
An Improved Maximum Likelihood Formulation for Accurate Genome Assembly

Aditya Varma, Abhiram Ranade and Srinivas Aluru
Dept. of Computer Science and Engineering

Indian Institute of Technology Bombay, Mumbai, India
franade,alurug@cse.iitb.ac.in

Abstract—We present improvements to the recently pro-
posed maximum likelihood method for genome assembly. We
formulate the problem as one of direct convex optimization,
and achieve the following improvements: Our method does
not require identical read lengths and can deal with reads of
varying lengths. We eliminate the requirement to a priori know
a stringent estimate of the length of the genome or the need to
use further expectation minimization to predict the most likely
length. Instead, we explicitly incorporate the uncertainty in the
length estimate by a range parameter without affecting the
convexity required for the optimization. Results indicate that
our method can generate accurate estimates of repeat counts
and produces fewer and much longer contigs. These results
mark a further advancement of maximum likelihood genome
assembly and the potential of this approach in building future
genome assemblers.

Keywords-genome assembly; maximum likelihood; next-gen
sequencing.

I. INTRODUCTION

Assembly algorithms that reconstruct a genome from a
large number of random shotgun DNA reads have been
a staple of genome sequencing projects for over two
decades. The importance of genome sequencing, and the
many genome sequencing projects undertaken, have spurred
considerable research in assembly algorithms. The dominant
assembly paradigm is perhaps overlap-layout-consensus, in
which overlaps between pairwise DNA reads are considered
strong indicators of genomic co-location. Assembly is ac-
complished by processing such overlaps, often in a greedy
heuristic manner based on a measure of the significance
of such overlaps. Examples of assemblers that follow the
overlap-layout-consensus paradigm include Arachne [1], At-
las [2], CAP3 [3], Celera Assembler [4], GigAssembler [5],
PCAP [6], Phusion [7] and TIGR Assembler [8]. Because
genomes have repeats, read overlaps may arise even in the
absence of genomic co-location. The technique of paired-
end shotgun sequencing, whereby reads are obtained from
both ends of a DNA fragment whose length provides an
approximate distance constraint can be used to resolve
ambiguities and erroneous assemblies resulting from repeats.

A more elegant approach is taken in the class of graph-
based assemblers, initially pioneered by Idury and Waterman
[9] and subsequently extended by Pevzner into the Euler
assembler [10]. In this formulation, reads are represented as
paths in a de Bruijn graph of all k-mers from all reads. The

goal is to find a superpath of these paths which corresponds
to the reconstructed genome. In some sense, this method
takes a global perspective of the assembly problem. How-
ever, it has not seen much use in large genome sequencing
efforts primarily due to its memory-intensive nature. An
effort to mitigate this is the string graph formulation due
to Myers [11], which may be viewed as a space efficient
version of the de Bruijn graph representation.

With the advent of next generation sequencing technology
that permits massively parallel DNA sequencing while sig-
nificantly reducing the length of individual reads (50-125 bp
for Illumina Genome Analyzer vs. 750-1000 bp for Sanger),
there is renewed interest in graph-based genome assembly
methods. Short reads significantly worsen the reliability of
overlaps as indicators of genomic co-location, affecting the
quality of overlap-layout-consensus based assemblers. As a
result, a number of de Bruijn graph based genome assembly
programs have been developed to address short read assem-
bly. While demonstration of many of these have been limited
to bacterial genomes due to memory constraints [12]–[15],
recent development of parallel methods is promising to scale
to larger genomes [16]–[19].

In recent work, Medvedev and Brudno [20] proposed a
maximum likelihood formulation of the genome assembly
problem, where the goal is to infer a genome that is the most
likely source of the given set of reads. They demonstrate that
maximum likelihood formulation can achieve high quality
reconstruction. While the sizes of the contigs they achieve
are comparable with other assemblers for short reads, they
fall short of what is achievable when assembling the longer
Sanger reads [20]. As the experiments are conducted with
simulated, error-free reads, it is likely the contig sizes will be
further reduced in practice. Nevertheless, this is a significant
result because the likelihood formulation resulted in accurate
copy count prediction for repeats and resulted in accurate
reconstruction of the genome. Improving assembly quality
while also producing fewer and longer contigs is important
from the perspective of significantly reducing finishing costs.

