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a b s t r a c t

We consider the problem of scheduling communication on optical WDM (wavelength division
multiplexing) networks using the light-trails technology. We seek to design scheduling algorithms
such that the given transmission requests can be scheduled using a minimum number of wavelengths
(optical channels). We provide algorithms and close lower bounds for two versions of the problem
on an n processor linear array/ring network. In the stationary version, the pattern of transmissions
(given) is assumed to not change over time. For this, a simple lower bound is c , the congestion or
the maximum total traffic required to pass through any link. We give an algorithm that schedules the
transmissions using O(c + log n) wavelengths. We also show a pattern for which Ω(c + log n/ log log n)
wavelengths are needed. In the on-line version, the transmissions arrive and depart dynamically, and
must be scheduled without upsetting the previously scheduled transmissions. For this case we give an
on-line algorithm which has competitive ratio Θ(log n). We show that this is optimal in the sense that
every on-line algorithmmust have competitive ratio Ω(log n). We also give an algorithm that appears to
do well in simulations (for the classes of traffic we consider), but which has competitive ratio between
Ω(log2 n/ log log n) and O(log2 n). We present detailed simulations of both our algorithms.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Light-trails [6] are considered to be an attractive solution to the
problem of bandwidth provisioning in optical networks. The key
idea in this is the use of optical shutters which are inserted into
the optical fiber, and which can be configured to either block the
optical signal or let it pass through. By configuring some shutters
ON (signal let through) and someOFF (signal blocked), the network
can be partitioned into subnetworks, called light-trails. At any
given time and using a given wavelength, there can be at most
one communication in progress in a light-trail. Thus by increasing
the number of light-trails, more simultaneous communications
are possible, albeit going a shorter distance. How to do this is
the central question in the paper. Notice that in the ON mode,
light goes through a shutter without being first converted to an
electrical signal – this is one of the major advantages of the light-
trail technology.

✩ A preliminary version of a part of the work was published in the Proceedings
of the Seventeenth Annual International Conference on Advanced Computing and
Communications (ADCOM) at the Indian Institute of Science (IISc), Bengaluru,
14–17 December 2009.
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In this paper we consider the simplest scenario: two fiber optic
rings, one clockwise and one anticlockwise, passing through a set
of some n nodes, where typically n < 20 because of technological
considerations. At each node of a ring there are optical shutters
that can either be used to block or forward the signal on each
possible wavelength. The optical shutters are controlled by an
auxiliary network (‘‘out-of-band channel’’). It is to be noted that
this auxiliary network is typically electronic, and the shutter
switching time is of the order of milliseconds as opposed to optical
signals which have frequencies of several gigahertz. We further
note that time division multiplexing may be used inside a single
light-trail; in other words, a single light-trail can be used to serve
several communication requests, provided the communicating
processors lie within the light-trail.

We examine this problem in the stationary setting, in which
interprocessor communication demands are known and do not
change, as well as the dynamic setting in which communication
requests arrive and depart after being served, in an on-linemanner.
For both problems, our objective is to minimize the number of
wavelengths needed to accommodate the given traffic, using the
best possible partitioning of the network into light-trails (for each
wavelength), and the best possible assignment of requests to light-
trails. Our results are applicable to the setting in which a fixed
number of wavelengths is available as follows. If our analysis
indicates that some λ wavelengths are needed while only λ0 are
available, then effectively the system will have to be slowed down
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by a factor λ/λ0. This is of course only one formulation; there could
be other formulations which allow requests to be dropped and
analyze what fraction of requests are served.

The input to the stationary problem is a matrix B, in which
B(i, j) gives the bandwidth demanded between nodes i and j,
expressed as a fraction of the bandwidth supported by a single
wavelength. We give an algorithm which schedules this traffic
using O(c + log n) wavelengths, where c = maxk


i,j|i≤k<j B(i, j)

is the maximum total bandwidth demand, or the congestion at any
link. The congestion as defined above is a lower bound, and so our
algorithm can be seen to use a number of wavelengths close to the
optimal. The readermaywonderwhy the additive log n term arises
in the result. We show that there are communication matrices B
for which the congestion c is small, but which yet require Ω(c +

log n/ log log n) wavelengths. In some sense, this justifies the form
of our result.

For the on-line problem, we use the notion of competitive
analysis [5,1]. In this, an on-line algorithm which must respond
without knowledge of the future is evaluated by comparing its
performance to that of an off-line adversary, an algorithm which is
given all the transmission requests at the beginning. Clearly, the
off-line adversary must perform at least as well as the best on-
line algorithm. We establish that our first algorithm is Θ(log n)-
competitive, i.e., it requires Θ(log n) times as many wavelengths
as needed by the off-line adversary. We also prove that no on-
line algorithm can do better by showing the lower bound on the
competitive ratio of any algorithm for the problem to be Ω(log n).
A multiplicative Θ(log n) factor might be considered to be too
large to be relevant for practice; however, the experience with
on-line algorithm design is that such algorithms often give good
hints for designing practical algorithms. We also give a second
algorithm for this problem: it is in fact a simplified version of the
first. It actually performs better than the first algorithm in many
situations; however, we can prove that its competitive ratio is
worse, between Ω(log2 n/ log log n) and O(log2 n).

That brings us to our final contribution: we simulate two
algorithms based on our on-line algorithms for some traffic
models.We compare them to a baseline algorithmwhich keeps the
optical shutter switchedOFF only in one node for eachwavelength.
Note that at least one node should switch OFF its optical shutter,
otherwise the light signal will interfere with itself after traversing
around the ring.We find that except for the case of very low traffic,
our algorithms are better than the baseline. For very local traffic,
our algorithms are in fact much superior.

The rest of the paper is organized as follows. We begin in
Section 2 by comparing our work with previous related work.
Section 3 discusses our algorithm for the stationary problem.
Section 4 gives an example instance of the stationary problem
where the congestion lower bound is weak. In Section 5 we
describe our two algorithms for the on-line problem. In Section 6
we show that every on-line algorithmmust have competitive ratio
Ω(log n). In Section 7 we give results of simulation of our on-line
algorithms.

2. Previous work

After the light-trail technology was introduced in [6], a variety
of hardware models have emerged. For example, [11] has a mesh
implementation of light-trails for general networks. The paper [14]
implements a tree-shaped variant of light-trails, called as clustered
light-trail, for general networks. Thepaper [28] describes a ‘tunable
light-trail’ inwhich the hardware at the beginningworks just like a
simple light-path but can be tuned later to act as a light-trail. There
is some preliminary work on multi-hop light-trails [16] in which
transmissions are allowed to go through a sequence of overlapping
light-trails. Survivability in the case of failures is considered in [3]
by assigning each transmission request to two disjoint light-trails.

