
Amit Gupta Introduction to PRAMs CS 606

A Parallel Random Access Machine (PRAM) consists of

1. Multiple independent processors. Each processor has its own local con-
trol and local memory.

2. Shared global memory. Can be accessed by all the processors in each
step. At each step each processor can perform the following steps

(a) Read from or write to arbitrary location in global memory.

(b) Perform some computation according to its local control and its
local memory.

Global shared memory

P1 P2 Pn

Several variations of the model have been defined based on whether or
not multiple processors are allowed to access the same memory location in
the same step.

• EREW (Exclusive Read Exclusive Write)
All processors must access distinct memory locations at each step.

• CREW (Concurrent Read Exclusive Write)
At each step several processors may read the same memory location.
However, no two processors may write to the same location.

1

• CRCW (Concurrent Read Concurrent Write)
Concurrent reading is allowed. Concurrent writing is also allowed; there
are different variations of the model which determine how this can be
done:

– Common: Several processors may are allowed to write same lo-
cation if they write same value.

– Priority : The highest priority processor succeed in writing a
memory location when more than one processors tries to write
same memory location.

– Combining : Value written by the processor is combined by using
some commutative and associative operator.

Theorem 1 Any step of N processor PRAM can be simulated in O(N) steps
on a uniprocessor.

Proof: The uniprocessor keeps track of the programme counters of all
PRAM processors. In O(1) time the execution of a single instruction on
any of the PRAM processors can be simulated, and hence in O(N) time we
can simulate the execution of all the N processors.

1 Simulation of PRAMS on Networks

Let m denote the size of the global memory of the PRAM and N the number
of processors.

We can simulate such a PRAM on a network of processors. Each location
of the PRAM is mapped to some location in the memory of some processor
in the network model. Then reading or writing a memory location in PRAM
is accomplished using packet routing. For example write ”x” to y can be
processed as send ”x” to processor that is holding location y (upon receipt of
this message the processor writes x in the required location in its memory).
Example: PRAM address x is mapped to (x mod N) memory location of
processor (x div N). But in this case if ith processor reads/writes memory
m + i then all the requests will be send to processor m and it will be a
bottleneck.

2

Better Solution (Randomized): Use random hash function to decide
where PRAM address x is to be stored. By this kind of mapping above
mentioned problem can be solved. But a processor can be bottleneck if all
the processors reads/writes same memory location. To overcome this, we
can use idea similar to the random rank/ghost messages scheme for packet
routing algorithm in level directed network.

In this case if all the processor chose rank of their packet (containing
read/write request) such that, if processor i and j wants to read/write same
location then, they chose same rank. Now intermediate processors can easily
identify read/write request for same memory location, for read it can only
send one request and it can also process multiple write request depending on
the CW model.
Summary: Any variety of N processor PRAM can be simulated in O(logN)
steps on an N node Butterfly, or O(

√
N) steps on an N node 2 dimensional

mesh, and similarly for other networks.

2 Comparison of CREW and EREW

Consider a problem, Input: rooted pseudo forest, find the number of trees in
the forest. The input is given as a list of pointers to parents of all the node
in forest, in shared memory.

So any algorithm to solve this problem should read its parent’s id from
the list. In case, pseudo forest contains star, all the node will try to read
common parent and so ER model cannot solve this problem efficiently.

CREW model can solve the problem in log h time by pointer doubling
as in Wyllie’s algorithm for list ranking, where h is the height of any of the
trees. EREW PRAM will require O(logN) time.

3 Comparison of EW and CW

Consider a problem, Input: array of bits, compute OR of all the bits. The
answer is to be computed in some location R in shared memory.

CW model can do this in O(1) time as follows. First processor all write
a 0 in location R. Then in parallel for all i, every processor i reads the ith
input bit, and writes a 1 into R if the input bit read was a 1.

3

Clearly, after execution, R contains the desired result. Further, the com-
mon variety (weakest) CRCW PRAM is needed for this.

It is possible to prove that O(1) time is not sufficient for solving this
problem on the CREW model.

Exercises

1. Show that any step of a N processor CRCW PRAM can be simulated
by an N processor EREW PRAM in O(logN) time. You may assume
that an N processor EREW PRAM can sort N keys in O(logN) time.

2. Show how an N processor CRCW PRAM can compute the AND of N
bits in O(1) time.

3. Show how an N2 processor CRCW PRAM can compute the maximum
of N numbers in O(1) time. (Hint: use the ideas from the previous
problem.)

4. Show how an N processor CRCW PRAM can compute the maximum
of N numbers in O(log logN) time. (Hint: use the ideas from the
previous problem.)

4

