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Abstract—We consider the problem of scheduling commu-
nication on optical WDM (wavelength division multiplexing)
networks using the light-trails technology. We give two online
algorithms which we prove to have competitive ratios O(log n)
and O(log2 n) respectively. We also consider a simplification
of the problem in which the communication pattern is fixed
and known before hand, for which we give a solution using
O(c + log n) wavelengths, where c is the congestion and a lower
bound on the number of wavelengths needed. While congestion
bounds are common in communication scheduling, and we use
them in this work, it turns out that in some cases they are
quite weak. We present a communication pattern for which the
congestion bound is O(log n/ log log n) factor worse than the best
lower bound. In some sense this pattern shows the distinguishing
character of light-trail scheduling. Finally we present simulations
of our online algorithms under various loads.

I. INTRODUCTION

Light-trails [1] are considered to be an attractive solution
to the problem of bandwidth provisioning in optical networks.
The key idea in this is the use of optical shutters which are
inserted into the optical fiber, and which can be configured
to either let the optical signal through or block it from
being transmitted into the next segment. By configuring some
shutters on (signal let through) and some off (signal blocked),
the network can be partitioned into subnetworks in which
multiple communications can happen in parallel on the same
light wavelength. In order to use the network efficiently, it is
important to have algorithms for controlling the shutters.1

In this paper we consider the simplest scenario: two fiber
optic rings, one clockwise and one anticlockwise, passing
through a set of some n nodes, where typically n < 20
because of technological considerations. At each node of a
ring there are optical shutters that can either be used to
block or forward the signal on each possible wavelength.
The optical shutters are controlled by an auxiliary network
(“out-of-band channel”). It is to be noted that this network is
typically electronic, and the shutter switching time is of the
order of milliseconds as opposed to optical signals which have
frequencies of Gigahertz.

For this setting we give three algorithms for controlling
the shutters, or bandwidth provisioning. The first two consider
dynamic traffic, i.e. communication requests arrive and depart
in an online manner, i.e. they have to be serviced as soon as
they arrive. The algorithm must respond very quickly in this

1Notice that in the on mode, light goes through a shutter without being first
converted to an electrical signal – this is one of the major advantages of the
light-trail technology.

case. The third algorithm considers stationary traffic. In this
case, our algorithm can be allowed to take more time, because
the computed configuration will be used for a long time since
the traffic pattern does not change. For both problems, our
objective is to minimize the number of wavelengths needed to
accommodate the given traffic.2

The input to the stationary problem is a matrix B, in which
B(i, j) gives the bandwidth demanded between nodes i and
j. We give an algorithm which schedules this traffic using
O(c+log n) wavelengths, where c = maxk

∑
i,j|i≤k<j B(i, j)

is the maximum congestion at any link. The congestion as
defined above is a lower bound, and so our algorithm can be
seen to use a number of wavelengths close to the optimal. The
reader may wonder why the additive log n term arises in the
result. We show that there are communication matrices B for
which the congestion is much smaller than 1, but which yet
require Ω(log n/ log log n) wavelengths. In some sense, this
justifies the form of our result.

For the online problem, we use the notion of competitive
analysis [2], [3], [4]. Specifically we establish that our first
algorithm is O(log n)-competitive, i.e. it requires at most
a O(log n) factor more wavelengths as compared to the
best possible algorithm, including an unrealistic algorithm
which is given all the communication requests in advance.
A multiplicative O(log n) factor might be considered to be
too large to be relevant for practice (and indeed it is an
important open problem whether a lower factor can be proved);
however, the experience with online algorithm design is that
such algorithms often give good hints for designing practical
algorithms. We establish that our second algorithm for the
online problem is O(log2 n), nevertheless we mention it
because it is a simplified version of the first algorithm and
it seems to perform better in our simulations.

That brings us to our final contribution: we simulate two
algorithms based on our online algorithms for some traffic
models. We compare them to a baseline algorithm which keeps
the optical shutter switched off only in one node for each
wavelength. Note that at least one node should switch off its
optical shutter otherwise light signal will interfere with itself
after traversing around the ring. We find that except for the
case of very low traffic, our algorithms are better than the

2If our analysis indicates that some λ wavelengths are needed while only
λ0 are available, then effectively the system will have to be slowed down by
a factor λ/λ0. This is of course only one formulation; there could be other
formulations which allow requests to be dropped and analyse what fraction
of requests are satisfied.



baseline. For very local traffic, our algorithms are in fact much
superior.

