
Introductory Programming: Let Us Cut through the Clutter!

[Extended Abstract]

Abhiram G. Ranade
Department of Computer Science and Engineering

IIT Bombay
Powai, Mumbai, India

ranade@cse.iitb.ac.in

ABSTRACT
Introductory programming courses often leave students unimpressed.
We feel this is because teaching approaches (a) overemphasize the
syntactic aspects of the programming language being taught in-
stead of using programming to do interesting things, (b) do not
respect the computational maturity/intellectual leanings of the stu-
dents, and (c) are simply not fun enough.

We have developed an approach which we believe addresses these
issues in the context of teaching introductory programming to col-
lege students majoring in science and engineering. We use the
C++ programming language augmented with a graphics library and
some linguistic devices we have developed. We believe that our ap-
proach enables interesting material to be handled from day one and
generally garners more student interest.

Keywords
Introductory programming; C++; pedagogy; graphics.

1. INTRODUCTION
Computer programming is a unique skill which is at once deeply

theoretical and strikingly hands-on/practical. It is its own science,
but yet it can enable you to explore other subjects such as the
sciences, engineering and even arts. Computer programming can
be psychologically liberating in that a computer obeys the student,
who for most of his/her life has deferred to elders. Computer pro-
gramming thus has the potential to empower students and unleash
their creative abilities.

And yet, introductory programming courses can appear boring.
The most common reason given for this is that a lot of dull informa-
tion must be conveyed before anything interesting can start. In the
most popular languages such as C, C++ and Java your first program
typically contains a lot of arcane mumbo jumbo, and even after that
it barely prints “Hello world!”. Even the rest of the course may con-
vey the impression that computer programming is about getting the
semicolons right and mastering obscure trivia (“What does i +=
++i+k++; do?”).

We believe that the introductory programming course should not
only provide programming skills but also convey the power, the ex-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE ’16, July 09 - 13, 2016, Arequipa, Peru
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4231-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2899415.2899430

citement and the pervasiveness of computer programming. Doing
this is not easy. One of the major requirements is to use good pro-
gramming examples: those which are exciting and challenging to
the students, and yet not too hard. Another problem, ubiquitous in
all education, is of providing the right motivation. Why should I
learn inheritance? Why should I learn software engineering? We
must either take the time to explain the motivation in a manner that
can be appreciated by the student, or we must simply defer the topic
to a later date. All this requires us to understand our student: what
excites her, what she already knows on which we can build.

In this paper our goal is to design an introductory programming
course for first year college students majoring in science and en-
gineering. We begin in Section 2 by clarifying what we feel is of
importance in introductory programming. In Section 3 we survey
some of the major approaches to programming education. In Sec-
tion 4 we present our approach. By being clear about the goals of
the introductory programming course, by focussing the course on
programming examples that are interesting to our target student,
and by employing some linguistic devices that we have developed
(based on preprocessor macros), we believe it is possible to design
a course that enables interesting ideas to presented from day one,
and generally make for efficient learning.

2. WHAT SHOULD WE TEACH?
For an introductory course, we believe that it is appropriate to

define “programming” as “the act of expressing in a programming
language the computations that you can perform manually”. We
mean the word “computation” in its widest sense: including not
only arithmetic, but also algebra, geometry, calculus, physics, and
even art. We want students to view computing as an extension of
thinking – as pervasive and as powerful. By implicitly emphasiz-
ing the similarity between human computation and computer com-
putation, we hope to inspire confidence in the student towards the
subject.1

Programming involves three kinds of skills:

1. Expressing problems from different domains in terms of num-
bers and questions on those numbers.

2. Observing patterns in (manual) computation.

3. Expressing the patterns using appropriate language constructs.

Introductory programming courses and books often focus mostly
on learning the language constructs. The first two skills are inde-
pendent of the language, and more important and harder.
1Humans do not always think algorithmically, e.g. playing chess.
But such exceptions really drive home the point about what humans
indeed do algorithmically.