In this paper, we further advance maximum likelihood
genome assembly by formulating the problem as one of di-
rect convex optimization. Building upon the work of Myers
[11], we formulate the maximum likelihood approach on the
overlap-based string graph and demonstrate its applicability
to reads of varying lengths, while the work [20] uses



essentially fixed size reads in analysis as well as experi-
ments. In addition, our method requires knowledge of only
approximate rather than the exact genome length as in [20].
Experimental results show that our method gives highly
accurate genomic reconstruction and significantly longer
contigs. For example, we were able to infer a 1 Mbp stretch
of the E. Coli genome as 19 contigs for a 10x coverage of
500 bp reads, and as 17 contigs for a 50x coverage of 100 bp
reads. While these results should be viewed in the context
of simulated error-free read based experiments, they were
achieved without taking advantage of mate pair constraints.
We conclude that building of practical assemblers based on
maximum likelihood principles is worthy of investigation.

II. METHODS

We assume that the input to the assembly process is a set
of reads R = fr1; r2; : : : ; rng, of possibly different lengths.
They are assumed to come from the same strand of the DNA.
While in general this cannot be assured, we ignore this issue
for simplicity and note that it can be handled as in [11], [20].

¿From the reads, we construct the fragment assembly
string graph essentially following Myers [11]. This graph
is constructed so that each tour of it which visits every
vertex at least once corresponds to a feasible assembly. A
convex optimization is then formulated, which ideally would
identify a single tour and hence a single assembly. However,
in the presence of repeats longer than the reads lengths, we
can only identify reasonably long contigs.

A. Fragment Assembly String Graph

Following Myers [11], we construct the string graph by
creating the read overlap graph and effecting a series of
transformations on the overlap graph. Suppose that � is the
chosen so that the probability of an overlap of length �
between random strings is exceedingly low. Then the (� )
overlap graph for a read set R is a directed, weighted (called
length in what follows), labelled graph defined as follows.
Vertices: For each read ri that is not contained in any other
read1 we construct one vertex. We will refer to this vertex
as vertex i.
Edges: If there exits an overlap of length at least � between
a suffix of ri and a prefix of rj , we construct a directed edge
from vertex i to vertex j, i.e. edge (i; j).
Labels and lengths: Suppose (i; j) is an edge. Let rj be
a concatenation of string s followed by a string l, where s
specifies the prefix overlapping with ri. Then the edge (i; j)
is labelled l, and is assigned length jlj, i.e. the length of the
string l.

It will be noted that the overlap graph almost has the
property we require. Consider a tour which visits every
vertex of the overlap graph at least once. The label of an
edge (i; j) is simply the sequence that takes us from the

1However, the contained vertices are not completely ignored; they will
figure in the subsequent processing, see Section II-D

Figure 1. Representing read overlaps as edges in the string graph.

