
Some uses of spectral methods

Abhiram G. Ranade

Indian Institute of Technology, Mumbai, India,
ranade@cse.iitb.ac.in,

WWW home page: http://www.cse.iitb.ac.in/~ranade

Abstract Methods based on the analysis of eigenvalues or singular val-
ues of a matrix, often called spectral methods are very popular for many
applications including graph partitioning, clustering, recognition, com-
pression. This paper will survey some of these applications and present
the basic underlying ideas.

1 Introduction

The purpose of this tutorial is to give a short informal introduction to some of
the uses of spectral methods. Spectral methods are applicable to a wide range
of problems; we will concentrate on those uses related to Principal Component
Analysis (PCA)[12]. Principal component analysis, or the underlying Singular
Value Decomposition[11] have been successfully used in a variety of problems,
some of which are as follows:

1. Search. Given a database consisting of documents or images, identify those
documents that closely match a given query (which might itself be a docu-
ment or an image).

2. Clustering. This is related to the above problem: divide the documents or
images into clusters such that documents/images in the same cluster are
similar, while those in distinct clusters are dissimilar.

3. Compression. How to compactly store an image.

4. Finding the principal axes (related to rotation) in a solid model. These axes
might be useful for ascertaining mechanical properties, obviously, but they
are often used to canonically orient the solid for the purposes of matching
with other solid models, say from a database of solid models.

5. Summarization. Given an English language paragraph, identify those sen-
tences which are the most representative of the paragraph.

6. Given a graph, partition it into subgraphs which are sparsely connected with
one another, with each subgraph being possibly densely connected internally.
For example the problem of partitioning a circuit amongst circuit boards con-
nected by as few wires as possible can be directly seen as a graph partitioning
problem. More generally, graph partitioning is the key to employing divide
and conquer techniques on graphs, and arises in many areas.

This document is not intended to be comprehensive, and even for some of the
basic de�nitions the reader might need to refer to standard texts on the subject.
Our goal is more to provide intuition, for this purpose we discuss several ele-
mentary as well as complex applications in which PCA/SVD has been used. It is
hoped that this document together with basic texts will give a good introduction
to enable creative use of these methods in Computer Science problem solving.

We begin by de�ning a generic context in which SVD is applicable. We then
present the basic mathematical ideas of SVD. We then discuss several applica-
tions.

2 Generic Problem

The input to our problem is a set of n points in m-dimensional space. We will
assume throughout that these are given to us as an n �m matrix A, in which
the ith row gives the coordinates of the ith point. The main question of interest
is: does this cloud of points have an interesting shape. Often, the point cloud
will be a representation of some real phenomenon or object, and the shape of the
cloud will be indicative of some important property of the phenomenon. Hence
our interest.

Here are some of the ways in which the point cloud might have arisen. For
example, each point might represent an image with aij giving the grayscale value
of the jth pixel in the ith image in a database. Or points might be documents
from a database with aij denoting whether the ith document contains the jth
term (as per some numbering of the terms appearing in the entire database). Or
the points might correspond to students, with aij denoting the marks obtained
by the ith student in the jth subject. In each such scenario, we expect the entries
of A to be correlated. For example, very likely a document that contains the term
\�scal" also contains the term \de�cit", or that if a student gets high marks in
physics, the marks in mathematics could not be too low. These correlations will
get reected in the shape of the corresponding point cloud, and vice versa.

Discovering such correlations/patterns inA is important for answering queries
of the kind discussed in the introduction, and in general for understanding the
phenomenon/process from which A has arisen.

In many interesting practical situations which we will see shortly, the pattern
which we expect to �nd in A is that A is a low rank matrix with some added
noise. In other words, the rows interpreted as points in m dimensional space
are not scattered randomly, but in fact sit in a low dimensional subspace. It
would seem natural, that identifying ths subspace would be an important �rst
step in any non-trivial processing of A. Principal Component Analysis (or the
linear algebraic technique of Singular Value Decomposition) does precisely this.
In fact, SVD allows us to identify the relevant subspace even in presence of noise
{ and this is its main power.