A variety of performance objectives have been proposed.
Several objectives are mentioned in the seminal paper [12] –
to minimize the total number of light-trails used, to minimize
queuing delay, to maximize network utilization etc. Most of the
work in the literature seems to solve the problem by minimizing
the total number of light-trails used [9,15,2,27]. Though the
paper [15] suggests that minimizing the total number of light-
trails also minimizes the total number of wavelengths, it may not
always be true. For example, consider a transmission matrix in
which B(1, 2) = B(3, 4) = 0.5 and B(2, 3) = 1. To minimize the
total number of light-trails used, we create two light-trails on two
different wavelengths. Both light-trails extend all the way from 1
to 4. Transmission (2, 3) is put in one light-trail and transmissions
(1, 2) and (3, 4) are put in the other light-trail. On the other hand,
to minimize the total number of wavelengths, we put each of
them in a separate light-trail, and the three light-trails are created
on a single wavelength. We believe that minimizing the number
of light-trails is motivated by the goal of minimizing the book-
keeping and the scheduler overhead. However,wedonot think this
can be more important than reducing the number of wavelengths
needed (or reducing the slowdown the system will face if the
number of wavelengths is fixed). There are a few other models
as well, e.g. [4] minimizes the total number of transmitters and
receivers used in all light-trails.

The general approach followed in the literature to solve the
stationary problem is to formulate the problem as an integer linear
program (ILP) and then to solve the ILP using standard solvers. The
papers [9,15] give two different ILP formulations. However, solving
these ILP formulations takes prohibitive time even with moderate
problem size since the problem is NP-hard. As a result a number
of heuristics have been proposed and evaluated experimentally
[3,2,15,27,21,10].

For the on-line problem, a number of models are possible.
From the point of view of the light-trail scheduler, it is best if
transmissions are notmoved from one light-trail to another during
execution, which is the model we use. It is also appropriate to
allow transmissions to be moved, with some penalty. This is the
model considered in [15,20], where the goal is to minimize the
penalty, measured as the number of light-trails constructed. The
distributions of the transmissions that arrive are also another
interesting issue. It is appropriate to assume that the distribution is
fixed, as has been considered inmany simulation studies including
our own. For our theoretical results, however, we assume that
the transmission sequence can be arbitrary. The work in [15]
assumes that the traffic is an unknown but gradually changing
distribution. It uses a stochastic optimization based heuristic
which is validated using simulations. The paper [2] considers a
model in which transmissions arrive but do not depart. Multi-hop
problemshave also been considered, e.g. [29]. An innovative idea to
assign transmissions to light-trails using on-line auctions has been
considered in [17]. The paper [13] gives a two-stage scheduling
algorithm using heuristics based on the utility of each light-trail
and estimates performance of the algorithm in terms of average
delay and number of required light-trails by modeling a Markov
chain.

Our problem as formulated is also similar to the problem
of scheduling communications on reconfigurable bus architec-
tures [8,26]. A reconfigurable bus architecture is modeled as a
graph in which processors are vertices and edges are communica-
tion links; however, a processor can choose to electrically connect
(or keep separate) the communication links incident to it. If links
are connected together (like setting the shutter ON), the commu-
nication goes through (as well as being read by the processor). In
this way the entire network can be made to behave like a few long
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or many short buses, as per the needs of the application running
on the network.

At an abstract level, the reconfigurable bus system is similar
to our light-trail model, as both models use controllable switches
to dynamically reconfigure a bus into multiple subbuses. In both
models, changing the state of the switch takes very long as
compared to the data rates on the buses. However, typically,
reconfigurable bus systems have only one bus, rather than
allowing multiple wavelengths like the light-trail model. A second
difference is in the context in which the two models have been
studied. The light-trail model has been studiedmore by the optical
network community, and the focus has been how to schedule
relatively long duration communication requests (connection
based) without having any graphical regularity. Reconfigurable
bus systems have been studied more in the context of parallel
computing, and the analyses have been more of entire algorithms
running on them. These typically concern short messages and
the communication patterns are often regular, as in matrix
multiplication [18], problems on graphs [25], and sorting [23].
PRAM simulation on a reconfigurable bus [19], particularly in
the case of randomized assignment of shared memory cells,
generates random communication patterns. However, because
these patterns are drawn from a uniform distribution, they end
up being quite regular (and much of the analysis is to find regular
patterns that are supersets of what is required). So even this
work does not consider truly arbitrary/irregular patternswhich are
our prime interest, for the on-line as well as off-line (stationary)
scenarios.1

2.1. Remarks

As may be seen, there is a fair amount of work in the
literature on the stationary problem aswell as the on-line problem.
However, except for somework related to random communication
patterns [19,24], we see no theoretical (polynomial time) analysis
of the performance of the scheduling algorithms.

In contrast, we give polynomial time algorithms with provable
bounds on performance, both for the stationary and the on-
line case. Our work uses the competitive analysis approach [5,1]
for the on-line problem. We use techniques of approximation
algorithms to solve the stationary problem. To our knowledge,
this competitive analysis and approximation algorithm approach
to solve the light-trail scheduling problems has not been used
in the literature. We also give simulation results for the on-line
algorithms.

3. The stationary problem

In this section, instead of considering two unidirectional rings,
we consider a linear array of n nodes, numbered 0 to n −

1. The link between the two consecutive nodes i and i + 1
is numbered i. Communication is considered undirected. This
simplifies the discussion; it should be immediately obvious that all
results directly carry over to two directed rings mentioned in the
introduction.

In WDM, the physical optic fiber carrying signals of k different
wavelengths is logically thought of as k independent parallel fibers

1 It is interesting to note that the communication patterns for PRAM simulation
are uniformly random across the network because the PRAM address space is
hashed, i.e., distributed randomly. Hashing has the effect of converting possibly local
communication going a short distance to a random communication which most
likely goes a long distance. Such a strategy is inherently wasteful in utilization of
bandwidth. It seemsmuch better to directly deal with the arbitrary communication
pattern which arises in PRAM simulation in the first place.
each carrying signals of a single wavelength. Each node can be
thought of as having a separate shutter on each of the k fibers.
Each shutter can be set ON, meaning it allows the optical signal to
pass, or OFF, meaning it does not. The segment between two OFF
shutters is a light-trail. A transmission request from node i to node
j can be assigned to a light-trail if the following conditions aremet:

1. u ≤ i < j ≤ v where u, v are the OFF nodes of the light-trail.
2. The sumof the bandwidth requirements of all requests assigned

to any single light-trail does not exceed the capacity of a
wavelength.

The requests assigned to a light-trail are served by time division
multiplexing, with service duration proportional to the bandwidth
requirement. Thus at any time instant the light-trail is used by at
most one request.

The input for the stationary problem is a matrix B with B(i, j)
denoting the bandwidth requirement for the transmission request
from node i to node j, as a fraction of the bandwidth capacity
of a single wavelength which we define to be 1 without loss of
generality. The goal is to schedule these in a minimum number of
wavelengths w. The output must give w as well as the light-trails
used on each wavelength and the mapping of each transmission to
a light-trail that serves it.

It will be convenient to represent/visualize schedules geomet-
rically.Wewill use the x axis to represent our processor array, with
processors at integer points and the y axis to represent the wave-
lengths numbered 0, 1, 2, and so on. The region bordered by y = k
and y = k + 1 will be used to depict the transmissions assigned
to the wavelength numbered k. The region will be partitionedwith
vertical lines at the nodes where the shutters are OFF. Each of the
rectangular parts in the partition represents a light-trail created on
the correspondingwavelength. A transmission from node i to node
j having bandwidth requirement bwill be denoted as [i, j] and rep-
resented as a rectangle of height b located horizontally in the re-
gion between x = i and x = j and vertically within the region
corresponding to the light-trail in which it is scheduled. We will
also use the terms length, extent, and height of transmission [i, j]
to mean j − i, the interval [i, j], and b respectively. Unless there is
ambiguity in the context we will also use [i, j] to denote a light-
trail with end nodes i and j. Similarly we will also use the terms
length, and extent of light-trail [i, j] to mean j − i and the interval
[i, j] respectively.

