Probabilistic Analysis of Deterministic Algorithms

Also called average case analysis.

I : Input instance.

 $T_A(I)$: Time taken on instance I by algorithm A.

 $\Pr(I)$: Probability that instance I arises in practice.

Expected time taken by algorithm A: $\sum_{I} T_A(I) \Pr(I)$

Randomized Algorithms

Effect of Random Numbers:

- Different answers may be generated. (Each not necessarily correct.)
- Time taken to generate may be different.

Hope:

- Usually a correct answer will be generated.
- Usually, time taken will be small. Usually time taken will be less than good deterministic algorithms.

Evaluating a Randomized Algorithm

- *I* : Input instance.
- R : Random numbers given.
- $T_{I,R}$: Time taken for input I and Random numbers R

Expected time for input $I \colon \sum_R T(I,R) \Pr(R)$

Measure 1: (Worst) Expected time

$$\max_{I} \left(\sum_{R} T(I, R) \Pr(R) \right)$$

Measure 2: "High Probability Analysis"

More detailed than Expectation. "What is the probability that time > ...?" Formal definition later.

Probability Theory Refresher

Probability Space

Set of events which are (elementary) outcomes of an "experiment". Also Sample Space.

Experiment	Probability Space \mathcal{S}
Flipping 2 coins	${\rm \{tt,th,ht,hh\}}$
Picking a card	$\{\clubsuit2, \clubsuit3, \ldots, \bigstarA\}$
Permutation Routing	(Intermediate destinations)
on	$\{(0,0,0,0),(0,0,0,1),\ldots,$
4 node hypercube	$(\ldots, (2, 3, 3, 3), (3, 3, 3, 3))$

Probability Distribution: Function Pr from \mathcal{S} to Real numbers s.t.

- 1. For any $s \in \mathcal{S}$, $\Pr(s) \ge 0$.
- 2. $\sum_{s \in \mathcal{S}} Pr(s) = 1$

Examples:

$$\Pr(tt) = \Pr(th) = \Pr(ht) = \Pr(hh) = \frac{1}{4}.$$

 $\Pr(\text{each card}) = \frac{1}{52}$

 $\Pr(\text{Each choice of intermediate destinations}) = \frac{1}{64}$

Non Elementary Events

Subsets of the probability space.

Examples:

- 1. First coin out of two tosses is a head = $\{ht, hh\}$.
- 2. An ace is drawn when a card is chosen from a deck = $\{ \blacklozenge A, \heartsuit A, \diamondsuit A, \clubsuit A \}$
- 3. Some node has all 4 packets at end of phase 1 = $\{(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)\}.$

Probability of non elementary events: Sum of the probabilities of the events in the associated subset.

Probabilities for the above events: $\frac{1}{2}, \frac{1}{13}, \frac{1}{16}$

Random Variable

Function from probability space to R.

Examples:

- H_2 : Number of heads in two coin flips.
 - $$\begin{split} \mathcal{S} &= \{tt, th, ht, hh\} \\ H_2(tt) &= 0 \\ H_2(th) &= 1 \\ H_2(ht) &= 1 \\ H_2(hh) &= 2 \\ \end{split}$$
 More customary: $H_2 = 0$ when tt, 1 when th

or ht, and 2 when hh.

- Q : Time required by Quicksort when input is a random permutation.
- T: Time to deliver packets in a certain network when each processor sends a packet to a randomly chosen destination.

Expectation of a Random Variable

X : random variable over probability space ${\mathcal S}$

$$E[X] \equiv \sum_{x} x \Pr(X = x)$$

or alternatively

$$E[X] = \sum_{s \in \mathcal{S}} \Pr(s) X(s)$$

Example:

 $E[H_2] = 0 \cdot \Pr[H_2 = 0] + 1 \cdot \Pr[H_2 = 1] + 2 \cdot \Pr[H_2 = 2]$ = $0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}$ = 1

Alternatively:

$$E[H_2] = \frac{1}{4}X(tt) + \frac{1}{4}X(th) + \frac{1}{4}X(ht) + \frac{1}{4}X(ht) \\ = \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 2 \\ = 1$$

Bernoulli Random Variables

Random variables taking values 0 or 1.