end of read ri to the end of read rj . By concatenating the
labels along the tour, we indeed get a string which contains
all reads except the one corresponding to the starting vertex
(tackled in Section II-D). The tour need not be simple, i.e.
the tour may pass through certain vertices/edges more than
once. Thus assemblies with repeats are also represented.
However we can clean up the graph considerably by re-
peatedly performing the following two operations.
Transitive Reduction: Consider three vertices i, j and k.
If there are edges (i; j), (i; k) and (j; k) in the graph, then
edge (i; k) is removed. Note that the label of edge (i; k) is
given by the concatenation of labels of (i; k) and (j; k). So
from the perspective of a tour, the edge (i; k) is redundant
since the same sequence can be spelt by taking the two
edges (i; j) and (j; k). Transitive reduction helps because
it typically reduces the number of edges in the overlap
graph drastically. On general graphs, transitive reduction is
an expensive operation. However, Myers [11] notes that an
overlap graph can be transitively reduced in O(jEj) time,
aided by the labels. First we have the property that only an
edge with a shorter label can lead to the removal of another
edge. Second, the labels guide the search for which edge to
reduce.
Collapse of simple paths: The transitively reduced overlap
graph too may contain more vertices and edges than are
necessary. Suppose we have a path in which all internal
vertices have in-degree and out-degree of one each. We can
collapse paths that contain such vertices into a composite
edge whose label is the concatenation of the edges thus
collapsed. E.g. A path fv1; v2; : : : ; vmg where in-degree(vi)
= out-degree(vi) = 1 for 2 � i � m � 1 can be collapsed
into a composite edge (v1; vm). While in general every edge
need not be present in the assembly tour, edges that arise
from collapsing paths must be present since otherwise the
reconstruction will not contain the reads corresponding to
the vertices in the collapsed paths. Thus we must distinguish
such edges for future processing.

It should be clear that the operations described above leave
invariant the tours possible in the graph, and hence the set
of feasible assemblies. We next discuss how to narrow down
the set of acceptible tours.

B. Maximum likelihood

The resulting graph after transitive reduction and collapse
of simple paths is the (fragment assembly) String Graph. If
the target genome was covered2, then there exists some walk

2If every subsequence of the genome of length � + 1 is in some read.



in the String graph which will recover the target genome.
This walk must necessarily visit all vertices. It may or may
not visit all edges and may visit some edges multiple times.
The edges that are traversed more than once correspond to
repeats. The key question to answer here is, how many times
will each edge be traversed? Our approach to this problem
builds up on the maximum likelihood approach of Medvedev
and Brudno [20].

In principle, the idea is to simply consider all possible
genomes which contain all the reads that have been ob-
served, and pick the one which has the greatest probability
of generating the observed read set. For this we need a model
that specifies how a read set is generated from a candidate
genome G. Let LG denote the length of G and Li the length
of read ri. In our model each read ri is produced by running
the following steps: (a) a length Li is chosen from a length
distribution which is fixed independent of the genome, (b)
the starting position is chosen for the read uniformly from
1 : : : LG�Li. The sequence of bases from the chosen posi-
tion of the chosen length then becomes the read ri. Suppose
a read ri appears �i times in a candidate genome G. Then
since the starting point is picked at random, the probability
of ri being generated is simply P (Li)�i=(LG � Li), where
P (Li) denotes the probability of selecting a length Li for
the read from the length distribution. The probability of
generating the set R in the sequence r1; : : : ; rn is simplyQ

i P (Li)�i=(LG � Li). However, the same read set R can
be generated through other permutations, e.g. if all reads
are distinct, then the probability of observing R is n! times
the probability above. In general the exact probability is
�
Q

i P (Li)�i=(LG � Li), where � depends upon the read
set R but not on the genome G. Assuming LG � Li we
may write LG � Li � LG, and observing that

Q
i P (Li)

also does not depend upon G, we may write the probability
PG of generating R from G as:

PG = �0
nY

i=1

�i
LG

where �0 = �
Q

i P (Li) is a constant depending on R
(and the length distribution) but not on G. Our goal is
to find G that maximizes PG, or equivalently

Q
i �i=LG.

The maximization must satisfy certain constraints, which we
describe next.

As noted, it must be possible to obtain G by a walk over
string graph in which each vertex is visited at least once.
Suppose that during this walk edge (i; j) is traversed xij
times. Since i is visited on each traversal of (i; j) we must
have �i =

P
j xij . Also suppose that lij is the length of edge

(i; j) in the string graph. Each edge contributes lijxij to the
genome length and so we must have LG =

P
i;j lijxij . Thus

using (V;E) to denote the string graph, and noting that lij

are known, our problem is:

maximize
nY

i=1

�i
LG

(1)

such that LG =
X

i;j

lijxij (2)

8i 2 V �i =
X

j

xij (3)

8i 2 V
X

j

xij =
X

j

xji (4)

8(i; j) 2 E xij � 0 (5)

In this equation 4 simply asserts that the number of times
the walk enters a node i is the same as the number of times
it exits i.