The first skill is about realizing that everything from calculus
to games can be represented on a computer. It is not enough to
merely give this infomation to the student; if the information is
to sink in, we must get the student to write programs relating to
diverse areas: geometry, symbolic computation, graphics. Students
find this exhilarating and empowering.

By “observing patterns in computation” we mean something like:
is some sequence of computations repeated? If so, how many times?
We want students to introspect over how they compute/solve prob-
lems manually. They already know many interesting computations,
starting from simple arithmetic on numbers with an arbitrary num-
ber of digits to linear algebra, calculus, and also calculations in
physics. They have even seen recursion, e.g. taking the derivative
of a sum simply involves adding the derivatives of the addends!
Besides identifying the iteration or recursion present in their calcu-
lations, we also expect students to identify function abstraction and
data abstraction – this is again a part of the idea of seeing patterns.

The last step is learning a programming language (though not
all its idiosyncracies) and expressing the computation using that
language. We are not suggesting that this step is easy. However,
we believe that by focussing on appropiate computational exam-
ples we can motivate the syntax and semantics of language con-
structs.2 This will help make the syntax/semantics appear natural
and help learning. We will also show soon that we can use devices
like macros to create more pedagogically convenient syntax for use
in the early part of the course whereby we can plunge into interest-
ing material right away.

3. APPROACHES
We will next survey some of the dominant approaches to pro-

gramming education.

3.1 The C approach
The chronologically earliest, and perhaps the most dominant ap-

proach even today, is due to Kernighan and Ritchie[9]. Their little
book has trained a huge number of programmers, and is lauded for
its clarity. However, it nevertheless has to deal with the idiosyncra-
cies of the C language in which the syntax often overwhelms the
principles. A successor to this is perhaps the book on introductory
programming through C++ by Stroustrup[16]. C++ is a clear im-
provement over C. But even in C++, there is serious danger of the
syntax overwhelming the principles, especially for a beginner. The
classic example of this is the introductory program:

#include <iostream> using
namespace std;

int main(){
cout << "Hello world!" << endl;

}

To a beginner this must appear like some mysterious incantations
– potentially leading to intimidation or to boredom. And on top
of it, the program accomplishes precious little. Similar problems
can appear quite often. For example, the student can get lost while
understanding the details and syntactic aspects of a concept such as
inheritance, or bored by the various tricky operators of C++.

This approach often draws programming examples mainly from
operating systems or compiler viewpoints. These examples, con-
cerning files and parsing, may not generate excitement among en-
gineering and science students.
2Appealing to prior experience of the student in mathematics helps
in motivating language constructs too: for example, the operator +
is routinely “overloaded” in mathematics to mean many things.

3.2 The SICP approach
A strikingly different approach is offered by Abelson and Suss-

man, as documented in their book The Structure and Interpretation
of Computer programs (SICP)[1]. SICP is a heady brew that you
cannot put down, and Sussman’s lectures on MIT OCW from 1986
are thrilling and give goosebumps. The appeal of the approach
could be attributed to the simplicity of the Scheme language syntax
which makes it possible to get to interesting topics very quickly.
SICP does get quickly to interesting topics, e.g. the Babylonian al-
gorithm for square roots, and representation and manipulation of
(mathematical) functions symbolically. To see the computer doing
tricky algorithms and “doing calculus” can raise the stature of the
subject in the eyes of the learner.

However, overall it cannot be said that SICP is introductory. The
Babylonian algorithm, for example, is compact but actually quite
deep. Discussions about possible semantics of constructs, e.g. of
assignments in the functional framework, are greatly exciting for
experts, but difficult for novices. One indication of all this are the
customer reviews of SICP on amazon.com. Of the 212 reviews
listed at the time of writing this, 62 % reviews give it 5 stars, and
it is clear that these are reviews from experienced programmers for
whom SICP sketches out the grand panorama of programming to
which they can relate. On the other hand 25 % of the reviews give
it 1 star, and these are reviews from beginners who are frustrated
because SICP purports to be introductory, but really demands con-
siderable computational maturity.

