Probabilistic Analysis of
Deterministic Algorithms

Also called average case analysis.

I : Input instance.
T4(I) : Time taken on instance I by algorithm A.

Pr(I) : Probability that instance I arises in prac-
tice.

Expected time taken by algorithm A: >, T4 (1) Pr(1)
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Randomized Algorithms

Output

Input — Algorithm

Random Numbers

Effect of Random Numbers:

e Different answers may be generated. (Fach
not necessarily correct.)

e Time taken to generate may be different.
Hope:
e Usually a correct answer will be generated.

e Usually, time taken will be small. Usually
time taken will be less than good determin-
istic algorithms.



Evaluating a Randomized
Algorithm

I : Input instance.
R : Random numbers given.

TT r + Time taken for input I and Random num-
bers R

Expected time for input I: Y, T(I, R) Pr(R)

Measure 1: (Worst) Expected time
max (2}; T(I,R) Pr(R))

Measure 2: “High Probability Analysis”
More detailed than Expectation.
“What is the probability that time > ...7”

Formal definition later.

0-2



Probability Theory Refresher
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Probability Space

Set of events which are (elementary) outcomes of

an “experiment”. Also Sample Space.
Experiment Probability Space S
Flipping 2 coins {tt,th,ht ,hh}
Picking a card {&2,%3,... , MA}
Permutation Routing | (Intermediate destinations)
on £(0,0,0,0), (0,0,0,1),...,
4 node hypercube ..,(2,3,3,3),(3,3,3,3)}

Probability Distribution: Function Pr from S
to Real numbers s.t.

1. For any s € S, Pr(s) > 0.

2. D s Pr(s) =1

Examples:
Pr(tt) = Pr(th) = Pr(ht) = Pr(hh) = +.

Pr(each card) = =

Pr(Each choice of intermediate destinations) = &
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Non Elementary Events

Subsets of the probability space.

Examples:
1. First coin out of two tosses is a head = {ht, hh}.

2. An ace is drawn when a card is chosen from

a deck = {#A, QA QA &A}

3. Some node has all 4 packets at end of phase 1
= {(0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3)}.

Probability of non elementary events: Sum
of the probabilities of the events in the associated
subset.

1L
137 16

N

Probabilities for the above events:
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Random Variable

Function from probability space to R.

Examples:

Hsy : Number of heads in two coin flips.
S = {tt,th,ht,hh}

Hy(tt) =0
Ho(th) = 1
Ho(ht) = 1
Ho(hh) = 2

More customary: Ho = 0 when tt, 1 when th
or ht, and 2 when hh.

) : Time required by Quicksort when input is a
random permutation.

T : Time to deliver packets in a certain network
when each processor sends a packet to a ran-
domly chosen destination.



Expectation of a Random
Variable

X : random variable over probability space S
EX]=) aPr(X =ux)
or alternatively

E[X] =) Pr(s)X(s)

SES

Example:

E|Ho)

= 0-Pr[H, =0]+1-Pr[Hy =1] 42 Pr[Hy = 2]
=0-2+1-242-1

= 1

Alternatively:

E|Ho|

= 2 X(#t) + 1 X (th) + 1 X (ht) + : X (hh)

04+ 1+1-14+7-2

=
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Bernoulli Random Variables

Random variables taking values 0 or 1.

Example: A;, = Number of times a packet p will
cross a link [ assuming its path is simple.

Non Example: Hy, (), T)..

Expectation of a Bernoulli random variable:

X:Pr(X=1)=p,Pr(X=0)=1-p.

EX] =), Pr(X =x)
=0-Pr(X=0)+1-Pr(X =1)

ie. K[ X|=0p
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Typical Computation in
Probability Theory

Probability of an event:

X = Gambler doubles his money, ...
Y = Time to deliver all packets > 100
Z, = Time to deliver given packet > 100

Upper/lower bounds may be acceptable.

Expectation of a random variable:

A = Winnings of the gambler
B = Time to deliver all packets
C = Time to deliver given packet

Upper/lower bounds may be acceptable.

How to compute probability /expectation: Un-
derstand (a) structure of the events/random vari-
ables, (b) relationship between expectation and prob-
abilities.
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Examples of Event Structure

UNION EVENT:
Suppose A = A; UAsU...UAg. Then

1=k
Pr[A] < ) Pr[A]]
i=1
Proof: Venn Diagram.

Example:
A; = Ace of spades drawn in ith trial. Pr = 1/52
Prlat least 1 ace in 2 trials]
< Pr[A1] + Pr[As] = 1/26
Reasonably accurate (within 1/522).

Very useful if not much overlap among A,.