As an example consider a network with 3 nodes, 0, 1, 2 and
a transmission matrix B in which B(0, 1) = B(1, 2) = 0.6 and
B(0, 2) = 0.4 are the only non-zero entries. In order to enable the
transmission [0, 2], we must have a wavelength with a light-trail
which goes all theway from 0 to 2. In this light-trail, we cannot put
both the remaining communications, because then the bandwidth
would become 0.6 + 0.6 + 0.4 = 1.6, i.e., larger than 1. Say we
put the transmission [0, 1] in this light-trail. Then the remaining
communication, [1, 2], would require its own light-trail, and for
that we will need another wavelength. This is shown in Fig. 1(a).
Another way is as follows. We put transmission [0, 2] in a single
light-trail extending from 0 to 2. Then on another wavelength, we
create two light-trails, with the shutter at 1 in the OFF position. The
transmissions [0, 1] and [1, 2] can nowbeplaced in these respective
light-trails. This solution is given in Fig. 1(b). Both the solutions
require 2 wavelengths, and they are optimal because the required
communication cannot be implemented using just 1 wavelength.

It is customary to consider two problem variations: non-
splittable, in which a transmission must be assigned to a single
light-trail, and splittable, in which a transmission can be split
into two or more transmissions by dividing up the bandwidth
requirement, and each of them can be assigned to a different
light-trail. Note that when a transmission is split into multiple
transmissions, the length and extent remain the same, only the
height is divided. Our results hold for both variations.
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a b

Fig. 1. Solutions to the stationary problem example.
Note that the Bin Packing problemwhich is NP-hard, is a special
case of the stationary problem where each item corresponds to a
transmission from node 0 to node n − 1 and each bin corresponds
to a light-trail (and to a wavelength too because each light-
trail completely occupies a wavelength). Thus the non-splittable
stationary problem is NP-hard. We do not know whether the
splittable problem is also NP-hard.

We will use cl(S) to denote the congestion induced on a link
l by a set S of transmissions. This is simply the total bandwidth
requirement of those transmissions from S requiring to cross link l.
Clearly c(S) = maxl cl(S), the maximum congestion over all links,
is a lower bound on the number of wavelengths needed. Finally
if t is a transmission, then we abuse notation to write cl(t), c(t),
instead of cl({t}), c({t}), for the congestion contributed by t only,
which is equal to the bandwidth requirement of t . Let R be the set
of all transmissions of an instance of the stationary problem. Letm
be the size of R. Wewill use c to denote the overall congestion c(R).

3.1. Algorithm overview

Getting an algorithm which requires only O(c log n) wave-
lengths is easy. If cn/2 denotes the congestion of the link between
node n/2 and node n/2 + 1, then the transmissions crossing this
link can be scheduled in ⌈c⌉ ≥


cn/2


wavelengths for the split-

table case, and twice that many for the non-splittable case (using
ideas from Bin Packing [7]). The remaining transmissions do not
cross the middle link, and hence can be scheduled by separately
solving two subproblems, one for the transmissions on each half
of the array. The two subproblems can share the wavelengths. If
λ(n, c) denotes the number of wavelengths used for scheduling
transmissions of congestion at most c in a linear array of n nodes,
we have the recurrence λ(n, c) = O(⌈c⌉) + λ(n/2, c). This solves
to O(c log n). But we can do better.

Note that it is relatively easy to get a good schedule if all the
transmissions have the same length (see Section 3.2). So we divide
the transmissions into classes based on their lengths, then schedule
each class separately and finallymerge the schedules. Themerging
step is also somewhat sophisticated. This is the outline of our
algorithm.

1. Partition into classes. Say a transmission belongs to class i if
its length is between 2i−1 (exclusive) and 2i (inclusive). Let
Ri denote the set of transmissions of class i, for i = 0 to
⌈log2(n − 1)⌉. Letmi denote the size of Ri.

2. Schedule transmissions of each class separately. Itwill be seen that
each class can be scheduled efficiently, i.e., using O(1 + c(Ri))
wavelengths.

3. Merge the schedules of different classes.We do not simply collect
together the schedules constructed for the different classes, but
do need to mix them together, and repartition.

Scheduling classes R0, R1 is easy. Note that each transmission in
R0 has length 1. So they can be assigned to light-trails created by
simply putting shutters OFF at every node on all the wavelengths
that are to be used. Now for a fixed l consider the light-trails [l, l+1]
on all the wavelengths. Each of these light-trails can be thought of
as a bin in which the transmissions [l, l + 1] are to be assigned.
Clearly, ⌈cl(R0)⌉ light-trails will suffice for the splittable case, and
twice that many for the non-splittable case (using ideas from Bin
Packing [7]). Since the light-trails for different ldonot overlap, they
can be on the same wavelength. So maxl O(⌈cl(R0)⌉) = O(⌈c(R0)⌉)
wavelengthswill suffice. Transmissions in R1 have length 2. So they
can be assigned to light-trails created on two sets of wavelengths
– one having shutters OFF at even nodes and the other having
shutters OFF at odd nodes. Transmissions starting at an even (odd)
node are assigned to a light-trail on a wavelength of the first
(second) set. Using an argument similar for the transmissions
in R0, we can show that each of these sets requires O(⌈c(R1)⌉)
wavelengths. So for the rest of this paper we only consider classes
2 and larger.

3.2. Schedule class i ≥ 2

It seems reasonable that if the class Ri is further split
into subclasses each of which has O(1) congestion, then each
subclass could be scheduled usingO(1)wavelengths. This intuition
is incorrect for an arbitrary collection of transmissions with
congestionO(1), aswill be seen in Section 4. However, the intuition
is correct when the transmissions have nearly the same length, as
they do when taken from any single Ri.

Lemma 1. There exists an O(nmic) time procedure to partition Ri into
sets S1, S2, . . . , Sk where k ≤ ⌈c(Ri)⌉ such that (i) c(Sj) < 4 for all j,
and (ii) if a transmission in Sj uses link l then ⌈cl(Ri)⌉ ≥ j.

Proof. We start with T1 = Ri, and in general given Tj we pick a
subset of transmission Sj from Tj using a procedure describedbelow
and repeatwith the remaining transmissions Tj+1 = Tj\Sj until Tj+1
becomes empty for some value k of j.

For each link l from left to right, we greedily pick transmissions
crossing link l into Sj untilwehave removed at least unit congestion
from cl(Tj) or reduced cl(Tj) to 0. Note that if the transmissions
already picked while considering the links on the left of l also
have congestion at least 1 at link l then we do not add any more
transmission while considering link l. So at the end the following
condition holds:

∀l, cl(Sj)

=cl(Tj) if cl(Tj) ≤ 1, and
≥1 otherwise. (1)

However, to make sure that c(Sj) is not large, we move back
transmissions from Sj, in the reverse order as theywere added, into
Tj so long as condition (1) remains satisfied. It can be seen that the
construction of a single Sj takes at most O(n|Tj|) = O(nmi) time
in both the pick-up step and the move-back step. For all Sj it takes
O(nmic) time.