3.3 The program derivation approach
Another approach is due to the Dijkstra school[5, 8]. They pro-

pose strategies using which programs and their proofs of correct-
ness are generated (“derived”) simultaneously. Dijkstra essentialy
suggests that beginners should be kept away from computers be-
fore they master the logical calculus needed to argue correctness.
However many of the “interesting” examples of program derivation
are really about discovering new algorithms, e.g. an O(n) time al-
gorithm is derived for a problem that has an obvious O(n2) time
algorithm. The techniques are often elegant and worth mastering;
however in our opinion this should perhaps come in a later course.

On the other hand, discussion of program correctness, e.g. as-
sertions and loop invariants is often neglected in introductory pro-
gramming. These elementary ideas enable programmers to check
that “corner cases” are correctly handled, and hence clearly have a
place in introductory programming.

3.4 Logo
Logo[12, 6] was invented as a language for teaching program-

ming to children. A major theme in Logo is turtle graphics: stu-
dents get to program the on-screen movement of a symbolic animal,
the turtle. The turtle has a pen which draws on the screen as the tur-
tle moves; programs are to be written to draw interesting pictures
on the screen. One of the important ideas in Logo pedagogy is to
encourage students to “be the turtle”. Student are encouraged to
ask themselves “If you walk on the figure to be drawn, how much
would you move and how much would you need to turn?”. Such
introspection enables students to make programming very personal
and thus make a deep connection to it.

Logo has had many successors, one of the important ones is
Scratch[15]. A popular genre of Scratch programming is narra-
tive – the graphical objects in Scratch can be animated (along with
audio) and a Scratch program is thus the story script. An analog of
this in Logo is making the turtle write your name on the screen, or
draw pictures without much symmetry. Logo and Scratch are often
taught in schools, and often the syllabi focus on this narrative mode.

Less commonly, Logo and Scratch are used for drawing structured
pictures, in which the programmer must understand the symmetries
in the picture being drawn and implement them in the program by
using suitable loops or recursion. In some sense, this mathematical
mode of usage was the dream of the Logo inventors[6]. This res-
onates with our idea of “observing patterns in computation and ex-
pressing them using appropriate language constructs”. We believe
that adults with a greater background in mathematics are likely to
be more excited about the mathematical mode.

3.5 Domain driven approaches
A class of approaches is motivated by the observation that we

never write programs in a vacuum – programs are always written
to solve problems. To help in this, one popular idea is to teach pro-
gramming in conjuction with some application, e.g. robotics[10],
or graphics. The Alice system[4] is is built around a 3 dimensional
graphics package. We feel that three dimensional graphics is not
entirely intuitive and produces a cognitive load which may distract
students from the programming content. Several approaches use
two dimensional graphics also. EZ windows is a two dimensional
graphics system accompanying a well known textbook[3]. Like
many such approaches, the book uses graphics as an add-on. It is
not used as a pedagogic tool to help present concepts without clut-
ter. Certainly not to help introduce programming on day 1. Pro-
gramming education has also has been conceived to be given in the
context of a geographical application[11]. These approaches are
attractive also because they force the student to work alongside an
existing system. This is useful because in the modern workplace
programmers hardly develop programs for scratch, but rather work
to enhance or modify existing programs. A drawback of the ap-
proach is that the domain chosen may not appeal to every student,
or learning the domain (e.g. robotics principles, 3d graphics prin-
ciples) may place additional learning burden on the student.

3.6 Paradigm based approaches
Introductory programming has been introduced in the context of

specific paradigms, e.g. functional programming using ML[7], or
approaches such as objects-first[2]. The Alice system[4] is mo-
tivated specifically by the desire to teach object oriented program-
ming. Often the idea is, “let us teach students how to think correctly
before other paradigms corrupt them”.

From a pragmatic standpoint, we believe that important ideas
(e.g. iteration, recursion, object orientation) from every paradigm
need to be taught. Our preference is to introduce ideas in increasing
order of cognitive complexity, motivated by the demands of the
application problem being solved.