SUBSET EVENT
A C B = Pr[A] < Pr|B]

COMPLEMENT EVENT
A is the complement of B = Pr[A] =1 — Pr|B]
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Independence

Fvents X and Y are independent if

PrlX NY]| =Pr[X]- PrlY]

Intuition: Knowing X has happened does not
help in predicting whether Y also happens. Ex-
ample: X = head on first toss of a balanced coin,
Y = head on second toss of a balanced coin.

Random variables X and Y are independent if for
all real numbers x and y,

Pr( X =xzand Y =y) =Pr(X =x) - Pr(Y = y)

Intuition: Knowing the value of X doesn’t help
us predict the value of Y.
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Structure in Random
Variables

X,Y, Z random variables on S.

Definition: 7 = X + Y iff Z(s) = X(s) + Y (s)
for all s € S.

Lemma (Linearity of Expectation): Z = X +
Y then F|Z] = E|X]|+ E|Y].

Example: X = Number of heads in first 10 coin
tosses. Y = Number of heads in next 10. Z =
number in the first 20.

Definition: Z > X iff Z(s) > X(s) for all s € S.

Lemma: Z > X then F[Z] > E|X]

Proofs: Exercise.
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Expectation vs. Probability

The central idea: A random variable takes values
too far away from its expectation with low proba-
bility.

e Markov’s inequality: relates the probability
of being far from the expectation. Useful
even when we do not know much about the
structure of the variable.

e Chernoff bounds: relates the probability of
being far from the expectation. But the vari-
able must be a sum of independent Bernoulli
random variables.

Obviously, Chernoff bounds are sharper than those
given by Markov’s inequality. However, Markov’s
inequality is more applicable.
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Markov’s Inequality

Theorem: If a random variable X only takes non-
negative values, then

P(X>k)§%

Example:
E[number of heads in 100 tosses] = 50
Pr[>75 heads in 100 tosses] < 20 = 2

...Stronger bounds possible
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Chernoff Bounds

Theorem: Let X;,...,X,, beindependent Bernoulli
Random variables with Pr[X; = 1] = p;.

Let X =X1+---4+ X,,.

Let p = E[X] =), E[Xi] =3, p:.

Then
—Bu
PriX > u] < -7 P8 < (é)
for 5 >0
Pr|X > m] < %)m for m <0
Pr(X > (1 + €)y < e n/3 for 0 <e<1
Pr[X > (1+e)u] < e MY for0<e< 2 —1
Pr[X > (1+¢)pu] < 2-(Hen for 2e —1 <e¢
PrlX <(1—-¢)u] < e 12 for 0 < e
Example:

E[number of heads in 100 tosses] = 50
Pr[>75 heads in 100 tosses] < e~ (0-5)°50/3 — 0,015
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Identical X,

P=DP1=DpP2="""=Dn
H = np
Proof:

Probability that at least m variables out of n take
value 1

< number of ways of selecting m variables from n
* Probability that given set takes value 1.

= (m)p™ < ("2E)™ = (k)"

Useful Inequality: (") < (

3R

e
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“High Probability”

N : Problem size.

f(N) : Random variable being studied.

g : function of one variable.

We say “f(N) = O(g(IN)) with high probability”

if for every k there exist constants ¢, Ny such that
Pi[f(N) > cg(N)] < N™*

whenever N > Nj.

0-17



Alternative Definition

N : Problem size.
f(N) : Random variable being studied.
g : function of one variable.

We say “f(N) = O(g(N)) with high probability” if
there exist a function hA and constant Ny such that
for any k:

Pr[f(N) > h(k)g(N)] < N~*

whenever N > Nj.
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Compositional Properties:

Let A;(N) =0(g(N)) w.h.p. fori=1...m.
m is at most polynomially large in V.
Let

Aseries (N) — Zz A’L(N)7 Aparallel(N) = max; A’L(N)
Then

Aseries (N) — O(mg(N))a Aparallel(N) — O(g(n))
Proof: for A = Ageries:
We know PI'[AZ > hz(k)g(N)] < N=F for N > N;o
PrlA > emg(N)] < >, Pr[A; > cg(N)]
If c = H(k) — Imax; hz(k), N() — Imax; Nz
Then Pr[A; > cg(N)] < N~F
Thus Pr[A > H(k)mg(N)] < mN—F = N—ktlogm
Thus Pr[A > H(K' —logm)mg(N)] < N=F

Choose h(k') = H(k' —logm)
and note m = poly(N) = logm = O(1).
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Exercises

1. T give a 100 mark multiple choice examina-
tion. Each question has 4 alternatives. Each
correct answers fetches me 3 marks. Each
wrong answer gets me -1 marks. What is
the expected number of marks I get? Give a
bound on the probability that I get 25 marks
more than the expected number. Use Cher-
noff bounds.

2. I randomly choose v N numbers out of N
(with replacement), and determine their me-
dian. We would like to use this median as
an estimate of the median of the NV numbers.
Discuss in what way this is likely to be a good
estimate.
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