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N/2 Input Benes Network

(Top)

N/2 Input Benes Network

(Bottom)

Figure 1: Structure of an N input Benes Network

CS 606 Offline Permutation Routing Abhiram Ranade

In the permutation routing problem each processor i holds a single packet which it wishes to send to processor
π(i), where π is a permutation, i.e. π(i) = π(j) iff i = j. We consider the offline version of the problem, i.e. we
assume there is a central coordinating processor which knows π completely, and which can do lots of computation
and decide how the paths for the packets should be selected. Although our original packet routing model disallowed
such a central coordinator, the offline version is nevertheless interesting because (1) In some cases we might know
π well in advance of running the algorithm, e.g. if our computations involve FFTs, then we might know that
the bit-reverse permutation is needed. In that case it makes sense to spend time before hand planning the paths.
(2) It is theoretically interesting to find out whether offline computation can help us do things faster than would
be suggested by the deterministic oblivious routing bound.
Main result of this note: On a hypercube, for any permutation π, it is possible to assign paths to packets such
that maximum congestion is 2, and further, the movement along the paths is normal. In fact all packets can be
routed in time 2 logN , on an N node hypercube.

We will prove the result using a network invented by Benes. The connection to the hypercube will be immediate.

1 Benes Network

A Benes Network is simply a Butterfly network on N inputs (denoted BN ) connected “in series” following a reverse
butterfly network on N inputs (denoted B′N ). In particular, the node in row i column n = logN of B′N is merged
with the node in row i column 0 of BN . The network thus has N rows and 2n+ 1 columns. Nodes in column 0 are
called inputs, and nodes in column 2n the outputs. An alternative description of the network stresses its heirarchical
structure: an N input Benes can be made by (i) taking two N/2 input Benes networks (one called top and the
other bottom), (ii) connecting the corresponding inputs with 2 input Butterflies, (iii) connecting corresponding
output with 2 input Butterflies as shown in Figure 1.

Theorem 1 (Benes) Given any permutation π over [0, N − 1], it is possible to establish paths from input i to
output π(i) such that the paths for different i are node disjoint.
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Note that by coalescing every row into a single node we get a hypercube, and thus paths in the Benes give
paths on the hypercube. The paths will traverse hypercube dimensions first from the most significant to the least
significant, and then from the least significant to the most significant, and will clearly have congestion 2 at most.

Proof of Theorem 1: The proof is by induction over N . The base case, N = 2 is obviously true. Assume that
the theorem is true for N/2 input Benes networks, i.e. we can establish node disjoint paths in an N/2 input Benes
network for any permutation on N/2 inputs. Given this assumption we will show that the theorem holds for the
N input Benes as well, completing the induction.

We first show how to ensure node disjointness in levels 1 and 2n− 1. The inductive hypothesis will then enable
us to ensure node disjointness within the top and the bottom sub-networks.

Let b(i) = N
2 ⊕i. Node disjointness in level 1 requires that if the path starting at input i is connected through the

top Benes then the path starting at b(i) must be connected through the bottom, and vice versa. Node disjointness
in level 2n− 1 requires that if the path ending at output π(i) (starting at i) is connected through the top, then the
one ending at b(π(i)) (starting at π−1(b(π(i)))) must be connected through the bottom.

These conditions can be stated as a coloring problem. We have an N vertex graph in which each vertex
corresponds to an input. We have two colours, “top” and “bottom” with which to colour the inputs. Each node i
in the graph has two edges. The first is to b(i), this models the constraint that paths starting at i and b(i) cant
both go through the top, or both through the bottom, because of a conflict in the first level of the Benes. Likewise
the second edge is to ρ(i) = π−1(b(π(i))). This expresses the conflict that the path from i and ρ(i) have in the
last level of the Benes. So we add all such edges. Note that this can be a multigraph because it is possible that
b(i) = ρ(i).

We now show that this graph is two-colourable. We note that each vertex will have degree 2, with one edge
arising from conflict in level 1 and the other from conflict in level 2n − 1. So we place 1 or n − 1 on each edge
depending upon which conflict it represents. Since the degree of each vertex is 2, the graph will be a collection of
cycles, and since each vertex is incident on a 1-edge and one n − 1 edge, 1 and n − 1 edges must alternate in the
cycle. Thus the length of each cycle must be even. Thus we can assign colours “top” and “bottom” alternately in
each cycle.

Thus we can find a colouring of the graph. The colouring gives us a way to assign the paths starting at each
input to either the top or bottom Benes network. With this assignment, each Benes is assigned N/2 paths; further
each of these paths is required to start at a unique input of each (sub)Benes and end at a unique output. Using
the induction hypothesis we can ensure that the paths get assigned in a node disjoint manner even inside the top
and bottom Benes, thus completing the proof.

Exercises

1. Adapt the above results to construct low congestion paths for permutation routing on other networks be-
sides the Benes, i.e. hypercube, Butterfly, deBruijn graph, multidimensional mesh. For example, show the
following.

(a) On the deBrujn graph on 2n nodes, for any permutation π, it is possible to establish paths from each
vertex i to vertex π(i) such that each edge has congestion 2n.

(b) Same thing on Pn2Pn2Pn. The maximum congestion should be n.

2. Let n = 2k be even. Consider G = Pk2k2Pk2k . Show that G can be embedded in the deBruijn graph on 2n

nodes with load k2, dilation O(n) and congestion O(n2).

(Note that this allows a single step of G to be simulated on the deBruijn in time O(n2), which is good enough
because G has a factor n2/4 more nodes.)
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