The rest of the paper is organized as follows. We begin
in Section II by comparing our work with previous related
work. In Section III we give the details of our algorithm for
the stationary problem. Section IV gives an example instance
of the stationary problem where congestion lower bound is
weak. We describe our two algorithms for the online problem
in Section V. We give results of simulation of our online
algorithms in Section VI.

II. PREVIOUS WORK

Our problem as formulated is in fact similar to the problem
of reconfigurable bus architectures [5], [6]. These have been
proposed for standard electrical communication; like the opti-
cal shutter in light-trails, there is a switch which connects one
segment of the bus to another, and which can be set on or off.
Again, even in this model, the switches are slow as compared
to the data rates on the buses. So from an abstract view points
this model is very similar to ours.

While there is much work in the reconfigurable bus lit-
erature, it mostly concerns regular interconnection patterns,
such as those arising in matrix multiplication, list ranking
and so on [7], [8], [9], [10]. The only work we know of
dealing with random communication patterns is in relation
to the PARBUS architecture. Such patterns are handled using
standard techniques such as Chernoff bounds [11]. We do not
know of any work which discusses how to schedule arbitrary
irregular communication patterns in this setting. This is prob-
ably understandable because reconfigurable bus architectures
have mostly been motivated as special purpose computers,
except for the PRAM simulation motivation of PARBUS
where the communication becomes random. However, if the
network is used for general purpose computing, it does make
sense to have algorithms to provision bandwidth for arbitrary
irregular patterns, as we do here.

After the light-trail technology was was introduced in [1],
much work has been published in the literature. For example,
[12] has a mesh implementation of light-trails for general
networks. The paper [13] implements a tree-shaped variant of
light-trail, called as clustered light-trail, for general networks.
The paper [14] describes ‘tunable light-trail’ in which the
hardware at the beginning works just like a simple light-
path but can be later tuned to act as light-trail. There is
some preliminary work on multi-hop light-trails [15] in which
transmissions are allowed to go through a sequence of overlap-
ping light-trails. Survivability in case of failures is considered
in [16] by assigning each transmission request to two disjoint
light-trails.

Even with this basic hardware implementation, there are
different works solving different design problems. Several ob-
jectives are mentioned in the seminal paper [17] – to minimize
total number of light-trails used, to minimize queuing delay,
to maximize network utilization etc. Most of the work in
the literature seems to solve the problem by minimizing total
number of light-trails used [18], [19], [20], [21]. Though the

paper [19] suggests that minimizing total number of light-
trails also minimizes total number of wavelengths, it may not
be always true. For example, consider a transmission matrix in
which B(1, 2) = B(3, 4) = 0.5 and B(2, 3) = 1. To minimize
total number of light-trails used, we create two light-trails on
two different wavelengths. Transmission (2,3) is put in one
light-trail and transmissions (1,2) and (3,4) are put in the other
light-trail. On the other hand, to minimize total number of
wavelengths, we put each of them in a separate light-trail on
a single wavelength. We believe that minimizing the number
of light-trails (while fixing the number of wavelengths) is
an appropriate objective for the online case, where this is a
measure of the work done by the scheduler. In our opinion,
for the stationary problem, the number of wavelengths is a
better measure. There are few other models as well, e.g. [22]
minimizes total number of transmitters and receivers used in
all light-trails.

The general approach followed in the literature to solve
the stationary problem is to formulate the problem as an
integer linear program (ILP) and then to solve the ILP using
standard solvers. The papers [18], [19] give two different
ILP formulations. However, solving these ILP formulations
takes prohibitive time even with moderate problem size since
the problem is NP-hard. To reduce the time to solve the
ILP, the paper [20] removed some redundant constraints from
the formulation and added some valid-inequalities to reduce
the search space. However, the ILP formulation still remains
difficult to solve.