Under what circumstances do we expect A to have low rank? We explain
this using the example in which A gives marks obtained by students. We begin
by hypothesizing that although a student is tested in several subjects, there

really are 3 abilities that are of consequence in all subjects: quantitative, logical,
and verbal. Suppose that numbers qi; li; vi characterize these abilities of the
ith student. Suppose further that the jth subject is characterized by numbers
Qj ; Lj ; Vj which denote the extent to which it tests these abilities. Finally we
hypothesise that the marks aij obtained by the ith student in the jth subject
are given as:

aij = qiQj + liLj + viVj (1)

If our hypothesis is correct (unlikely) the student marks will be as above, if they
are only approximately correct (more likely), then the student marks will be
close to above. It should be clear that matrix A obtained as will have rank 3,
independent of the number of students and subjects. More speci�cally, de�ning
an n�3 student matrix P in which pi1 = qi, pi2 = li, and pi3 = vi, and a subject
matrix T with t1j = Qj , t2j = Lj , and t3j = Vj , we get

A = PT

Since P is n � 3 this demonstrates that A has rank 3. So if our hypotheses
are reasonably accurate, the marks will lie reasonably close to a rank 3 matrix.
Statistical studies show that student mark matrices can indeed be approximte
nicely by low rank matrices, though not necessarily rank 3.

It is useful to note why the rank was low in the above example. The �rst key
idea is the hypothesis that although there were many observed quantities, they
were governed by a small number (in this case 3) of latent factors. Latent, in
that the factors themselves (quantitative, logical and verbal abilities) didnt get
observed directly. The second key idea is that the factor e�ect was bilinear, in
the sense that equation 1 is a sum of products.

We will soon see that such a model based on latent factors is useful for other
kinds of collections, e.g. documents or images in a database. All such collections
can be productively dealt with using Singular Value Decomposition, which we
describe next.

3 Singular value decomposition

Given an n�m matrix A, its �rst (right) singular vector, customarily denoted as
v1, is de�ned as a unit vector that maximizes jjAv1jj2. In other words, the �rst
singular vector is the one that is stretched most under the action of A. Notice
that if the rows of A lie in a subspace, then a most stretched vector will also
come from this subspace, and thus will characterize the subspace.

The �rst left singular vector could be de�ned as the right singular vector of
the matrix AT . However, there is an elegant joint de�nition of both left and right
singular vectors:

u1; v1 = unit vectors that maximize uT1 Av1

Note that this immediately shows that the direction of Av1 must be the same
as that of u1, and that of uT1 A the same as that vT1 . Further, we de�ne �1 =
jjAv1jj2 = jjuT1 Ajj2 as the �rst singular value.

An important observation is that u1 can be thought of as a \rough" estimate
of the directions of the rows of A. In particular, noting that Av1 gives the
projections of the rows of A on v, the rank 1 matrix A1 = Av1v

T
1 = u1v

T
1

can be considered to be a rank 1 approximation to A. In fact we can prove that
A1 is the best such matrix in the sense of the Frobenius norm:

jjA�A1jjF = min
B

jjA�BjjF

where B is any rank 1 matrix. Note that the Frobenius norm AF of a matrix is
simply the sum of the squares of all its entries.

Writing A0 = A � A1, we simply repeat the above procedure on A0 to get
u2; v2; �2 and so on. Clearly the rank of A0 will be 1 less than that of A, and
hence the process will terminate after r steps, where r is the rank of A. Let
u1; vi; �i, for i = 1 to r be obtained in this manner. These respectively give the
ith left singular vector, the ith right singular vector, and the ith singular value.
Ak is de�ned as

Pk

i=1 �iuiv
T
i . Obviously Ar = A.

Since in A � A1 we are removing from each row its projection on v1, we
know that the rows of A0 must be orthogonal to v1. Thus it follows that v2 is
orthogonal to v1 and so on. Thus the vectors vi are orthogonal to each other,
and similarly ui amongst themselves.

It is customary to de�ne Uk as consisting of the matrix made up by using
u1; : : : ; uk as its columns. Likewise Vk. �k is de�ned to be a k � k diagonal
matrix with �1; : : : ; �k along the diagonal. Then clearly, AVr = Ur�r. Let U be
any orthogonal matrix obtained by extending Ur, i.e. by adding any columns that
are orthogonal to the columns in Ur and to each other. Likewise V . Also extend
�r into an n �m matrix by adding 0s. Then we have AV = U�. Alternately,
we can write this as a decomposition of A, noting that V T = V �1.

A = U�V T

This is the Singular Value Decomposition (SVD) of A and it can be computed
in time O(mn2 +m2n), see [11].

We note that it is easily proved that Ak is the best rank k approximation to
A:

jjA�AkjjF = min
B

jjA�BjjF
where B is any rank k matrix. Further the error jjA�Akjj2F = �2k+1 + : : :+ �2r .

