
Probabilistic Analysis of
Deterministic Algorithms

Also called average case analysis.

I : Input instance.

TA(I) : Time taken on instance I by algorithm A.

Pr(I) : Probability that instance I arises in prac-
tice.

Expected time taken by algorithmA:
∑
I TA(I) Pr(I)
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Randomized Algorithms

Input - Algorithm - Output

Random Numbers

6

Effect of Random Numbers:

• Different answers may be generated. (Each
not necessarily correct.)

• Time taken to generate may be different.

Hope:

• Usually a correct answer will be generated.

• Usually, time taken will be small. Usually
time taken will be less than good determin-
istic algorithms.
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Evaluating a Randomized
Algorithm

I : Input instance.

R : Random numbers given.

TI,R : Time taken for input I and Random num-
bers R

Expected time for input I:
∑
R T (I,R) Pr(R)

Measure 1: (Worst) Expected time

max
I

(∑
R

T (I,R) Pr(R)

)

Measure 2: “High Probability Analysis”

More detailed than Expectation.

“What is the probability that time > ...?”

Formal definition later.
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Probability Theory Refresher
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Probability Space

Set of events which are (elementary) outcomes of
an “experiment”. Also Sample Space.

Experiment Probability Space S
Flipping 2 coins {tt,th,ht,hh}
Picking a card {♣2,♣3, . . . ,♠A}
Permutation Routing (Intermediate destinations)
on {(0, 0, 0, 0), (0, 0, 0, 1), . . . ,
4 node hypercube . . . , (2, 3, 3, 3), (3, 3, 3, 3)}

Probability Distribution: Function Pr from S
to Real numbers s.t.

1. For any s ∈ S, Pr(s) ≥ 0.

2.
∑
s∈S Pr(s) = 1

Examples:

Pr(tt) = Pr(th) = Pr(ht) = Pr(hh) = 1
4 .

Pr(each card) = 1
52

Pr(Each choice of intermediate destinations) = 1
64
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Non Elementary Events

Subsets of the probability space.

Examples:

1. First coin out of two tosses is a head = {ht, hh}.

2. An ace is drawn when a card is chosen from
a deck = {♠A,♥A,♦A,♣A}

3. Some node has all 4 packets at end of phase 1
= {(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)}.

Probability of non elementary events: Sum
of the probabilities of the events in the associated
subset.

Probabilities for the above events: 1
2 ,

1
13 ,

1
16
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Random Variable

Function from probability space to R.

Examples:

H2 : Number of heads in two coin flips.

S = {tt, th, ht, hh}
H2(tt) = 0

H2(th) = 1

H2(ht) = 1

H2(hh) = 2

More customary: H2 = 0 when tt, 1 when th
or ht, and 2 when hh.

Q : Time required by Quicksort when input is a
random permutation.

T : Time to deliver packets in a certain network
when each processor sends a packet to a ran-
domly chosen destination.
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Expectation of a Random
Variable

X : random variable over probability space S

E[X] ≡
∑
x

xPr(X = x)

or alternatively

E[X] =
∑
s∈S

Pr(s)X(s)

Example:
E[H2]

= 0 · Pr[H2 = 0] + 1 · Pr[H2 = 1] + 2 · Pr[H2 = 2]

= 0 · 14 + 1 · 12 + 2 · 14
= 1

Alternatively:
E[H2]

= 1
4X(tt) + 1

4X(th) + 1
4X(ht) + 1

4X(hh)

= 1
4 · 0 + 1

4 · 1 + 1
4 · 1 + 1

4 · 2
= 1
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Bernoulli Random Variables

Random variables taking values 0 or 1.

Example: Alp = Number of times a packet p will
cross a link l assuming its path is simple.

Non Example: H2, Cl, Tπ.

Expectation of a Bernoulli random variable:

X : Pr(X = 1) = p, Pr(X = 0) = 1− p.

E[X] =
∑
x Pr(X = x)

= 0 · Pr(X = 0) + 1 · Pr(X = 1)

i.e. E[X] = p
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Typical Computation in
Probability Theory

Probability of an event:

X = Gambler doubles his money, ...
Y = Time to deliver all packets > 100
Z = Time to deliver given packet > 100

Upper/lower bounds may be acceptable.

Expectation of a random variable:

A = Winnings of the gambler
B = Time to deliver all packets
C = Time to deliver given packet

Upper/lower bounds may be acceptable.

How to compute probability/expectation: Un-
derstand (a) structure of the events/random vari-
ables, (b) relationship between expectation and prob-
abilities.
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Examples of Event Structure

UNION EVENT:
Suppose A = A1 ∪A2 ∪ . . . ∪Ak. Then

Pr[A] ≤
i=k∑
i=1

Pr[Ai]

Proof: Venn Diagram.

Example:
Ai = Ace of spades drawn in ith trial. Pr = 1/52
Pr[at least 1 ace in 2 trials]
≤ Pr[A1] + Pr[A2] = 1/26

Reasonably accurate (within 1/522).

Very useful if not much overlap among Ai.

SUBSET EVENT
A ⊆ B ⇒ Pr[A] ≤ Pr[B]

COMPLEMENT EVENT
A is the complement of B ⇒ Pr[A] = 1− Pr[B]
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Independence

Events X and Y are independent if

Pr[X ∩ Y ] = Pr[X] · Pr[Y ]

Intuition: Knowing X has happened does not
help in predicting whether Y also happens. Ex-
ample: X = head on first toss of a balanced coin,
Y = head on second toss of a balanced coin.