Heuristics have also been used. The paper [20] solves the
problem in a general network. It first enumerates all possible
light-trails of length not exceeding a given limit. Then it
creates a list of eligible light-trails for each transmission and a
list of eligible transmissions for each light-trail. Transmissions
are allocated in an order combining descending order of band-
width requirement and ascending order of number of eligible
light-trails. Among the eligible light-trails for a transmission,
the one with higher number of eligible transmissions and
higher number of already allocated transmissions is given
preference. The paper [21] used another heuristic for the
problem in a general network. For a ring network, [19] used
three heuristics.

For the problem on a general network, [16] solves two
subproblems. The first subproblem considers all possible light-
trails on all the available wavelengths as bins and packs
the transmissions into compatible bins with the objective
of minimizing total number of light-trails used. The second
subproblem assigns these light-trails to wavelengths. The first
subproblem is solved using three heuristics and the second
problem is solved by converting it to a graph coloring problem
where each node corresponds to a light-trail and there is
an edge between two nodes if the corresponding light-trails
conflict with each other.

For the online problem, a number of models are possible.
From the point of view of the light-trail scheduler, it is
best if transmissions are not moved from one light-trail to
another during execution, which is the model we use. It is also



appropriate to allow transmissions to be moved, with some
penalty. This is the model considered in [19], [23], where the
goal is to minimize the penalty, measured as the number of
light-trails constructed. The distributions of the transmissions
that arrive is also another interesting issue. It is appropriate to
assume that the distribution is fixed, as has been considered in
many simulation studies including our own. For our theoretical
results, however, we assume that the transmission sequence
can be arbitrary. The work in [19] assumes that the traffic
is an unknown but gradually changing distribution. They use
a stochastic optimization based heuristic which is validated
using simulations. The paper [20] considers a model in which
transmissions arrive but do not depart. Multi-hop problems
have also been considered, e.g. [24]. An innovative idea to
assign transmissions to light-trails using online auctions has
been considered in [25].

A. Remarks

As may be seen, there are a number of dimensions along
which the work in the literature may be classified: the network
configuration, the kind of problem attempted, and the solution
approach. Network configurations starting from simple linear
array/rings [9], [19], [23] to full structured/unstructured net-
works [8], [16], [18], [20], [21], [24] have been considered,
both in the optical communication literature as well as the
reconfigurable bus literature. The stationary problem as well
as the dynamic problem has been considered, with additional
minor variations in the models. Finally, three solution ap-
proaches can be identified. First is the approach in which
scheduling is done using exact solutions of Integer Linear
Programs [18], [19], [20]. This is useful for very small
problems. For larger problems, using the second approach,
a variety of heuristics have been used [16], [19], [20], [21].
The evaluation of the scheduling algorithms has been done
primarily using simulations. The third approach could be
theoretical. However, except for some work related to random
communication patterns [11], we see no theoretical analysis
of the performance of the scheduling algorithms.

In contrast, our main contribution is theoretical. We give
algorithms with provable bounds on performance, both for
the stationary and the online case. Our work uses the com-
petitive analysis approach [2] for the online problem. We
use techniques of approximation algorithms to solve the sta-
tionary problem. To our knowledge, this competitive analysis
and approximation algorithm approach to solve the light-trail
scheduling problem has not been used in the literature. We
also give simulation results for the online algorithms.

III. THE STATIONARY PROBLEM

In this section, instead of considering two unidirectional
rings, we consider a linear array of n nodes, numbered 0 to
n−1. Communication is considered undirected. This simplifies
the discussion; it should be immediately obvious that all results
directly carry over to two directed rings mentioned in the
introduction.

The input is a matrix B with B(i, j) denoting the bandwidth
requirement for the transmission from node i to node j,
without loss of generality, as a fraction of the bandwidth of a
single wavelength. The goal is to schedule these in minimum
number of wavelengths w. The output must give w as well
as a partitioning of each wavelength into a set of segments.
The partitioning may be specified as an increasing sequence
of numbers (what we refer to as configuration) between 0
and n − 1; if u appears in the sequence it indicates that the
shutter in node u is off, otherwise the shutter in node u is
on. The segment between two off shutters is a light-trail. A
transmission from i to j can be assigned to a light-trail L only
if u ≤ i, j ≤ v where u, v are the endpoints of the light-trail.
Further the sum of the required bandwidths assigned to any
single light-trail must not exceed 1.