Example: A_{lp} = Number of times a packet p will cross a link l assuming its path is simple.

Non Example: H_2, C_l, T_{π} .

Expectation of a Bernoulli random variable:

X:
$$Pr(X = 1) = p$$
, $Pr(X = 0) = 1 - p$.
 $E[X] = \sum_{x} Pr(X = x)$
 $= 0 \cdot Pr(X = 0) + 1 \cdot Pr(X = 1)$
i.e. $E[X] = p$

Typical Computation in Probability Theory

Probability of an event:

- $\mathbf{X} = \mathbf{Gambler}$ doubles his money, ...
- Y = Time to deliver all packets > 100
- Z = Time to deliver given packet > 100

Upper/lower bounds may be acceptable.

Expectation of a random variable:

- A = Winnings of the gambler
- B = Time to deliver all packets
- C = Time to deliver given packet

Upper/lower bounds may be acceptable.

How to compute probability/expectation: Un-

derstand (a) structure of the events/random variables, (b) relationship between expectation and probabilities.

Examples of Event Structure

UNION EVENT:

Suppose $A = A_1 \cup A_2 \cup \ldots \cup A_k$. Then

$$\Pr[A] \leq \sum_{i=1}^{i=k} \Pr[A_i]$$

Proof: Venn Diagram.

Example:

 $A_i = \text{Ace of spades drawn in } i\text{th trial. } \Pr = 1/52$ $\Pr[\text{at least 1 ace in 2 trials}]$ $\leq \Pr[A_1] + \Pr[A_2] = 1/26$ Reasonably accurate (within $1/52^2$).

Very useful if not much overlap among A_i .

SUBSET EVENT

 $A \subseteq B \Rightarrow \Pr[A] \le \Pr[B]$

COMPLEMENT EVENT

A is the complement of $B \Rightarrow \Pr[A] = 1 - \Pr[B]$

Independence

Events X and Y are independent if

 $\Pr[X \cap Y] = \Pr[X] \cdot \Pr[Y]$

Intuition: Knowing X has happened does not help in predicting whether Y also happens. Example: X = head on first toss of a balanced coin, Y = head on second toss of a balanced coin.

Random variables X and Y are independent if for all real numbers x and y,

 $\Pr(X = x \text{ and } Y = y) = \Pr(X = x) \cdot \Pr(Y = y)$

Intuition: Knowing the value of X doesn't help us predict the value of Y.

Structure in Random Variables

X, Y, Z random variables on \mathcal{S} .

Definition: Z = X + Y iff Z(s) = X(s) + Y(s)for all $s \in S$.

Lemma (Linearity of Expectation): Z = X + Y then E[Z] = E[X] + E[Y].

Example: X = Number of heads in first 10 coin tosses. Y = Number of heads in next 10. Z = number in the first 20.

Definition: $Z \ge X$ iff $Z(s) \ge X(s)$ for all $s \in S$.

Lemma: $Z \ge X$ then $E[Z] \ge E[X]$

Proofs: Exercise.

Expectation vs. Probability

The central idea: A random variable takes values *too far away* from its expectation with *low* probability.

- Markov's inequality: relates the probability of being far from the expectation. Useful even when we do not know much about the structure of the variable.
- Chernoff bounds: relates the probability of being far from the expectation. But the variable must be a sum of independent Bernoulli random variables.

Obviously, Chernoff bounds are sharper than those given by Markov's inequality. However, Markov's inequality is more applicable.