Now we show that condition (i) of the lemma is satisfied,
i.e., c(Sj) < 4 for all j. At the end of the move-back step, for any
transmission t ∈ Sj there must exist a link l such that cl(Sj) <
1+c(t), otherwise t would have been removed.We call l as a sweet
spot for t . Since c(t) ≤ 1 we have cl(Sj) < 2 for any sweet spot l.

Now consider any link x. Of the transmissions through x, let
L1 (L2) denote transmissions having their sweet spot on the left
(right) of x. Consider y, the rightmost of these sweet spots of
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some transmission t ∈ L1. Note first that cy(Sj) < 2. Also all
transmissions in L1 pass through both x, y. Thus cx(L1) = cy(L1) ≤

cy(Sj) < 2. Similarly, cx(L2) < 2. Thus cx(Sj) = cx(L1)+ cx(L2) < 4.
But since this applies to all links x, c(Sj) < 4.

To show that condition (ii) is also satisfied, suppose Sj contains
a transmission that uses some link l. The construction process
above must have removed at least unit congestion from l in every
previous step 1 through j − 1. Thus cl(Ri) > j − 1. That implies
⌈cl(Ri)⌉ ≥ j. This also implies that k ≤ maxl ⌈cl(Ri)⌉ = ⌈c(Ri)⌉. �

A transmission t is said to cross a node u if t starts at a node
on the left of u and ends at a node on the right of u. Since every
transmission t in Sj has length at least 2i−1

+ 1, t must cross
some node whose number is a multiple of 2i−1. The smallest
such numbered node is called the anchor of t . The trail-point of a
transmission t is the rightmost node numbered with a multiple of
2i−1 that is on the left of the anchor of t . If the transmission has
trail-point at node q2i−1 for some q, then we define q mod 4 as its
phase.

Lemma 2. The set Sj can be scheduled using O(1) wavelengths in
O(n|Sj|) time.

Proof. We partition Sj further into sets Spj containing transmis-
sions of phase p. This takes time O(|Sj|). Note that the transmis-
sions in any Spj either overlap at their anchors, or do not overlap
at all. This is because if two transmissions in Spj have different an-
chors, then these two anchors are at least 2i+1 distance apart. Since
the length of each transmission is atmost 2i, the two transmissions
cannot intersect.

So for the set Spj , consider 4 wavelengths, each having shutters
OFF at nodes numbered (4q + p)2i−1. Let x = (4q + p)2i−1 and
y = (4(q + 1) + p)2i−1

= x + 2i+1 be two nearest nodes
having shutters OFF. Among the O(n/2i) light-trails thus created,
for a fixed q, each of the 4 light-trails [x, y] can be thought of as a
bin in which the transmissions having extent totally within [x, y]
and total bandwidth requirement at most 1 are to be assigned.
This is an instance of the Bin Packing problem. Clearly, for a fixed
q, these 4 light-trails will suffice for the splittable case, because
c(Spj ) < 4. This takes time proportional to the number of requests
considered. Since the light-trails for different q do not overlap,
the instances of the Bin Packing problem can share wavelengths
and hence these 4 wavelengths will suffice. For the non-splittable
case, 8 wavelengths will suffice, using standard Bin Packing ideas,
e.g., First-Fit [7]. Overall it takes at most O(|Sj|n/2i) = O(n|Sj|)
time.

Thus all of Sj can be accommodated in at most 16 wavelengths
for the splittable case, and at most 32 wavelengths for the non-
splittable case. �

Lemma 3. The entire set Ri can be scheduled in time O(nmic) such
that at each link l there are O(Cl(Ri) + 1) light-trails.

Proof. We first consider the light-trails as constructed in Lemma2.
For all Sj the construction takes time O(nmic). In this construction,
uniformly at all links there are at most ⌈c(Ri)⌉ ≤ c(Ri) + 1
sets of light-trails such that each set corresponds to O(1) light-
trails created to schedule the transmissions of an Sj. Note that
c(Ri) = maxl cl(Ri). So, in this construction the condition of
the lemma is surely satisfied for the link where the congestion
is maximum. For other links the condition of the lemma may
not be satisfied because (1) there may be empty light-trails and
(2) some light-trails may contain links that are not used by any
of the transmissions associated with the light-trail. So we remove
empty light-trails and in case (2) we shrink the light-trails by
removing the unused links (which can only be near either end of
the light-trail because all transmissions assigned to a light-trail
overlap at their anchor). This modification takes time proportional
to the number of light-trails which is O(m). We prove next that
with this modification, the condition of the lemma is satisfied.

Let j be the largest such that a transmission from Sj uses link
l. After the modification the light-trails that carries transmissions
from Sj′ for j′ > j do not use link l. So now there are j sets of light-
trails using link l such that each set has O(1) light-trails. However
we know from Lemma 1 that j ≤ ⌈cl(Ri)⌉ ≤ cl(Ri) + 1. Thus there
are a total of O(j) = O(cl(Ri) + 1) light-trails at link l. �

3.3. Merge schedules of all classes

If we simply collect together the wavelengths as allocated
above, we would get a bound O(c log n). Note, however, that if
two light-trails, one for transmissions in class i and the other
for transmissions in class j, are spatially disjoint, then they could
possibly share the same wavelength. Given below is a systematic
way of doing this, which gets us a sharper bound.

Theorem 4. The entire set R can be scheduled using O(c + log n)
wavelengths in time O(nmc + m logm).

Proof. We know that after the modification in Lemma 3, at each
link l there are a total of O(cl(Ri) + 1) light-trails for each class i.
Thus summing over all classes, the total number of light-trails at l
are O(cl(R) + log n), and total time taken is O(nmc).

Think of each light-trail as an interval, giving us a collection of,
say k, intervals such that any link l has at most O(cl(R) + log n) =

O(c + log n) intervals. Now this collection of k intervals can be
colored using O(c + log n) colors [22] in time O(k log k). Now for
each color w, we use a separate wavelength and configure the
light-trails corresponding to the intervals of color w by setting the
shutters OFF at the nodes corresponding to the endpoints of the
intervals. Hence O(c + log n) wavelengths suffice. Overall it takes
time O(nmc + m logm) as k can be at mostm. �

4. On the congestion lower bound

We show an instance of the stationary problem for which the
congestion lower bound is weak. For convenience, we assume
there are n+ 1 nodes numbered 0, . . . , nwhere n = 2k for some k
and all logarithms are with base 2. All the transmissions have the
same bandwidth requirement b = 1/(log n + 1).

First, we have a transmission going from 0 to n. Then a
transmission from 0 to n/2 and a transmission from n/2 to n. Then
four transmissions spanning one-fourth the distance, and so on. In
class i ∈ {0, 1, . . . , log n} there are n/2i transmissions B(sij, dij) =

b where sij = j2i, dij = (j + 1)2i for all j = 0, 1, . . . , (n/2i) − 1.
All other entries of B are 0. This is illustrated in Fig. 2(a) for n = 16.
Clearly the congestion of this pattern is uniformly 1.