It is customary to consider two variations: non-splittable, in
which a transmission must be assigned to a single light-trail,
and splittable, in which a transmission can be split into two
or more transmissions by dividing up the bandwidth, and the
resultant transmissions can be assigned to different light-trails.
Our results hold for both variations.

We will use cl(S) to denote the congestion induced on a link
l by a set S of transmissions. This is simply the total band-
width requirement of those transmissions from S requiring
to cross link l. Clearly maxl cl(S), the maximum congestion
over all links, is a lower bound on the number of wavelengths
needed. We use c(S) to denote maxl cl(S). Finally if t is
a transmission, then we abuse notation to write cl(t), c(t),
instead of cl({t}), c({t}), for the congestion contributed by
t only, which is equal to the bandwidth requirement of t.

The key observation behind our algorithm for the stationary
problem is: if all transmissions go the same distance in the
network, then it is easy to get a nearly optimal schedule. Thus
we partition the transmissions into classes based on the length
of the transmission. We then stitch back the separate schedules.

Define the length of a transmission to be the distance
between the origin and the destination. Transmissions with
length between 2i−1 (non-inclusive) and 2i (inclusive) are said
to belong to the ith class where 0 ≤ i ≤ dlog2(n− 1)e.

Let R denote the set of all transmissions, and Ri the set of
transmissions in class i. Class 0 is served simply by putting
shutters off at every node. Clearly, dc(R0)e wavelengths will
suffice for the splittable case, and twice that many for the non-
splittable (using ideas from bin-packing [26]). For R1 also it
is easily seen that O(dc(R1)e) wavelengths will suffice. So for
the rest of this paper we only consider classes 2 and larger.

A. Schedule Transmissions of Class i

Our aim is to partition Ri further into sets S0, S1, . . . each
with congestion at most some constant value so that overall it
does not take many wavelengths. We start with T0 = Ri, and
in general given Tj we construct Sj and Tj+1 = Tj \ Sj as
follows:

We add transmissions greedily into Sj starting from the
leftmost link l moving right, i.e. for each l pick transmissions
crossing it and move them into Sj until we have removed



at least unit congestion from cl(Tj) or reduced cl(Tj) to 0.
Then we move to the next link. So, at the end the following
condition holds:

∀l, cl(Sj)
{

= cl(Tj) if cl(Tj) ≤ 1, and
≥ 1 otherwise. (1)

However, to make sure that c(Sj) is not large, we move back
transmissions from Sj , in the reverse order as they were added,
into Tj so long as condition (1) remains satisfied. Now we
claim the following:

Lemma 1. Construction of Sj , Tj+1 from Tj takes polynomial
time and c(Sj) < 4.

Proof: For the first part, it can be seen that the construc-
tion takes at most n|Tj | time in the pick-up step and also in
the move-back step.

For the second part, at the end of move-back step, for any
transmission t ∈ Sj there must exist a link l such that cl(Sj) <
1 + c(t) otherwise t would have been removed. We call l as a
sweet spot for t. Since c(t) ≤ 1 we have cl(Sj) < 2 for any
sweet spot l.

Now consider any link x. Of the transmissions through x,
let L1 (L2) denote transmissions having their sweet spot on the
left (right) of x. Consider y, the rightmost of these sweet spots
of some transmission t ∈ L1. Note first that cy(Sj) < 2. Also
all transmissions in L1 pass through both x, y. Thus cx(L1) =
c(L1) = cy(L1) ≤ cy(Sj) < 2. Similarly, cx(L2) < 2. Thus
cx(Sj) = cx(L1) + cx(L2) < 4. But since this applies to all
links x, c(Sj) < 4.

Next we show that not too many Sj will be constructed.

Lemma 2. Suppose Sj is created for class i. Then j ≤ c(Ri).

Proof: Suppose Sj contains a transmission that uses some
link l. The construction process above must have removed at
least unit congestion from l in every previous step 0 through
j − 1. Hence j ≤ cl(Ri) ≤ c(Ri).

Every transmission in Sj has length at least 2i−1 + 1, and
must cross some node whose number is a multiple of 2i−1.
The smallest numbered such node is called the anchor of the
transmission. The trail-point of a transmission is the right most
node numbered with a multiple of 2i−1 that is on the left of
the anchor. If the transmission has trail-point at some node
with number of the form t2i−1, then we define t mod 4 as its
phase.