4. OUR APPROACH
We would like to have an approach which combines the best of

all the approaches described above. Specifically, we would like
to get to the heart of programming in the first lecture of the course,
just as Logo does for children, and Abelson and Sussman[1] (seem-
ingly) manage to do for adults. Like them, we would not like to be
bogged down by syntax. We would like to go beyond basic arith-
metic and text processing to provide programming examples and
problems to our students without introducing the cognitive load of
teaching a completely new topic such as robotics. We would like to
teach difficult concepts such as recursion and object oriented pro-
gramming, but with motivating examples that will appeal to our
target audience. As to the choice of the language, we would like
to use a mainstream language to improve the chance of our ideas
getting accepted.

We use the C++ language, augmented with a library we devel-
oped, Simplecpp. Simplecpp supports two kinds of graphics: Logo
style turtle graphics and more standard coordinate based graphics
using which geometric shapes can be created and manipulated.

Another component of Simplecpp is a repeat statement, also
inspired by Logo. The repeat statement has the form:

repeat (count) { statements to be repeated }

This causes the block of statements to be repeated to
be executed as many times as the value of count. For this the
statement is translated to a for loop using preprocessor macros
which get loaded automatically; this is of course revealed to the
student only towards the end of the course. The main reason for
defining this statement is that it can be introduced in the very first
lecture! You will see that with repeat, students can start writing
interesting programs from day 1.

Our graphics library provides us with an additional domain for il-
lustrating programming concepts and give interesting but challeng-
ing assignments. The turtle graphics as well as the two dimensional
graphics are very intuitive, and learning them takes hardly any time.
Indeed, it is possible to easily create reasonably exciting drawings
and animations, e.g. Hilbert space filling curves, the snake game,
bouncing balls, planets rotating around the sun and so on.

4.1 The first lecture in the course
The first lecture, if delivered well, can cause students to fall in

love with the subject. Students tend to view it as setting the tone
for the course: whether the course is going to be exciting, whether
it will have interesting ideas, or whether it will just be lot of boring
information. Our first lecture draws upon Logo/turtle geometry.
Here is the first program that we show to students in the first lecture.

#include <simplecpp>
main_program{

turtleSim();

forward(100); left(90);
forward(100); left(90);
forward(100); left(90);
forward(100);

wait(5);
}

As you can see, we only include the Simplecpp library, which in
turn includes iostream and issues commands to use namespaces
etc. Thus we only need to explain to the students that we need to
include Simplecpp, other explanations can come later in the course.
Next, we have a macro main_program which expands to int
main(), so we dont need to explain what int means and why
main has parentheses () following it. This will get explained after
we discuss functions, when the students can understand everything.

The first statement turtleSim() in the body of the program
opens the turtle simulator window, which already has a turtle at the
center of the screen (a red triangle, as is customary). The com-
mand forward(100) causes the turtle to move forward 100 pix-
els. The command left(90) causes the turtle to turn left by 90
degrees. Thus the complete code causes the turtle to draw a square
(because of the pen that drags on the screen as it moves). After that
the program waits for 5 seconds, and then terminates.

Note that the first program is already providing a non-trivial abil-
ity to the students, and creates expectations in their minds, e.g.
“Can I draw other kinds of polygons?”. Some students might also
ask if they need to write fifty forward statements if they wish to

draw a fifty sided polygon. The repeat statement can be intro-
duced immediately. Indeed the second program of the first lecture
could be

main_program{ // will draw a decagon.
turtleSim();
repeat(10){

forward(100); right(36);
}

}

The turning angle, 36 degrees, is easily calculated from the high
school geometry theorem “The exterior angles of a polygon add up
to 360 degrees.”

We have found that the students spontaneously understand nested
repeat statements, as in the program below.

main_program{
turtleSim();
repeat(4){

repeat(10){
forward(5); penUp();
forward(5); penDown();

}
left(90);

}
}

Many students spontaneously infer that this will cause a square to
be drawn, using dashed lines.