The constraints enumerated above are linear but the
objective function is not. In fact the objective function is
not even concave, leaving open the possibility of multiple
maxima and a difficult optimization problem.

C. An engineering approximation

The key observation is that it is often possible to get an
estimate Q to the length LG of the genome without doing an
assembly. The estimate is not accurate, but has some error �,
(say 10 %). Thus we may write LG = Q(1+ �). For small �
we can approximate LG � Qe�. Our objective then becomesQ

i �i=LG = Q�ne�n�
Q

i �i. Since Q is fixed it suffices to
maximize e�n�

Q
i �i, or alternatively its logarithm:

maximize
nX

i=1

ln �i � n� (6)

such that Q(1 + �) =
X

i;j

lijxij (7)

8i 2 V �i =
X

j

xij (8)

8i 2 V
X

j

xij =
X

j

xji (9)

8(i; j) 2 E xij � 0 (10)
�0:1 � � � 0:1 (11)

Q is a constant, and the variables �i may be eliminated using
equation 8. But now it is seen that the objective is concave
in xij and linear in �, and the constraints remain linear in the
variables (xij and �). So a unique maximum exists which
can be found by convex optimization techniques.

D. Putting It All Together

We first discuss how contained reads and the reads elimi-
nated during collapse of simple paths are handled. Consider
a read ra removed because it is contained in a read rb which
is not contained in any other read. Then ra is included in the
calculation in equation 6, with �a = �b. Contained reads do
not affect any other equation. Likewise, every read rc that is



contained in an edge (c; d) in the string graph is included,
with �a = xcd. Since we increased the length of edge (c; d)
to include the length of all the removed reads, these reads
do not participate in equation 7.

Finally, to allow the reconstruction to consist of multiple
contigs rather than just one, an additional vertex s is
included. This has an edge to and from every uncollapsed
vertex. These edges appear in the balance constraint (equa-
tion 9) for every other vertex u, but a balance constraint
is not enforced for s. This vertex does not figure in the
calculations in the remaining equations. If after solving we
have xsu > 0, it indicates the start of a contig from u.
Likewise xvs > 0 indicates the end of a contig at v.

After these modifications, we formulate the (convex)
optimization problem as discussed, and solve using the
tool MOSEK (www.mosek.com). The solution gives us the
values of the traversal count variables xij .

E. Annotated string graph

We first use the values xij generated to annotate the string
graph. Interestingly it turns out that many of the traversal
counts are zero. This happens if the genome contains repeats
of length shorter than the read length but larger than � ,
the minimum overlap length. We then remove edges whose
traversal counts are zero. This can produce vertices whose
outdegree is one – we collapse such edges into a single long
path wherever possible. While collapsing these edges, their
labels are concatenated to produce the label for the resultant
edge. This new graph, together with the traversal counts (all
of which are strictly greater than zero because we pruned
the others), is called the annotated string graph.

F. What we report

The annotated string graph represents what our algorithm
can say about the genome. Specifically, while we know that
the genome must be a walk on this graph which passes
through the edges as many times as specified, we do not
know how precisely which of the outgoing edges to take
next when it comes to a vertex. The algorithm can however
firmly conclude that each edge of the graph must be present
somewhere in the genome, and we report each edge as a
contig. Since our experiments are with reads generated from
known genomes, we check whether our reported contigs are
present in the genome. Note that with mate pair information
that is commonly available in genome sequencing projects,
our assemblies can be further improved.