Consider an optimal solution for the splittable case. There has to
be a wavelength with a light-trail in which the transmission [0, n]
is scheduled. This light-trail might have additional transmissions
besides [0, n]. Clearly, we can assume without loss of generality
that the light-trail contains the longest transmissions. Suppose the
transmissions from the longest l classes are completely contained
in this light-trail. Thus we have a total of at most 1 + 2 + 4 +

· · · + 2l
= 2l+1

− 1 transmissions assigned to this light-trail.
Total bandwidth requirement of these transmissions should be at
most 1. This gives us (2l+1

− 1)(1/(log n + 1)) ≤ 1 implying
l ≤ log(log n + 2) − 1 = O(log log n).

The remaining transmissions do not cross nodes with numbers
qn/2l−1, for all integers q. Thus, we have 2l−1 separate parallel
problems, each having n/2l−1

= Ω(n/ log n) nodes. Thus the
total number of wavelengths W (n) needed must satisfy the
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(a) An example instance with congestion 1 at all links.

(b) An optimal solution for the above example using 3 wavelengths.

Fig. 2. An example instance where congestion bound is weak.
recurrence W (n) = 1 + W (n/ log n). This solves to W (n) =

Ω(log n/ log log n).
Suppose we add c − 1 transmissions of extent [0, n] and

bandwidth requirement 1 to this pattern of transmissions of
congestion 1 uniformly at all links. We can similarly show that
an optimal solution will require c − 1 + Ω(log n/ log log n)
wavelengths. Thus we will get an instance of congestion c
uniformly at all links but which requires Ω(c + log n/ log log n)
wavelengths, for any c.

5. The on-line problem

In the on-line case, the transmissions arrive dynamically. An ar-
rival event has parameters (si, di, ri) respectively giving the origin,
destination, and bandwidth requirement of an arriving transmis-
sion request. The algorithm must assign such a transmission to a
light-trail L such that si, di belongs to the light-trail, and at any time
the total bandwidth requirement of transmissions assigned to any
light-trail is atmost 1. A departure eventmarks the completion of a
previously scheduled transmission. The corresponding bandwidth
is released and becomes available for future transmissions. The al-
gorithm must make assignments without knowing about subse-
quent events.

Unlike the stationary problem, congestion at any link may
change over time. Let clt(S) denote the congestion induced on a
link l at time t by a set of transmissions S. This is simply the total
bandwidth requirement of those transmissions from S requiring
to cross link l at time t . The congestion lower bound c(S) is
maxl maxt clt(S), the maximum congestion over all links over all
time instants.

For the on-line problem, we present two algorithms –
(1) SeparateClass having competitive ratio Θ(log n) and (2)
AllClass, a simplification of SeparateClass. We show that this
simplified algorithm, AllClass has a competitive ratio in between
Ω(log2 n/ log log n) and O(log2 n).

In both the on-line algorithms, when a transmission request
arrives, we first determine its class i and trail-point x (defined
in Section 3.2). The transmission is allocated to some light-trail
[x, x+2i+1

]. However, the algorithms differ in the way a light-trail
is configured on some candidate wavelength.

5.1. Algorithm SeparateClass

In this algorithm, every allocatedwavelength is assigned a class
label i and a phase label p, and has shutters OFF at nodes (4q +

p)2i−1 for all q, i.e., is configured to serve only transmissions of class
i and phase p. Whenever a transmission t of class i and phase p is to
be served, it is only served by a wavelength with the same labels. If
such awavelengthw is found, and a light-trail L onw starting at the
trail-point of t has space, then t is assigned to the light-trail L. If no
such wavelength is found, then a new wavelength w′ is allocated,
it is labeled and configured for class i and phase p as above and t is
assigned to the light-trail on w′ that starts at the trail-point of t .

When a transmission finishes, it is removed from its associated
light-trail. When all transmissions in a wavelength finish, then
its labels are removed, and it can subsequently be used for other
classes or phases.

Time complexity: for a class i and phase p there are n/2i possible
light-trails. For each of these light-trails, we can maintain a list of
wavelengths on which the light-trail is present. So on an arrival,
searching for a candidate light-trail takes O(w) time where w is
the number of wavelengths used. On departure also, it takes O(w)
time.

Lemma 5. Suppose, at some instant of time, among the wavelengths
allocated by SeparateClass, x wavelengths had non-empty light-
trails of the same class and phase across a link l′. Then there must be
a link l having congestion Ω(x) at some instant of time.

Proof. Suppose at some instant of time, wavelengths w1, w2, . . . ,
wx, ordered according to the time of allocation, had non-empty
light-trails L1, L2, . . . , Lx, respectively, of the same class and phase
across link l′. Let u be the anchor (defined in Section 3.2) of
the transmissions assigned on these light-trails and l be the link
between node u and node u + 1.

Now suppose wavelength wx was allocated due to a transmis-
sion t . This could only happen because t could not fit in the wave-
lengths wj for all j ≤ x − 1.

For the splittable case this can only happen if light-trails L1
through Lx−1 together contain transmissions of congestion at least
x − 1 − c(t) = Ω(x) crossing the anchor u of t , when t arrived.
Thus at that time l had congestion Ω(x), giving us the result.

For the non-splittable case, suppose that c(t) ≤ 0.5. Then the
transmissions in each of the light-trails Lj, 1 ≤ j ≤ x − 1, must
have congestion of at least 0.5 at lwhen t arrived, giving congestion
Ω(x). So suppose c(t) > 0.5. Let k be the largest such that light-
trail Lk contains a transmission t ′ with c(t ′) ≤ 0.5 when t arrived.
If no such k exists, then clearly the congestion at lwhen t arrived is
Ω(x). If k exists, then all the light-trails Lj, j > k have transmissions
of congestion at least 0.5 at l when t arrived. And the light-trails
Lj, j ≤ k had transmissions of congestion at least 0.5 at l when t ′
arrived. So at one of the two time instants the congestion at lmust
have been Ω(x). �

Theorem 6. SeparateClass is Θ(log n) competitive.
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Proof. Suppose that SeparateClass uses w wavelengths. We
will show that the best possible algorithm (including off-line
algorithms) must use at least Ω(w/ log n) wavelengths. That will
prove that SeparateClass is O(log n) competitive.

Consider the time at which the wth wavelength was allocated
by SeparateClass. At this time w − 1 wavelengths are already
in use, and of these at least w′

= (w − 1)/(4 log n) must have
the same class and phase. Among these w′ wavelengths consider
the one which was allocated last to accommodate some light-trail
L serving some newly arrived transmission. At that time, each of
the previously allocated w′

− 1 wavelengths was nonempty in
the extent of L. By Lemma 5, there is a link that had congestion
Ω(w′

− 1) = Ω(((w − 1)/(4 log n)) − 1) = Ω(w/ log n) at some
time instant. This is a lower bound on any algorithm, even off-line.
Thus the competitive ratio of SeparateClass is O(log n).