Markov's Inequality

Theorem: If a random variable X only takes non-negative values, then

$$P(X > k) \le \frac{E[X]}{k}$$

Example:

E[number of heads in 100 tosses] = 50 Pr[\geq 75 heads in 100 tosses] $\leq \frac{50}{75} = \frac{2}{3}$

...Stronger bounds possible

Chernoff Bounds

Theorem: Let X_1, \ldots, X_n be independent Bernoulli Random variables with $\Pr[X_i = 1] = p_i$. Let $X = X_1 + \cdots + X_n$. Let $\mu = E[X] = \sum_i E[X_i] = \sum_i p_i$. Then

$$\Pr[X \ge \beta\mu] \le e^{(1-\frac{1}{\beta}-\ln\beta)\beta\mu} \le \left(\frac{\beta}{e}\right)^{-\beta\mu}$$

for $\beta \ge 0$
$$\Pr[X \ge m] \le \left(\frac{m}{\mu e}\right)^{-m}$$
for $m \le 0$
$$\Pr[X \ge (1+\epsilon)\mu] \le e^{-\epsilon^2\mu/3}$$
for $0 < \epsilon < 1$
$$\Pr[X \ge (1+\epsilon)\mu] \le e^{-\epsilon^2\mu/4}$$
for $0 < \epsilon < 2e - 1$
$$\Pr[X \ge (1+\epsilon)\mu] \le 2^{-(1+\epsilon)\mu}$$
for $2e - 1 \le \epsilon$
$$\Pr[X \le (1-\epsilon)\mu] \le e^{-\epsilon^2\mu/2}$$
for $0 < \epsilon$

Example:

E[number of heads in 100 tosses] = 50 Pr[\geq 75 heads in 100 tosses] $\leq e^{-(0.5)^2 50/3} = 0.015$

Identical X_i

 $p = p_1 = p_2 = \dots = p_n$ $\mu = np$ **Proof:** Probability that at least m variables out of n take value 1 \leq number of ways of selecting m variables from n* Probability that given set takes value 1. = $\binom{n}{m}p^m \leq \left(\frac{npe}{m}\right)^m = \left(\frac{\mu e}{m}\right)^m$

Useful Inequality: $\binom{n}{m} \leq \left(\frac{ne}{m}\right)^m$

"High Probability"

N: Problem size. f(N): Random variable being studied. g: function of one variable. We say "f(N) = O(g(N)) with high probability" if for every k there exist constants c, N_0 such that

 $\Pr[f(N) \ge cg(N)] \le N^{-k}$

whenever $N \geq N_0$.

Alternative Definition

N: Problem size. f(N): Random variable being studied. g: function of one variable.

We say "f(N) = O(g(N)) with high probability" if there exist a function h and constant N_0 such that for any k:

$$\Pr[f(N) \ge h(k)g(N)] \le N^{-k}$$

whenever $N \geq N_0$.

Compositional Properties:

Let $A_i(N) = O(g(N))$ w.h.p. for $i = 1 \dots m$. m is at most polynomially large in N. Let

 $A_{\text{series}}(N) = \sum_{i} A_{i}(N), \quad A_{\text{parallel}}(N) = \max_{i} A_{i}(N)$ Then $A_{\text{series}}(N) = O(mg(N)), \quad A_{\text{parallel}}(N) = O(g(n))$

Proof: for $A = A_{\text{series}}$:

We know $\Pr[A_i \ge h_i(k)g(N)] \le N^{-k}$ for $N \ge N_{i0}$ $\Pr[A \ge cmg(N)] \le \sum_i \Pr[A_i \ge cg(N)]$ If $c = H(k) = \max_i h_i(k)$, $N_0 = \max_i N_{i0}$ Then $\Pr[A_i \ge cg(N)] \le N^{-k}$ Thus $\Pr[A \ge H(k)mg(N)] \le mN^{-k} = N^{-k+\log m}$ Thus $\Pr[A \ge H(k' - \log m)mg(N)] \le N^{-k'}$ Choose $h(k') = H(k' - \log m)$ and note $m = poly(N) \Rightarrow \log m = O(1)$.

Exercises

- 1. I give a 100 mark multiple choice examination. Each question has 4 alternatives. Each correct answers fetches me 3 marks. Each wrong answer gets me -1 marks. What is the expected number of marks I get? Give a bound on the probability that I get 25 marks more than the expected number. Use Chernoff bounds.
- 2. I randomly choose \sqrt{N} numbers out of N (with replacement), and determine their median. We would like to use this median as an estimate of the median of the N numbers. Discuss in what way this is likely to be a good estimate.