III. RESULTS AND DISCUSSION

We conducted experiments on the following genomic
segments: 1) Genome sequence of E. Coli 0157:H7 of length
1,000,080 bp (NT 034398.4), and 2) Human Y chromosome
genomic contig of length 581,282 bp. The former is chosen
because the E. Coli genome is widely used as a benchmark
in many genome sequencing studies. We used the latter

Read String Annotated
length/ graph graph
Min. Cov- size size N50 N70 N80 N90

overlap erage (edges) (edges) kbp kbp kbp kbp
500/150 10x 33 19 104.3 63.1 42.3 22.8

20x 22 5 503.7 276.2 179.9 179.9
250/100 10x 126 106 16.1 11.8 8.9 6.4

20x 28 9 503.7 270.4 179.9 179.9
100/60 50x 184 17 269.9 179.7 179.7 80.0
50/40 50x 396 79 101.4 80.0 46.0 27.2

Table I
ASSEMBLY RESULTS WITH VARIOUS READ LENGTHS AND COVERAGE

ON A 1 MBP STRETCH OF THE E. Coli GENOME.

Figure 2. String graph of a 1 Mbp stretch of E. coli genome with 100 bp
reads and 100x coverage.

to conduct experiments on a genomic segment with higher
repeat content. Each data set we tested consists of a read
length and desired coverage. To test various read lengths,
we experimented with 500 bp, 250 bp, 100 bp, and 50 bp
reads. The coverage varied from 10x for 500 bp reads to
50x for the shorter reads. The former is seen as reasonable
coverage for Sanger reads and the latter is on the low end
of expected coverage with next-gen short read sequencing.
The number of reads is computed based on the coverage and
target genome length. Each read is sampled from a random
location, uniformly selected from the set of positions in the
genomic segment. The reads are taken to be error-free and
of the specified length. The latter is for convenience, and
is not a constraint of the algorithm. Read lengths typically
vary within a band surrounding the specified length, and in
any case are not identical due to trimming based on quality
scores etc. We do not expect this to have a noticeable impact
on the results. Even though the length of the target genomic
segment is known, we incorporated a �10% range for the
purpose of testing the proposed solution.

Experimental results on the E. Coli genomic segment are
shown in Table I. For each data set tested, we show the
sizes of the resulting string graph and annotated string graph
in terms of the number of edges. As expected, the sizes
of these graphs increase with decrease in read length as
more ambiguities arise from shorter reads. For illustration



1

1

1
1

1

1

1

1

1 1

1
1

1

1

1

1 1

Figure 3. Annotated string graph of a 1 Mbp stretch of E. coli genome
with 100 bp reads and 100x coverage.

purposes, the string graph and the annotated string graph
for the case of 100 bp reads at 100x coverage are shown
in Figure 2 and Figure 3, respectively. The annotated string
graph becomes smaller due to the elimination of edges with
zero count and collapsing of the resulting simple paths. At
this stage, we report each edge as a separate contig. Note
that our experiments are conducted with unpaired reads. In
practice, mate pair information is available and can be used
to find longer paths in the graph when a collection of mate
pairs unambiguously indicates successive edges.

For each data set, we report the N50, N70, N80 and N90
lengths in kbp. The Nx measure reports the longest contig
such that contigs of length no smaller than it can cover at
least x% of the genome. For the E. coli genomic segment,
just one contig covered more than half the target sequence
in case of 500/250 bp reads at 20x coverage, while just two
contigs covered the same in case of 100 bp reads at 50x
coverage. Quality of the generated contigs was tested by
aligning the contigs back to the reference genome. In all
cases, the contigs generated were substrings of the genome
with no differences. Note that the size of the annotated graph
also provides the number of contigs generated. It is clearly
seen that this approach is able to reproduce the genome as a
small number of very large contigs. For example, the target
sequence is revealed as 19 contigs at 10x coverage and 5
contigs at 20x coverage for 500 bp reads.