We show the lower bound Ω(log n) using the following
example. Let n = 2k

+ 1. At each time t = 0, 1, . . . , k,
a transmission [0, 2t

] arrives. All transmissions have bandwidth
requirement 1/(k + 1). At time k + 1 all transmissions
depart together. SeparateClass takes k wavelengths because each
transmission is of a different class. The optimal off-line algorithm
assigns all of them to a single light-trail spanning the entire
network and hence takes only one wavelength. �

5.2. Algorithm AllClass

This is a simplification of SeparateClass in that the allocated
wavelengths are not labeled. When a transmission t of class i and
trail-point x arrives, we search the wavelengths in the order they
were allocated for a light-trail L of extent [x, x + 2i+1

] such that L
has enough space to serve t . If such a light-trail L is found, then t is
assigned to L. If no such light-trail is found, then an attempt ismade
to create a light-trail [x, x + 2i+1

] from the unused portions of one
of the existing wavelengths in a first-fit manner in the order they
were allocated. If such a light-trail L can be created, then L is created
and t is assigned to L. Otherwise a new wavelength w is allocated,
the required light-trail L of extent [x, x+2i+1

] is created onw, and t
is assigned to L. The portion of thewavelengthw outside the extent
of L is marked unused.

When a transmission finishes, it is removed from its associated
light-trail. If this makes the light-trail empty then we mark its
extent on the corresponding wavelength as unused.

Time complexity: using a binary search tree based data
structure for the light-trails and the transmissions, the algorithm
can be implemented in O(logm + w) time on each arrival and in
time O(logm) on each departure where m is the number of active
requests and w is the number of wavelengths used.

Theorem 7. AllClass is O(log2 n) competitive.

Proof. Suppose AllClass uses w wavelengths. Since the optimal
must use at least one, we only need consider the case w =

Ω(log2 n).
The key idea is to argue that at some time during the execution

of AllClass there will be least w/(4 log n) non-empty light-trails
(not necessarily of the same class and phase) crossing the same
link. If this holds, then of these light-trails, at least w/(16 log2 n)
must have the same class and phase. But it can be shown that
Lemma 5 is also true for AllClass, and hence there is a link
having congestion Ω(w/(16 log2 n)) at some time instant. But this
is a lower bound on the number of wavelengths required by any
algorithm, including an off-line algorithm. Thus the competitive
ratio of AllClass is at most O(log2 n).

Number the wavelengths in the order of allocation. Consider
the transmission t for which the wth wavelength was allocated
for the first time. Let L be the light-trail used for t . Clearly, the
wth wavelength had to be allocated because at that time the
w − 1 previously allocated wavelengths contained light-trails
overlapping with L. Let S ′ denote this set of light-trails, each from
a different wavelength, but overlapping with L.

If S ′ contains at least w/(4 log n) light-trails which cross the
leftmost link in L or the rightmost link, we are done. So assume the
contrary. Thus theremust be at leastw′

= w−1−2w/(4 log n) =

w − 1 − w/(2 log n) in S ′ whose extent is completely contained
in the extent of L. Among these light-trails, let L′ be the largest
numbered. Note that L′ is strictly smaller than L. Thus we can
repeat the above argument by using L′ and w′ in place of L and
w respectively, only log n times, and if we fail each time to find
at least w/(4 log n) light-trails crossing a link, we will end up
with a light-trail L′′ such that there are at least w′′ wavelengths
having light-trails conflicting with L′′, where w′′

= w − log n −

log n(w/(2 log n)) = w/2 − log n ≥ w/(4 log n) for w =

Ω(log2 n). But L′′ is a single link and so we are done. �

5.3. Lower bound for AllClass

We give a sequence of transmissions for which AllClass takes
Ω(log2 n/ log log n)wavelengths but an optimal off-line algorithm,
Opt, requires only one wavelength.

Theorem 8. AllClass is Ω(log2 n/ log log n) competitive.

Our transmission sequence consists of several (the exact
count will be shown later) subsequences, which we call stages.
In all stages, all transmissions have a height (i.e., bandwidth
requirement) of 1/n2. Our transmission sequence is such that, at
any point of time, there are less than n2 active transmissions.
Opt will put all transmissions in a single light-trail using the full
length of a wavelength. On the other hand, it will be seen that
AllClasswill allocate Ω(log2 n/ log log n) wavelengths in total for
all stages. We describe the first stage only; the other stages are
scaled versions of the first stage. The goal of the first stage is to force
AllClass to allocate wavelengths with light-trail patterns given in
the following lemma.

Lemma 9. Let the network have q + 1 nodes numbered 0, . . . , q.
Then there is a transmission sequence for which AllClass allocates
k = ⌊log q⌋ wavelengths numbered 0, . . . , k − 1, with the following
staircase pattern: each wavelength i has ⌊n/k⌋ unit-length light-trails
[jk + i, jk + i + 1], each containing a single transmission, for all
j = 0, . . . , ⌊n/k⌋ − 1.

Proof. For simplicity we assume q = 2k, i.e., k is exactly equal to
log q. The general case can be similarly proved.

We first describe how to create a unit-length light-trail [x, x+1]
on any wavelength h. We will repeatedly use this procedure to
create our pattern. Define Hill(h, x) to be an ordered sequence
of h transmissions as follows. For each i = 0, 1, . . . , h − 1,
Hill(h, x) contains a transmission that uses the link [x, x + 1] and
has class k − 1 − i, and some suitable phase. The key point is that
all the transmissions in a hill overlap but have different classes,
and hence AllClass must assign them in distinct light-trails on
differentwavelengths. Thus starting from scratch, the arrival of the
transmissions in a hill will cause hwavelengths to be allocated. For
example, we show Hill(4, 31) on the right half of Fig. 3(a). Further,
if a new transmission [x, x + 1] arrives, it will cause one more
wavelength to be allocated. From now on, by creating (deleting)
a hill we mean the arrival (departure) of transmissions in a hill.

Now we describe how to generate the staircase using several
hills. The idea is to build the staircase one wavelength at a time
from top to bottom, i.e., first create all light-trails of the staircase
on wavelength k − 1, then all light-trails on wavelength k − 2 and
so on. Each unit-length light-trail [x, x + 1] on an wavelength is
created by temporarily creating an appropriate hill underneath it,
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(a) Pattern created midway of the first stage.

(b) Final pattern.

Fig. 3. An instance for which AllClass is Ω(log2 n/ log log n) competitive.
then creating the transmission [x, x + 1] and finally deleting the
temporary hill. The left half set of staircases is created first, and
then the right half set.

Before creating the left half, we first create hill H = Hill(k −

1, q − 1). This hill will survive until the left half is completely
created. Its sole purpose is to ensure that the numbering of its k−1
wavelengths does not change as the left half is created. The left
half is created top to bottom as given in Algorithm 1. Consider
the first execution of the insertion marked as belonging to the
staircase. Because of the hill H ′, this transmission will clearly be
assigned to a light-trail on wavelength i. Note further that when
transmissions in H ′ depart, the wavelengths 0, . . . , i − 1 do not
become empty because of the presence of hill H in the right half.
Thus the subsequent iterations also force the transmissions to be
assigned in wavelength i, and so on.

Algorithm 1 Create left half of the staircase
for i = k − 1 downto 0 do

for j = 0 to q/2k do
Create a hill H ′

= Hill(i, jk + i)
Insert an arrival event for transmission [jk + i, jk + i + 1]
{belongs to staircase}
Remove hill H ′

end for
end for

At the end of the above, wewill have created a pattern as shown
in Fig. 3(a). Since each light-trail contains only one transmission,
we just show the transmissions instead of the light-trails.