Notice that on the very first day we can accomplish many things.
We can force students to think algorithmically. They need to figure
out the turning angles; they also need to use repeat statements
properly to draw more complex figures. This requires matching the
pattern in the drawing with the pattern of repeat statements in
the program. This is of course a very fundamental programming
activity! And we have got to in on day 1.

4.2 Utility of repeat and graphics
The standard looping statements in C++ (and most languages)

are fairly complex: they require you to understand variables, con-
ditions, and of course issues about loop termination. Thus standard
loop statements can be introduced only after a few weeks. We can-
not go this long without interesting programming examples!

This vacuum is filled nicely by the repeat statement and graph-
ics. Right after the first lecture students can be asked to draw intri-
cate patterns involving lines and arcs (a circle after all is a limit of a
polygon as the number of sides increase). These make for relevant,
fun, and challenging programming exercises. After discussing data
types and assignment statements (but still well before discussing
while/for), we can write code such as the following

int i=1;
repeat(40){

forward(i*10);
left(90);
i = i + 1;

}

As you might guess, this draws a spiral. Note further that the code
contains reassignment of i to itself. This is a concept that several
students find difficult. We believe that seeing i used graphically as
above likely helps in understanding reassignment.

Graphics is useful in explaining difficult concepts such as re-
cursion. A (botanical) tree has recursive structure – it consists of
smaller trees on top of a trunk. Thus it can be easily drawn using a
recursive function.

Figure 1: Tree drawn using recursion

void tree(int levels){
if(levels > 0){
forward(levels*10);
left(15);
tree(levels-1);
right(30);
tree(levels-1);
left(15);
forward(-levels*10);

}
}

Figure 1 shows the picture produced when the above function is
invoked by calling tree(5). It should be noted that the tree does
not appear instantaneously but is drawn by the turtle, one line at a
time. Thus the recursion unfolds in real time in front of the stu-
dents’ eyes. We believe this helps in understanding recursion.

Coordinate based graphics can also be taught very early on. For
example, here is the code for creating a rectangle and moving it.

Rectangle r(xc,yc,L,H);
// center coordinates, Length, Height

r.move(deltax, deltay);

The astute reader will see that the first statement is really a con-
structor call, and the second a member function invocation. How-
ever, we explain this to students as: “the first statement creates
a rectangle named r, the second statement moves it.” Thus the
students start using constructors and the dot notation well before
object oriented programming is formally introduced.

Graphics can also provide a compelling motivation to learn in-
heritance. For drawing interesting pictures, it is necessary to com-
pose the basic shapes together. For example, a car shape (Figure 2)
might consist of a polygon shape representing the body, and two
wheel shapes. A wheel might consist of a circle denoting the rim,
and perhaps straight lines denoting the spokes. We would like to be
able to define a car shape once, using wheel shapes defined earlier.
Furthermore, it would be nice to be able to invoke member func-
tions such as move on cars – this should cause all the contained
shapes to move as a group. This precise functionality is provided
by our Composite shape class.

Figure 2: A car constructed using the Composite class

A Composite class is a container class which automatically
delegates operations such as move or forward or rotate to
contained objects (rotate requires a bit more work than just del-
egation). A new composite shape such as a car or a wheel can be
defined by inheriting from Composite.

Here is how a Car class can be defined.

class Car : public Composite{
Polygon* body;
Wheel *w1, *w2;

public:
Car(double x, double y, Color c,

Composite* owner=NULL)
: Composite(x,y,owner){
double bodyV[9][2]={{-150,0},
{-150,-100}, {-100,-100}, {-75,-200},
{50,-200}, {100,-100}, {150,-100},
{150,0}, {-150,0}};

body = new Polygon(0,0, bodyV, 9, this);
body->setColor(c);
body->setFill();
w1 = new Wheel(-90,0,this);
w2 = new Wheel(90,0,this);

}
void forward(double dx){

Composite::forward(dx);
// superclass forward function
w1->rotate(dx/(RADIUS*getScale()));
w2->rotate(dx/(RADIUS*getScale()));

}
};

A car contains a polygonal body, and wheels w1 and w2 which
are instances of a Wheel class which is another composite class.
Thus composite classes can be nested. The definition of the Wheel
class is omitted. This code also shows another interesting feature.
We have overridden the forward function so that the wheels not
only move forward, but also turn.