Lemma 3. The set Sj can be scheduled using O(1) wave-
lengths.

Proof: We partition Sj further into sets Sp
j containing

transmissions of phase p. Note that the transmissions in any
Sp

j either overlap at their anchors, or do not overlap at all. This
is because if two transmissions in Sp

j have different anchors,
then these two anchors are at least 2i+1 distance apart. Since
the length of transmission is at most 2i, the two transmissions
can not intersect.

So for the set Sp
j , consider 4 wavelengths, each having

shutters off at nodes numbered (4q + p)2i−1. Clearly, for

the splittable case, the transmissions will be accommodated
in these wavelengths, since c(Sp

j ) < 4. For the non-splittable
case, 8 wavelengths will suffice, using standard bin packing
ideas [26].

Thus all of Sj can be accommodated in at most 16 wave-
lengths for the splittable case, and at most 32 wavelengths for
the non-splittable case.

Theorem 4. The entire set Ri can be scheduled such that at
each link x there are O(Cx(Ri) + 1) light-trails.

Proof: We first consider the light-trails as constructed in
Lemma 3. In that construction, it is possible that some light-
trails contain links that are not used by any of the transmissions
associated with the light-trail. In such cases we shrink the
light-trails by removing the unused links (which can only
be near either end of the light-trail because all transmissions
assigned to a light-trail overlap at their anchor).

Let j be largest such that x has a transmission from Sj .
Then we know that cx(Ri) ≥ j. For each k = 0, 1, . . . , j we
have O(1) light-rails at x as described above. Thus we have
a total of O(j + 1) = O(cx(Ri) + 1) light-trails at x.

B. Merge Light-trails of All Classes Together

If we simply collect together the wavelengths as allocated
above, we would get a bound O(c log n). Note however, that
if two transmissions, one in class i and the other in class j,
are spatially disjoint, then they could possibly share the same
wavelength. Given below is a systematic way of doing this,
which gets us the sharper bound.

We know that at each link l there are a total of O(cl(Ri) +
1) light-trails. Thus the total number of light-trails at l are
O(cl(R) + log n), summing over all classes.

Think of each light-trail as an interval, giving us a collection
of intervals such that any link l has at most O(cl(R)+log n) =
O(c+ log n) intervals. Now this collection of intervals can be
colored using O(c+ log n) colors. So we put all the intervals
of the same color in the same wavelength.

IV. ON THE CONGESTION LOWER BOUND

We now consider an instance of the stationary problem. For
convenience, we assume m = n − 1 = 2k for some k, and
all logarithms with base 2. All the transmissions have same
bandwidth requirement α = 1/(logm+ 1).

First, we have a transmission going from 0 to 2k. Then a
transmission from 0 to 2k−1 and a transmission from 2k−1 to
2k. Then 4 spanning one-fourth the distance, and so on. Thus
we have transmissions of logm+ 1 classes, each class having
transmissions of same length. In class i ∈ {0, 1, . . . , logm}
there are 2i transmissions B(sij , dij) = α where sij =
jm/2i, dij = (j + 1)m/2i and j = 0, 1, . . . , 2i − 1. All other
entries of B are 0. This is illustrated in Fig. 1 for n = 17.

Clearly the congestion of this pattern is uniformly 1. Con-
sider an optimal solution. There has to be a light-trail in which
the first transmission from node 0 to m is scheduled. Thus
we must have a wavelength with no off shutters except at
node 0 and node m. In this wavelength, it is easily seen
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Fig. 1. An example instance where congestion bound is weak

that the longest transmissions should be scheduled. So we
start assigning transmissions of first few classes in this light-
trail. Suppose, all the transmissions for first l classes are
assigned. Then we have total 1 + 2 + 4 + · · ·+ 2l = 2l+1 − 1
transmissions assigned to this light-trail. Total bandwidth
requirement of these transmissions should be less than 1.
This gives us (2l+1 − 1)(1/(logm + 1)) ≤ 1 implying
l ≤ log(logm+ 2)− 1 ≈ log logm.