Experimental results on similarly composed data sets for
the human Y chromosome segment are shown in Table II.
Due to the higher repeat content, the string graph sizes are
significantly larger than the corresponding ones for E. Coli.
However, the annotated graph sizes for 500 bp and 250
bp reads are much smaller than the corresponding string
graphs, and result in very large contigs. This attests to the
power of the maximum likelihood approach in accurately
characterizing repeats and deducing their copy count. The
annotated graph sizes for 100 bp and 50 bp reads are
significantly larger than their E. Coli counterparts. This is
partly because of increase in the number of repeats larger

than the read length, and partly because it is harder to
accurately characterize repeats with shorter reads.

As the experimental results demonstrate, the maximum
likelihood approach has the potential to lead to vastly
improved genome assemblers, both in terms of assembly
quality and the goal of inferring the genome with as few
contigs as possible. Although the experiments in both this
paper and in [20] are presented for error-free reads, they are
indicative of the quality of results that can be obtained with
this approach under ideal conditions. Any real assembler
must contend with reads containing errors. The effect of
errors can be mitigated through running error-correction
software prior to assembly (for example, see [13], [21]. We
further expect that most paths resulting from erroneous reads
are likely to receive zero traversal counts in the maximum
likelihood formulation. We expect an increase in the number
of contigs in practice both due to left over erroneous paths as
well as regions of the genome not covered by reads, which is
a problem for any genome a ssembler. A practical maximum
likelihood assembler that deals with these issues is currently
under development.

A significant drawback of the maximum likelihood based
methods is they rely on complex optimization or network
flow based techniques which are more compute-intensive
than the typical linear-time methods currently used in pro-
duction assemblers. As a result, it is unlikely that maximum
likelihood based methods can scale to mammalian or plant
genomes in the Gbp range. Nevertheless, given the much
higher quality, contig length, and coverage of the assemblies
we produced indicates it is a worthwhile approach when it
is applicable. For instance, rapid sequencing of microbial
organisms is continually underway – and these genomes
are typically a few million base pairs at which scale the
maximum likelihood approaches can be applied. Further-
more, these methods can be useful in hierarchical sequencing
approaches, or genome sequencing projects where pools of
BACs are sequenced.

IV. CONCLUSIONS

In this paper, we provide a maximum likelihood formula-
tion of the genome assembly problem and show that it can
be solved as a convex optimization problem. The overlap-
layout-consensus paradigm is susceptible to mistakes in as-
sembly even due to repeats shorter than the read length. Our
results highlight the danger: the size of the annotated graph
is much smaller than the string graph because our method
has detected and removed the corresponding short (smaller
than the length of the read) repeats. The contig lengths
we report are significantly longer than the results reported
in the literature with overlap-layout-consensus assemblers,
and our own experience them. They are also a marked
improvement over the results in [20], possibly because of
our different formulation. Experimental results demonstrate



Read String Annotated
length/ graph graph

Minimum size size N50 N70 N80 N90
overlap Coverage (edges) (edges) kbp kbp kbp kbp
500/150 10x 108 12 84.2 65.4 36.7 34.1

30x 190 5 500.2 500.2 500.2 77.8
250/100 10x 289 75 13.5 10.2 8.5 5.9

30x 352 19 499.3 499.3 499.3 77.7
100/60 50x 907 99 65.8 34.1 27.6 10.5
50/35 50x 10366 654 2.7 1.3 0.35 —

Table II
ASSEMBLY RESULTS WITH VARIOUS READ LENGTHS AND COVERAGE ON A 581,282 BP CONTIG FROM HUMAN Y CHROMOSOME. THE CONTIGS ARE

SMALLER THAN THE CASE OF E. Coli GENOME DUE TO HIGHER REPEAT CONTENT.

that under the ideal condition of error-free reads, our max-
imum likelihood method can approach the ideal goal of
discovering the genomic sequence as a single contig. This
provides confidence that the approach could improve upon
current generation assemblers even after deterioration in
the results due to read errors, chimeras, non-uniformity of
coverage, and poorly sampled regions. The development of a
comprehensive assembler based on the maximum likelihood
formulation is still an open issue.