The Composite class thus provides considerable power for
building interesting animations. But for this, you must understand
and use inheritance. Isn’t this compelling motivation?

We give two more examples of how graphics can be used to gen-
erate programming exercises that may interest our target student
audience, i.e. students majoring in science and engineering.

The first example is shown in Figure 3. The goal in this is to trace
the path of a ball as it bounces around in a box. In the simplest case
(Figure 3), we consider a stationary, rigid box, with the collisions

Figure 3: Path of ball bouncing in a box

being perfectly elastic. We can of course make the motion more
complex, for example by involving gravity, or friction. Or we can
have the box itself move due to the collisions. This can make up for
progressively difficult (and interesting) assignments. Note however
that even in the simple case above students might find something
unexpected: usually the ball will overtrace its path after some time.
This example is paradigmatic: it is an example of a simulation of a
physical system.

Our second example concerns the processing of mathematical
expressions. Can you create a library which enables you to rep-
resent mathematical expressions, and perform arithmetic or other
operations on them? The expressions may or may not contain un-
knowns. Graphics comes in if you wish to typeset the expression
in the standard manner, i.e. generate something like the following:

4

1 +
12

3 +
22

5 +
32

7 +
42

9 +
. . .

The key problem in this is to determine the geometric positions of
the various subexpressions and the sizes of the bars denoting di-
vision. Everyone can generate this layout “by hand”, and yet it
is an interesting challenge to introspect about how you do it and
flesh out an algorithm. The recursion required is quite interesting.
In general, since the representation of mathematical expressions is
invariably heirarchical (e.g. an expression is a sum of other expres-
sions), it provides fertile ground for using recursion. The problem
also provides good motivation for using inheritance.

4.3 Overall pedagogical approach
Our general pedagogical approach is an extension of the ideas

implied above. To motivate a new topic, we first find a problem
which cannot be solved using what the students know so far. As
far possible, we choose problems which are of interest to our stu-
dents, and which also have a visual aspect, because we believe that
pictures help learning. We then present the new topic, and develop
complete programs required to solve the problem.

In addition, we believe it is useful to develop some larger paradig-
matic case studies e.g. gravitational simulation, representation and
solution of resistive circuits, and representation and manipulation
of algebraic expressions. The basic theory of the case studies should

be known to the student, although it is useful to review it. We be-
lieve that all this synergistically benefits the learning of computer
programming and the other sciences, and such examples are bet-
ter appreciated by students of science and engineering. Overall,
we want to convey the impression that you are learning problem
solving than just a language.

It may be interesting to note that many books on introductory
programming discuss in some detail the historical development of
computers. While this history is interesting, it can create the im-
pression that computing began with computers. This is very far
from the truth! Manual computation gave rise to many algorithms
that are invaluable for computing even today, e.g. Euclid’s GCD al-
gorithm, the Babylonian square root algorithm, and even the basic
notions of the positional number system and the related algorithms.
Our approach attempts to connect to that tradition.

5. EXPERIENCE
A book based on the approach presented here was published by

McGraw Hill Education[14]. The Simplecpp library is available
from the author’s webpage and the publisher’s webpage. The book
has now been used several times in the introductory programming
course in IIT Bombay, and is also being used in Vishwakarma In-
stitute of Technology, Pune. The book was also used in various
offerings of a Massively Open Online Course (MOOC)[13].

The author is happy to report that the feedback has been very
positive.

6. CONCLUDING REMARKS
We believe that computing must be presented to students as an

extension to thought and intuition, as a universal skill that applies
to all aspects of life. This must be conveyed as active learning,
i.e. the students should be able to write programs that touch most
subjects they have studied till then in their careers. In order to im-
plement this plan, it is necessary to use classroom time efficiently,
and ensure that the focus remains on important ideas. We believe
that most courses in introductory programming in C++ (as well as
several other languages) spend 2-3 initial weeks describing intro-
ductory material and without discussing any interesting programs.
This we believe dissipates the excitement with which the students
start a school term. By using the strategies suggested here (graph-
ics and the repeat statement) we believe we can get to interesting
material quickly and maintain focus on it.