For the subsequent classes of transmissions, we allocate a
new wavelength and create light-trails by putting shutters off at
nodes numbered multiples of m/2l+1. It can be seen that again
transmissions of next about log logm classes can be put in
these light-trails. We repeat this process until all transmissions
are assigned.

In each wavelength we assign transmissions of log logm
classes. There are total (1 + logm) classes. Thus the total
number of wavelengths needed is d(1 + logm)/ log logme =
O(log n/ log log n) rather than the congestion bound of 1.
For the example in Fig. 1, using this procedure, we have
log logm = 2. Thus we require d(1 + logm)/ log logme = 3
wavelengths. The first wavelength is used for the transmissions
of classes {0,1}, the second wavelength for classes {2,3} and
the third for class 4.

V. THE ONLINE PROBLEM

In the online case, the transmissions arrive dynamically.
An arrival event has parameters (si, di, ri) respectively giving
the origin, destination, and bandwidth requirement of an
arriving transmission request. The algorithm must assign such
a transmission to a light-trail L such that si, di belong to the
light-trail, and at any time the total bandwidth requirement
of transmissions assigned to any light-trail is at most 1. A
departure event marks the completion of a previously sched-
uled transmission. The corresponding bandwidth is released
and becomes available for future transmissions. The algorithm
must make assignments without knowing about subsequent
events.

Unlike the stationary problem, congestion at any link may
change over time. Let clt(S) denote the congestion induced
on a link l at time t by a set S of transmissions. This is simply
the total bandwidth requirement of those transmissions from
S requiring to cross link l at time t. The congestion bound
c(S) is maxl maxt clt(S), the maximum congestion over all
links over all time instants.

For the online problem, we present two algorithms, SEP-
ARATECLASS and ALLCLASS having competitive ratios

O(log n) and O(log2 n) respectively. They are inspired by the
analysis of the algorithm for the snapshot problem, as may be
seen.

In both the online algorithms, when a transmission request
arrives, we first determine its class i and trail-point x (defined
in Section III-A). The transmission is allocated to some light-
trail with end nodes x and x+ 2i+1. However, the algorithms
differ in the way a light-trail is chosen from some candidate
light-trails.

A. Algorithm SEPARATECLASS

In this algorithm, every allocated wavelength is assigned
a class label i and a phase label p, and has shutters off at
nodes (4q + p)2i−1 for all q, i.e. is configured to serve only
transmissions of that class and phase. Whenever a transmission
of class i and phase p is to be served, it is only served
by a wavelength with the same labels. If such a wavelength
is found, and light-trail starting at its trail-point has space,
then the transmission is assigned to that light-trail. If no such
wavelength is found, then a new wavelength is allocated and
labeled and configured as above.

When a transmission finishes, it is removed from its asso-
ciated light-trail. The wavelength can be relabeled only when
there are no transmissions in any of its light-trail.

Lemma 5. Suppose, at some point of time, among the wave-
lengths allocated by the algorithm, x wavelengths had non-
empty light-trails of the same class and phase across a link l.
Then l must have congestion Ω(x) at some instant.

Proof: Number these wavelengths in the order that they
got allocated. Suppose the xth one was allocated due to a
transmission t. This could only happen because t could not fit
in the first x− 1 wavelengths.

For the splittable case this can only happen if the previous
x− 1 wavelengths contain congestion at least x− 1− c(t) at
the anchor of t, when t arrived. But this is Ω(x) giving us the
result.

For the non-splittable case, suppose that c(t) ≤ 0.5. Then
each of the first x − 1 light-trails must have congestion of
least 0.5 when t arrived, giving congestion Ω(x). So suppose
c(t) > 0.5. Let k be the largest such that wavelength k
contains a transmission t′ with c(t′) ≤ 0.5. If no such k exists,
then clearly the congestion is Ω(x). If k exists, then all the
wavelengths higher than k have congestion at least 0.5 when
t arrived. And the wavelengths lower than k had congestion



at least 0.5 when t′ arrived. So at one of the two time instants
the congestion must have been Ω(x).

Theorem 6. SEPARATECLASS is O(log n) competitive.

Proof: Suppose that SEPARATECLASS uses w wave-
lengths. We will show that the best possible algorithm (in-
cluding off-line algorithms) must use at least Ω(w/ log n)
wavelengths.