Next we remove H , and execute the same code to create the
right half of the staircase on the k wavelengths already allocated.
Note that the light-trails created in the left half now serve the
purpose that H did earlier. At this point we will have the complete
staircase. �

The first stage is created by using Lemma 9 with q = n. In the
second stage, we can treat every k = ⌊log n⌋ nodes as a single
node, and think of the network as having n′

= ⌊n/k⌋ nodes. We
create a staircase of height


log n′


but with light-trails of length

k using Lemma 9 with q = n′. Since these light-trails are longer
than the light-trails in the previous stage, we can stack up the
new pattern on top of the previous pattern. We can keep doing
this until n′ becomes less than 2. Thus the number of stages is
Ω(loglog n n) = Ω(log n/ log log n).

Let T (n) denote the total height of the patterns thus created for
n+1 nodes, then T (n) is computed using the following recurrence:

T (n) = ⌊log n⌋ + T (⌊n/ ⌊log n⌋⌋)

or simply T (n) = log n + T (n/ log n) (2)
with the base condition T (n) = 0 for n ≤ 1. It can be seen that the
recurrence has solution T (n) = Ω(log2 n/ log log n).

Thus AllClasswill useΩ(log2 n/ log log n)wavelengths for the
patterns created. Fig. 3(b) shows all the transmissions active at the
end of all stages, for the example considered in Fig. 3(a).

5.4. Remarks

It is interesting to note that AllClass is more flexible than
SeparateClass, and it is this flexibility that is exploited in the
lower bound argument to show a worse ratio for AllClass than
SeparateClass.

Indeed, themore flexibilitywe give, theworse it seems the ratio
will become. InAllClass, ifwehave a transmission of length L = 2k

we assign it to a light-trail of length 2L. This seems wasteful. But
this is done to accommodate transmissions that do not start at a
multiple of L/4, using only 4 phases. Supposewe decide to bemore
flexible, and allow light-trails to start anywhere (so long as their
length is 2k for some k) using 2k phases. Although this strategy will
handle the above transmission better, in general it is worse in that
its competitive ratio can be shown to be Ω(log2 n). We omit the
details.

6. Problem lower bound – Ω(log n)

Theorem 10. Every on-line algorithmhas competitive ratioΩ(log n).

Let Alg be any algorithm for the on-line problem and Opt be an
optimal off-line algorithm. By observing the behavior ofAlgwecan
create a sequence of transmissions for which Alg takes Ω(log n)
times as many wavelengths as Opt. This will prove the theorem.

For convenience we assume that the network has n + 1 nodes
numbered 0, 1, . . . , n and n = 2k for some k. Our transmission
sequence will have k = log n stages. For stage i = 0, 1, . . . , k − 1,
consider the network broken up into n′

= n/2i intervals of length
2i. Let this set of intervals be Qi = {[q2i, (q + 1)2i

]}
n′

−1
q=0 . At the

beginning of the ith stage, for each interval I ∈ Qi, k2 transmissions
having extent I arrive.Wewill denote this set of n′k2 transmissions
by Ai. All transmissions have a height (i.e., bandwidth requirement)
of 1/k. At the end of the ith stage, all but a subset Si of Ai depart. The
set Si is determined by observing the behavior of Alg.

Lemma 11. Among the n′k2 transmissions arriving at the beginning
of stage i, we can find a set Si of n′k transmissions such that (1) Exactly
k transmissions from Si are for a single interval I ∈ Qi, (2) Alg assigns
each transmission in Si to a distinct light-trail.

Proof. We have k2 transmissions for each interval I ∈ Qi.
Partition these k2 transmissions arbitrarily into k groups of k
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transmissions each. So overall we have n′k groups each containing
k transmissions. Now form a bipartite graph (U, V , E) as follows.

1. U has n′k vertices, each vertex corresponding to a group of k
transmissions as formed above. Note that there are k groups for
each interval, and hence we can consider a distinct group of k
vertices of U to be associated with each I ∈ Qi.

2. V has a vertex corresponding to each light-trail used by Alg for
serving the transmissions of this stage.

3. E has following edges. Suppose a transmission t from the group
associated with a vertex u ∈ U is placed by Alg in the light-trail
L associated with a vertex v ∈ V . Then for each such t there will
be an edge (u, v) in E. Note that thismay produce parallel edges
if several transmissions in the group of u are placed in L.

The degree of each vertex in U is exactly k, one edge for each
transmission in the associated group. Consider any vertex v ∈

V . Since its associated light-trail can accommodate at most k
transmissions of height 1/k, its degree must be at most k.

Now consider any subset S of vertices from U and its
neighborhood T in V . Because vertices in U have degree exactly k
there must be exactly |S|k edges leaving S. These must be a subset
of the edges entering T . But vertices in V have degree at most k. So
there can be at most |T |k edges entering T . Thus we have |S|k ≤

|T |k, i.e., |T | ≥ |S|, i.e., S has at least as many neighbors as its own
cardinality. But this is true for any S. Thus by the generalization of
Hall’s theorem, there must be a matching M that includes an edge
from every vertex of U to a distinct vertex in V .

Consider the set Si of transmissions associated with each edge
of M . Since there is exactly one edge in M for each node in U , Si
has one transmission per group of transmissions for each interval.
Hence Si has exactly k transmissions for each interval. SinceM has
exactly one edge per vertex in V , we know that each transmission
in Si is assigned to a distinct light-trail by Alg. �

We have now completely described the transmission sequence.
At the end all transmissions have departed except those in some Si.
We will use Di to denote the transmissions which depart in stage i.
Clearly Ai = Si ∪ Di.

Lemma 12. Opt uses overall 2k−1wavelengths while processing the
transmission sequence for all stages.

Proof. Consider stage i. The set Ai has k2 transmissions for each
interval I ∈ Qi. To serve these transmissions Ai, Opt uses k
wavelengths configured as follows. Each wavelength is configured
into light-trails as per Qi, i.e., each interval I ∈ Qi forms one
light-trail. Now the key point is that Opt places all transmissions
in Si into light-trails on a single wavelength. This can be done
because the set Si indeed has k transmissions for each I ∈ Qi.
The remaining transmissions Di can be accommodated into k − 1
additional wavelengths. Note now that at the end of the stage,
the transmissions Di depart. Hence although the stage used k
wavelengths transiently, at the end k − 1 of these are released.

Thus, at the end of stage i, therewill be i+1wavelengths in use,
one for transmissions in each Sj, j = 0, . . . , i. When Ai+1 arrives,
Optwill allocate knewwavelengths. Sowhile processingAi+1 there
will be i+ 1+ kwavelengths in use. These will drop down to i+ 2
at the end of stage i + 1. Thus, over all the stages the maximum
number of wavelengths used will be at most maxi=0,...,k−1(i + k),
i.e., 2k − 1. �

Lemma 13. Alg uses at least k2/2wavelengths while processing the
transmission sequence.