It may seem that the agenda of getting to many applications in
science and technology might conflict with the (primary?) goal of
conveying the basic computer programming concepts. However,
by choosing the examples carefully, we can in fact motivate even
the programming concepts better. We believe our strategy makes
for better integration of programming with the prior knowledge of
the student.

While the repeat statement is present in Logo, we believe that
using it in mainstream languages has not been tried before. Be-
sides speeding up learning at the beginning of the course, we be-
lieve that students benefit from learning it before learning the stan-
dard looping constructs. We believe that many students have diffi-
culty in managing the control variable and the termination condi-
tion in standard looping constructs. On the other hand, repeats
are much easier to understand (even when nested) and thus provide
a graded step towards learning the standard looping constructs.

Finally, several approaches use graphics. However we believe
no approach (in adult education) has used graphics to start off an
introduction to programming: by drawing mathematically interest-
ing pictures. Even adults enjoy drawing; only we need to ask them

to draw more intricate pictures than what children would be asked
in Logo. We believe we have integrated graphics into basic pro-
gramming education at a deeper level in general. In addition, note
that graphics is very important for our target student group: graph-
ics/visualization and geometric reasoning play a central role in sci-
ence and technology. And last, but not the least, graphics is fun!

7. ACKNOWLEDGMENTS
The author is grateful to Om Damani for comments.

8. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and Interpretation

of Computer Programs. MIT Press, Cambridge, MA, USA,
2nd edition, 1996.

[2] D. J. Barnes and M. Kolling. Objects First With Java: A
Practical Introduction Using BlueJ (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[3] J. Cohoon and J. Davidson. C++ Program Design: An
introduction to programming. McGraw Hill, 2002.

[4] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-d tool for
introductory programming concepts. J. Comput. Sci. Coll.,
15(5):107–116, Apr. 2000.

[5] E. W. Dijkstra. On the cruelty of really teaching computing
science, 1988. EWD-1036.

[6] A. diSessa and H. Abelson. Turtle Geometry: the computer
as a medium for exploring mathematics. MIT Press,
Cambridge, MA, USA, 1981.

[7] M. R. Hansen and H. Rischel. Introduction to Programming
Using SML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1999.

[8] A. Kaldewaij. Programming: The Derivation of Algorithms.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[9] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall Professional Technical Reference,
2nd edition, 1988.

[10] P. Lawhead, M. Duncan, C. Bland, M. Goldweber, M. Schep,
D. Barnes, and R. Hollingsworth. A road map for teaching
introductory programming using LEGO. In ITiCSE-WGR ’02
Working group reports from ITiCSE on Innovation and
technology in computer science education, pages 191–201.
ACM, 2002.

[11] B. Meyer. The Outside-In Method of Teaching Introductory
Programming. In Ershov Memorial Conference, volume 2890
of Lecture Notes in Computer Science, pages 66–78, 2003.

[12] S. Papert. Mindstorms: Children, Computers, and Powerful
Ideas. Basic Books, Inc., New York, NY, USA, 1980.

[13] D. B. Phatak and S. Chakraborty. CS 101x Introduction to
Computer Programming, 2016.
https://iitbombayx.in/courses/IITBombayX/CS101.1xS16/2016_T1.
Also 2015. Previous version at
https://www.edx.org/course/programming-basics-
iitbombayx-cs101-1x.

[14] A. Ranade. An Introduction to Programming through C++.
McGraw Hill Education, 2014.

[15] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, and Y. Kafai. Scratch: Programming
for all. Communications of the ACM, 52(11):60–67, Nov.
2009.

[16] B. Stroustrup. Programming: Principles and Practice Using
C++. Addison-Wesley Professional, 1st edition, 2008.