Consider the time at which the wth wavelength was allo-
cated. At this time w− 1 wavelengths are already in use, and
of these w′ = (w − 1)/4 log n must have the same class and
phase. Among these w′ wavelengths consider the one which
was allocated last to accommodate some light-trail L serving
some newly arrived transmission. At that time, each of the
previously allocated w′− 1 wavelengths was nonempty in the
extent of L. By Lemma 5, c(B) = Ω(((w−1)/4 log n)−1) =
Ω(w/ log n). This is a lower bound on any algorithm, even
off-line.

B. Algorithm ALLCLASS

This is a simplification of the previous algorithm in that
allocated wavelengths are not labeled. When a transmission
arrives, if a light-trail of its class and phase capable of
including it is found, then the transmission is assigned to it.
If no such light-trail is found, then an attempt is made to
create such a light-trail from the unused portions of any of the
existing wavelengths. If such a light-trail can be created, then
it is created and the transmission is placed in it. Otherwise a
new wavelength is allocated, the required light-trail is created,
and the rest of the wavelength is considered unused.

When a transmission finishes, it is removed from its asso-
ciated light-trail. If this makes the light-trail empty then we
consider it as unused. Then we check if there are adjacent
unused light-trails for the same wavelength. If so, we merge
them by turning on the off shutter between them.

Theorem 7. ALLCLASS is O(log2 n) competitive.

Proof: Suppose ALLCLASS uses w wavelengths. We will
show that an optimal algorithm will use at least Ω(w/ log2 n).
Clearly, we may assume w = Ω(log2 n).

We first prove that there must exist a point of time in the
execution of ALLCLASS when there are w/4 log n light-trails
crossing the same link.

Number the wavelengths in the order of allocation. Consider
the transmission t for which the wth wavelength was allocated
for the first time. Let L be the light-trail used for t. Clearly,
the wth wavelength had to be allocated because the other
wavelengths contained light-trails overlapping with L. Of
these if at least w/4 log n light-trails crossed either end of
L, then we are done. If this fails, there must be at least
w′ = w − 1 − w/2 log n wavelengths that have light-trails
which are strictly contained inside the extent of L. Let L′

be the light-trail allocated on the w′th of these wavelengths.
Note that L′ is strictly smaller than L. Thus we can repeat
the above argument by using L′ and w′ in place of L and w
respectively, only log n times, and if we fail each time, we

will end up with a light-trail L′′ such that there are at least
w′′ wavelengths with light-trails conflicting with L′′, where
w′′ = w−log n−log n(w/2 log n) = w/2−log n ≥ w/4 log n
for w = Ω(log2 n). But L′′ is a single link and so we are done.

Of these w/4 log n light-trails, at least w/16 log2 n must
have the same class and phase. But Lemma 5 applies, and
hence there is a link having congestion at least w/16 log2 n.
But this is a lower bound on the number of wavelengths
required by any algorithm, including an offline algorithm.

VI. SIMULATIONS

We simulate our two online algorithms and a baseline
algorithm on a pair of oppositely directed rings, with nodes
numbered 0 through n− 1 clockwise.

We use slightly simplified versions of the algorithms de-
scribed in Section V (but easily seen to have the same bounds):
basically we only use phases 0 and 2. Any transmissions that
would go into class i phase 1 (or phase 3) light-trail are
contained in some class i+1 light-trail (of phase 0 or 2 only),
and are put there. We define a class i and phase 0 light-trail to
be one that is created by putting off shutters at nodes jn/2i

for different j, suitably rounding when n is not a power of 2.
A light-trail with class i and phase 2 is created by putting off
shutters at nodes (jn/2i + n/2i+1), again rounding suitably.
For ALLCLASS, there is a similar simplification. Basically, we
use light-trails having end nodes at jn/2i and (j + 1)n/2i or
at jn/2i + n/2i+1 and (j + 1)n/2i + n/2i+1. As before, in
SEPARATECLASS, we require any wavelength to contain light-
trails of only one class and phase; whereas in ALLCLASS, a
wavelength may contain light-trails of different classes and
phases.

For the baseline algorithm in each ring we use a single off
shutter at node 0. Transmissions from lower numbered nodes
to higher numbered nodes use the clockwise ring, and the
others, the counterclockwise ring.