Proof. Consider the light-trails used by Alg which are active at
the end of the stage k − 1. Each of these light-trails may contain
several transmissions but only one transmission fromeach Si. Since
transmissions from each Si have different lengths, each light-trail
must hold transmissions of different lengths. Thus, each light-trail
can have at most one transmission of length 1, one of length 2, and
so on. The sum of the lengths of the transmissions assigned to a
single light-trail of length l is thus at most 1 + 2 + 4 + · · · + l =

2l − 1 ≤ 2l. But this applies to all light-trails in any wavelength,
and hence the total length of the transmissions assigned to a
single wavelength is at most 2n. However, the transmissions
that survive at the end consist of nk transmissions of length 1,
nk/2 transmissions of length 2, and so on to 2k transmissions of
length n/2. Thus the total length is nk2. Thus Alg needs at least
(nk2)/(2n) = k2/2 wavelengths at the end. �

But Opt requires at most 2k − 1 < 2k wavelengths. Hence the
competitive ratio is at least (k2/2)/2k = k/4 = Ω(log n). This
completes the proof of Theorem 10.

7. Simulations

We simulate our two on-line algorithms and a baseline algo-
rithm on a pair of oppositely directed rings, with nodes numbered
0 through n − 1 clockwise.

We use slightly simplified versions of the algorithms described
in Section 5 (but easily seen to have the same bounds): basically
we only use phases 0 and 2. Any transmissions that would go
into class i phase 1 (or phase 3) light-trail are contained in some
class i + 1 light-trail (of phase 0 or 2 only), and are put there. We
define a class i and phase 0 light-trail to be one that is created by
puttingOFF shutters at nodes jn/2i for different j, suitably rounding
when n is not a power of 2. A light-trail with class i and phase
2 is created by putting OFF shutters at nodes (jn/2i

+ n/2i+1),
again rounding suitably. The class and phase of a transmission is
determined by the light-trail of maximum class (note that now
larger classes have shorter light-trails) and minimum phase that
can completely accommodate it. For AllClass, there is a similar
simplification. Basically, we use light-trails having end nodes at
jn/2i and (j+ 1)n/2i or at jn/2i

+ n/2i+1 and (j+ 1)n/2i
+ n/2i+1.

As before, in SeparateClass, we require any wavelength to contain
light-trails of only one class and phase, whereas in AllClass, a
wavelengthmay contain light-trails of different classes and phases.

For the baseline algorithm in each ring we use a single OFF
shutter at node 0. Transmissions from lower numbered nodes to
higher numbered nodes use the clockwise ring, and the others, the
counterclockwise ring.

7.1. The simulation experiment

A single simulation experiment consists of running the algo-
rithms on a certain load, characterized by parametersλ,D, rmin and
α for 100 time steps. In our results, each data-point reported is the
average of 150 simulation experiments with the same load param-
eters.

In each time step, all nodes j that are not busy transmitting,
generate a transmission (j, dj, rj) active for tj time units. After
that the node is busy for tj steps. After that it generates another
transmission as before. The transmission duration tj is drawn
from a Poisson distribution with parameter λ. The destination
dj of a transmission is picked using the distribution D discussed
later. The bandwidth is drawn from a modified Pareto distribution
with scale parameter = 100 × rmin and shape parameter = α.
The modification is that if the generated bandwidth requirement
exceeds the wavelength capacity 1, it is capped at 1.

We experimented with α = {1.5, 2, 3} and λ = {0.01, 0.1} but
report results for only α = 1.5 and λ = 0.01; results for other
values are similar. We tried four values 0.01, 0.1, 0.25 and 0.5 for
rmin. We considered four different distributions D for selecting the
destination node of a transmission.
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(a) Low load.

(b) High load.

Fig. 4. Simulation results.
1. Uniform: we select a destination uniformly randomly from the
n − 1 nodes other than the source node.

2. UniformClass: we first choose a class uniformly from the
⌈log n/2⌉ + 1 possible classes and then choose a destination
uniformly from the nodes possible for that class. It should be
noted that there can be a destination at a distance at most n/2
in any direction sincewe schedule along the direction requiring
the shortest path.

3. Bimodal: first we randomly choose one of two possible modes.
In mode 1, a destination from the two immediate neighbors is
selected and inmode 2, a destination from the nodes other than
the two immediate nodes is chosen uniformly. For applications
where transmissions are generated by structured algorithms,
local traffic, i.e., unit or short distances (e.g.

√
n for mesh-

like communications) would dominate. Here, for simplicity, we
create a bimodal traffic which is a mixture of completely local
and completely global.

4. ShortPreferred: we select destinations at shorter distance with
higher probability. In fact, we first choose a class i in the
range 0, . . . , ⌈log n/2⌉ with probability 1

2i+1 and then select a
destination uniformly from the possible destinations in that
class.

We report the results only for the distributions Uniform and
Bimodal and for rmin = 0.01, 0.5, i.e., a total of 4 load scenarios.
Results for other scenarios follow a similar pattern.

7.2. Results

Fig. 4 shows the results for the 4 load scenarios. For each
scenario, we report the number of wavelengths required by the 3
algorithms and the measured congestion as defined in Section 5.
Each data-point is the average of 150 simulations (each of 100 time
steps) for the same parameters on rings having n = 5, 6, . . . , 20
nodes. We say that the two scenarios corresponding to rmin = 0.01
have low load and the remaining two scenarios (rmin = 0.5) have
high load.

For low load, the baseline algorithm outperforms our algo-
rithms. At this level of traffic, it does not make sense to reserve dif-
ferent light-trails for different classes. However, as load increases
our algorithms outperform the baseline algorithm.

For the same load, it is also seen that our algorithms become
more effective as we change from the completely global Uniform
distribution to the more local Bimodal distribution. This trend was
also seen with the other distributions we experimented with.

It is also to be noted that AllClass performs better than
SeparateClass in our simulations. This is perhaps surprising
because in Section 5.3 we showed that SeparateClass has a better
competitive ratio. Indeed, in that section we presented an input
instance on which AllClass performs substantially worse than
SeparateClass. But there is no contradiction here. The simulation
results merely indicate that instances like the onewe presented do
not appear in our workload. For our workload, perhaps the extra
flexibility of AllClass is very useful. So we feel that in practice the
algorithm AllClass is an important candidate.

8. Conclusions and future work

It can be shown that the non-splittable stationary problem
is NP-hard, using a simple reduction from bin-packing. We do
not know if the splittable problem is also NP-hard. We gave an
algorithm for both variations of the stationary problem which
takes O(c + log n) wavelengths. It will also be useful to improve
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the lower bound arguments; as Section 4 shows, congestion is not
always a good lower bound. This may lead to a constant factor
approximation algorithm for the problem.

In the on-line case we proved that the lower bound on the
competitive ratio of any algorithm isΩ(log n) and gave amatching
algorithm which we proved to have competitive ratio Θ(log n).
We also gave a second algorithm which seems to work better in
practice but can be as bad asΩ(log2 n/ log log n) factor worse than
an optimal off-line algorithm on some pathological examples as
we have shown. We also proved an upper bound of O(log2 n) for
the algorithm but it will be an interesting problem to close the gap
between the two bounds.

Our on-line model is very conservative: once a transmission
is allocated on a light-trail, it cannot be moved to another light-
trail, nor can the light-trail grow or shrink. However, there are
models [12] which allow light-trails to shrink/grow dynamically,
and those in which it is possible to transfer active transmissions
from one light-trail to another [15]. It will be useful to incorporate
these (with some suitable penalty, perhaps) into our model.

It will also be interesting to devise special algorithms that work
well given the distribution of arrivals.
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