
Workshop on Computing: VLSI Algorithms and Architectures.Volume 319 of Lecture Notes in
Computer Science, pages 81–90, New York, NY, June 1988. Springer Verlag.

[3] C. F. Bornstein, A. Litman, B. M. Maggs, R. K. Sitaraman, and T. Yatzkar. On the Bisection
Width and Expansion of Butterfly Networks. Theory of Computing Systems, 34:491–518, 2001.

[4] B. Codenotti and M. Leoncini. Introduction to Parallel Processing. Addison Wesley, 1992.

[5] S. Kosaraju and A. Delcher. Optimal parallel evaluation of tree-structured computations by
raking. In J. Reif, editor, Aegean Workshop on Computing: VLSI Algorithms and Architectures.
Volume 319 of Lecture Notes in Computer Science, pages 101–110, New York, NY, June 1988.
Springer Verlag.

[6] F. T. Leighton. Introduction to parallel algorithms and architectures. Morgan-Kaufman, 1991.

[7] Tom Leighton, Bruce Maggs, Abhiram Ranade, and Satish Rao. Routing and Sorting on
Fixed-Connection Networks. Journal of Algorithms, 16(4):157–205, July 1994.

[8] Tom Leighton, Bruce Maggs, and Satish Rao. Universal Packet Routing Algorithms. In
Proceedings of the IEEE Annual Symposium on The Foundations of Computer Science, 1988.

[9] Tom Leighton, Bruce Maggs, and Satish Rao. Packet routing and job-shop scheduling in
O(congestion+dilation) steps. Combinatorica, 14(2):167–180, 1994.

[10] Abhiram G. Ranade. How to emulate shared memory. Journal of Computer and System
Sciences, 42(3):307–326, June 1991. An earlier version appeared in the Proceedings of the
Symposium on Foundations of Computer Science, 1987.

[11] C. Scheideler. Universal Routing Strategies for Interconnection Networks. Lecture Notes in
Computer Science 1390, Springer Verlag, 1998.

[12] J. D. Ullman. Computational aspects of VLSI. Computer Science Press, 1984.

[13] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal of Computing, 11:350–
361, 1982.

[14] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceedings
of the ACM Annual Symposium on Theory of Computing, pages 263–277, 1981.

131