A. The simulation experiment

A single simulation experiment consists of running the
algorithms on a certain load, characterized by parameters
λ,D, rmin and α for 100 time steps. In our results, each data-
point reported is the average of 150 simulation experiments
with the same load parameters.

In each time step, all nodes j that are not busy transmitting,
generate a transmission (j, dj , rj) active for tj time units.
After that the node is busy for tj steps. After that it generates
another transmission as before. The transmission duration tj
is drawn from a Poisson distribution with parameter λ. The
destination dj of a transmission is picked using the distribution
D discussed later. The bandwidth is drawn from a modified
Pareto distribution with scale parameter = 100 × rmin and
shape parameter = α. The modification is that if the generated
bandwidth requirement exceeds the wavelength capacity 1, it
is capped at 1.

We experimented with α = {1.5, 2, 3} and λ = {0.01, 0.1}
but report results for only α = 1.5 and λ = 0.01; results for
other values are similar. We tried four values 0.01, 0.1, 0.25



and 0.5 for rmin. Here we report the results for rmin =
0.01, 0.5. We considered four different distributions D for
selecting the destination node of a transmission. 1) Uniform:
we select a destination uniformly randomly from the n − 1
nodes other than the source node. 2) UniformClass: we first
choose a class uniformly from the dlog n/2e + 1 possible
classes. It should be noted that there can be a destination at
a distance at most n/2 in any direction since we schedule
along the direction requiring shortest path. 3) Bimodal: first
we randomly choose one of two possible modes. In mode 1,
a destination from the two immediate neighbors is selected
and in mode 2, a destination from the nodes other than the
two immediate nodes is chosen uniformly. For applications
where transmissions are generated by structured algorithms,
local traffic, i.e. unit or short distances (e.g.

√
n for mesh

like communications) would dominate. Here, for simplicity,
we create a bimodal traffic which is mixture of completely
local and completely global. 4) ShortPreferred: we select
destinations at shorter distance with higher probability. In fact,
we first choose a class i in the range 0, . . . , dlog n/2e with
probability 1

2i+1 and then select a destination uniformly from
the possible destinations in that class. We report the results
only for the distributions Uniform and Bimodal.

B. Results

Fig. 2 shows the results for the 4 load scenarios. For each
scenario, we report the number of wavelengths required by
the 3 algorithms and the measured congestion as defined in
Section V. Each data-point is the average of 150 simulations
(each of 100 time steps) for the same parameters on rings
having n = 5, 6, . . . , 20 nodes. We say that the two scenarios
corresponding to rmin = 0.01 have low load and the remain-
ing two scenarios (rmin = 0.5) have high load.

For low load, the baseline algorithm outperforms our algo-
rithms. At this level of traffic, it does not make sense to reserve
different light-trails for different classes. However, as load
increases our algorithms outperform the baseline algorithm.

For the same load, it is also seen that our algorithms become
more effective as we change from the completely global
Uniform distribution to the more local Bimodal distribution.
This trend was also seen with the other distributions we
experimented with.

Though we could not show analytically that ALLCLASS is
better than SEPARATECLASS always, our simulation shows
that ALLCLASS performs better. It may be noted that our
algorithm for the stationary case mixes up the light-trails of
different classes, and so suggests that the ALLCLASS might
work better.

VII. CONCLUSIONS AND FUTURE WORK

It can be shown that the non-splittable stationary problem
is NP-hard, using a simple reduction from bin-packing. We
do not know if the splittable problem is also NP-hard. We
gave an algorithm for both variations of the stationary problem
which takes O(c + log n) wavelengths. It will also be useful
to improve the lower bound arguments; as Section IV shows,

congestion is not always a good lower bound. This may lead
to a constant factor approximation algorithm for the problem.

In the online case we gave two algorithms which we
prove to have competitive ratios O(log n) and O(log2 n)
respectively. In practice we found that the second algorithm
was better, and showing this analytically is an important open
problem.

Our online model is very conservative in the sense that
once a transmission is allocated on a light-trail, the light-trail
cannot be modified. However, other models allow light-trails to
shrink/grow dynamically [17]. It will be useful to incorporate
this (with some suitable penalty, perhaps) into our model.

It will also be interesting to devise special algorithms that
work well given the distribution of arrivals.
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