Random variables X and Y are independent if for
all real numbers x and y,

Pr(X = x and Y = y) = Pr(X = x) · Pr(Y = y)

Intuition: Knowing the value of X doesn’t help
us predict the value of Y .
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Structure in Random
Variables

X,Y, Z random variables on S.

Definition: Z = X + Y iff Z(s) = X(s) + Y (s)
for all s ∈ S.

Lemma (Linearity of Expectation): Z = X +
Y then E[Z] = E[X] + E[Y ].

Example: X = Number of heads in first 10 coin
tosses. Y = Number of heads in next 10. Z =
number in the first 20.

Definition: Z ≥ X iff Z(s) ≥ X(s) for all s ∈ S.

Lemma: Z ≥ X then E[Z] ≥ E[X]

Proofs: Exercise.
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Expectation vs. Probability

The central idea: A random variable takes values
too far away from its expectation with low proba-
bility.

• Markov’s inequality: relates the probability
of being far from the expectation. Useful
even when we do not know much about the
structure of the variable.

• Chernoff bounds: relates the probability of
being far from the expectation. But the vari-
able must be a sum of independent Bernoulli
random variables.

Obviously, Chernoff bounds are sharper than those
given by Markov’s inequality. However, Markov’s
inequality is more applicable.
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Markov’s Inequality

Theorem: If a random variable X only takes non-
negative values, then

P (X > k) ≤ E[X]

k

Example:

E[number of heads in 100 tosses] = 50

Pr[≥75 heads in 100 tosses] ≤ 50
75 = 2

3

...Stronger bounds possible
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Chernoff Bounds

Theorem: LetX1, . . . , Xn be independent Bernoulli
Random variables with Pr[Xi = 1] = pi.
Let X = X1 + · · ·+Xn.
Let µ = E[X] =

∑
iE[Xi] =

∑
i pi.

Then

Pr[X ≥ βµ] ≤ e(1−
1
β−ln β)βµ ≤

(
β

e

)−βµ
for β ≥ 0

Pr[X ≥ m] ≤
(
m

µe

)−m
for m ≤ 0

Pr[X ≥ (1 + ε)µ] ≤ e−ε
2µ/3 for 0 < ε < 1

Pr[X ≥ (1 + ε)µ] ≤ e−ε
2µ/4 for 0 < ε < 2e− 1

Pr[X ≥ (1 + ε)µ] ≤ 2−(1+ε)µ for 2e− 1 ≤ ε

Pr[X ≤ (1− ε)µ] ≤ e−ε
2µ/2 for 0 < ε

Example:

E[number of heads in 100 tosses] = 50

Pr[≥75 heads in 100 tosses] ≤ e−(0.5)250/3 = 0.015
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Identical Xi

p = p1 = p2 = · · · = pn
µ = np
Proof:
Probability that at least m variables out of n take
value 1
≤ number of ways of selecting m variables from n

* Probability that given set takes value 1.
=
(
n
m

)
pm ≤

(
npe
m

)m
=
(
µe
m

)m

Useful Inequality:
(
n
m

)
≤
(
ne
m

)m
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“High Probability”

N : Problem size.
f(N) : Random variable being studied.
g : function of one variable.
We say “f(N) = O(g(N)) with high probability”
if for every k there exist constants c,N0 such that

Pr[f(N) ≥ cg(N)] ≤ N−k

whenever N ≥ N0.
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Alternative Definition

N : Problem size.
f(N) : Random variable being studied.
g : function of one variable.

We say “f(N) = O(g(N)) with high probability” if
there exist a function h and constant N0 such that
for any k:

Pr[f(N) ≥ h(k)g(N)] ≤ N−k

whenever N ≥ N0.
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Compositional Properties:

Let Ai(N) = O(g(N)) w.h.p. for i = 1 . . .m.
m is at most polynomially large in N .
Let
Aseries(N) =

∑
iAi(N), Aparallel(N) = maxiAi(N)

Then
Aseries(N) = O(mg(N)), Aparallel(N) = O(g(n))

Proof: for A = Aseries:

We know Pr[Ai ≥ hi(k)g(N)] ≤ N−k for N ≥ Ni0

Pr[A ≥ cmg(N)] ≤
∑
i Pr[Ai ≥ cg(N)]

If c = H(k) = maxi hi(k), N0 = maxiNi0

Then Pr[Ai ≥ cg(N)] ≤ N−k

Thus Pr[A ≥ H(k)mg(N)] ≤ mN−k = N−k+logm

Thus Pr[A ≥ H(k′ − logm)mg(N)] ≤ N−k′

Choose h(k′) = H(k′ − logm)
and note m = poly(N)⇒ logm = O(1).
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Exercises

1. I give a 100 mark multiple choice examina-
tion. Each question has 4 alternatives. Each
correct answers fetches me 3 marks. Each
wrong answer gets me -1 marks. What is
the expected number of marks I get? Give a
bound on the probability that I get 25 marks
more than the expected number. Use Cher-
noff bounds.

2. I randomly choose
√
N numbers out of N

(with replacement), and determine their me-
dian. We would like to use this median as
an estimate of the median of the N numbers.
Discuss in what way this is likely to be a good
estimate.
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