ACKNOWLEDGEMENTS

S.A. is funded in part by Swarnajanti Fellowship from the
Government of India.

REFERENCES

[1] S. Batzoglou, D. Jaffe, K. Stanley, and et al., “Arachne:
A whole-genome shotgun assembler,” Genome Research,
vol. 12, no. 1, pp. 177–189, 2002.

[2] P. Havlak, R. Chen, K. Durbin, and et al., “The atlas genome
assembly system,” Genome Research, vol. 14, pp. 721–732,
2004.

[3] X. Huang and A. Madan, “CAP3: A DNA sequence assembly
program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999.

[4] E. Myers, G. Sutton, A. Delcher, and et al., “A whole-genome
assembly of drosophila,” Science, vol. 287, pp. 2196–2204,
2000.

[5] W. Kent and D. Haussler, “Gigassembler: an algorithm for
initial assembly of the human working draft,” Genome Re-
search, vol. 11, no. 9, pp. 1541–1548, 2001.

[6] X. Huang, J. Wang, S. Aluru, and et al., “Pcap: A whole-
genome assembly program,” Genome Research, vol. 13, no. 9,
pp. 2164–2170, 2003.

[7] J. Mullikin and Z. Ning., “The phusion assembler,” Genome
Research, vol. 13, no. 1, pp. 81–90, 2003.

[8] G. Sutton, O. White, M. Adams, and A. Kerlavage, “Tigr as-
sembler: A new tool for asembling large shotgun sequencing
projects,” Genome Science and Technology, vol. 1, pp. 9–19,
1995.

[9] R. Idury and M. Waterman, “A new algorithm for dna se-
quence assembly,” Journal of Computational Biology, vol. 2,
pp. 291–306, 1995.

[10] H. T. P.A. Pevzner and M. Waterman, “An eulerian path
approach to dna fragment assembly,” Proceedings of the
National Academy of Sciences USA, vol. 98, no. 17, pp. 9748–
9753, 2001.

[11] E. Myers, “The fragment assembly string graph,” Bioinfor-
matics, vol. 21, pp. 79–85, 2005.

[12] J. Butler, I. MacCallum, M. Kleber, and et al., “ALLPATHS:
De novo assembly of whole-genome shotgun microreads,”
Genome Research, vol. 18, pp. 810–820, 2008.

[13] M. Chaisson and P. Pevzner, “Short fragment assembly of
bacterial genomes,” Genome Research, pp. 18:324–330, 2008.

[14] P. Medvedev and M. Brudno, “Ab initio whole genome
shotgun assembly with mated short reads,” in Lecture Notes
in Computer Science, vol. 4955, 2008, pp. 50–64.

[15] D. Zerbino and E. Birney, “Velvet: Algorithms for de novo
short read assembly using de Bruijn graphs,” Genome Re-
search, vol. 18, pp. 821–829, 2008.

[16] B. Jackson, P. Schanble, and S. Aluru, “Parallel short se-
quence assembly of transcriptomes,” BMC Bioinformatics,
vol. 10, p. S14, 2009.

[17] ——, “Assembly of large genomes from paired short reads,”
Springer-Verlag Lecture Notes in Bioinformatics, vol. 5462,
pp. 30–43, 2009.

[18] B. Jackson, M. Regennitter, X. Yang, and et al., “Parallel
de novo assembly of large genomes from high-throughput
short reads,” in Proc. International Parallel and Distributed
Processing Symposium (IPDPS), 2010, pp. 1–10.

[19] J. Simpson, K. Wong, S. Jackman, and et al., “Abyss: A
parallel assembler for short read sequence data,” Genome
Research, vol. 19, pp. 1117–1123, 2009.

[20] P. Medvedev and M. Brudno, “Maximum likelihood genome
assembly,” Journal of computational Biology, vol. 16, pp. 1–
16, 2009.

[21] X. Yang, K. Dorman, and S. Aluru, “Reptile: Representative
tiling for short read error correction,” Bioinformatics.