3.1 Examples

Our �rst example decomposition is

A =

�
1 1
0 1

�
=

�
0:85 �0:53
0:53 0:85

��
1:62 0
0 0:62

��
0:53 0:85
�0:85 0:53

�

Note here that direction of the �rst right singular vector

�
0:53
0:85

�
is somewhere

between the directions of the rows of A.

Our second decomposition example is

B =

�
2 0
0 1

�
=

�
1 0
0 1

��
2 0
0 1

��
1 0
0 1

�

In this case note that the �rst right singular vector

�
1
0

�
snaps to the direction of

the �rst row, does not point somewhere in between the directions of the two rows.
In some sense it can be seen to identify the dominant direction. This happens
when the rows are orthogonal, unlike the case for matrix A earlier.

Our third decomposition example is

B =

0
@3 0 0
0 3 0
0 0 1

1
A =

0
@1 0 0
0 1 0
0 0 1

1
A
0
@3 0 0
0 3 0
0 0 1

1
A
0
@1 0 0
0 1 0
0 0 1

1
A

In this case the top two singular values are both 3. Thus, the largest singular
value is said to have multiplicity 2. In this case, the largest and second largest
singular vectors are together determined only to within a subspace of the same

dimension as the multiplicity. In this case the expression above gives

0
@1
0
0

1
A and

0
@0
1
0

1
A as the �rst two singular vectors. But indeed, any two orthogonal vectors

in the subspace spanned by these would also work.
Our �nal example consists of the matrrix

C =

0
BBBBBB@

1 0 1 0 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 1

1
CCCCCCA

C has a block diagonal structure, with the blocks being of size 3�3 and 3�4. In
this case it turns out that the matrix inherits the singular values of the blocks.
The singular vectors are also suitably padded by zeros and inherited. In this
case the largest singular value 2.36 comes from the second block, and the second
largest, 2.00 from the �rst block. Both these are singular values of C. The �rst
singular vector of the second block is (:56 :44 :44 :56)T , and so the �rst singular
vector of C will be (0 0 0 :56 :44 :44 :56)T . The next singular value 2 comes from
block 1. The singular vector in that block is (0:58 0:58 0:58)T . So the second
singular vector for C will be (0:58 0:58 0:58 0 0 0 0)T .

3.2 Singular values vs. Eigenvalues

Singular value decomposition is related to the more well known Eigenvalue de-
composition, but in some sense singular value decomposition is intuitively easier.

While singular vectors can be thought of as approximating the directions of the
rows/columns of a matrix, such an interpretation is not interesting for eigen-
vectors. Singular values are real for all matrices by de�nition, while eigenvalues
may in general be imaginary. An important relationship to note is that the left
singular vectors of A are the left eigenvectors of AAT ; and similarly of ATA for
the right. Eigenvalues are squares of corresponding singular values.

4 Applications

The applications we have selected are not all necessarily (commercially or scien-
ti�cally) important; our hope is that they will help build up intuition.

4.1 Matching solid models

Suppose we are given (suitable descriptions of) two solid models M and M 0. We
would like to know if one can be obtained by translating/rotating the other. This
check is easy if they are consistently aligned. The required translation is typically
found by aligning the centroids. The proper alignment is found by rotating the
objects so that the principal axes of rotation match the coordinate axes. This is
where SVD is useful.

We start by computing the centroids (centers of mass) of the models and
aligning those; assume without loss of generality that this has already been
done. For the two models, let matrices A and A0 respectively be such that each
row is a triple giving the coordinates of (unit) masses obtained by digitizing
the models. Next to orient them, we compute the singular value decompositions
A = U�V T and A0 = U 0�0V 0T respectively. Now, AV and A0V 0 respectively give
the positions of masses oriented so that rotation axes align with the coordinate
axes.

It is easily seen that the �rst singular vector gives the direction of the axis
about which the moment of inertia is the smallest: the moment of inertia is
de�ned as

P
jmjr

2
j where rj is the perpendicular distance to the axis of rotation

of a mass mj . Now minimizing the perpendicular distance squared is equivalent
to maximizing the projected distance squared along the axis { which is precisely
the de�nition of the �rst singular vector.

Note that the axes are uniquely de�ned only if the �rst 3 singular values have
multiplicity 1.

4.2 Document/image retrieval

A classic problem is: Given a document or image, �nd the one (or several)
which is close to it from a given database. This problem is di�cult because it
is expected that \close match" be de�ned with respect to \important features"
for the document[8, 5, 14]/image1. What constitutes \important features" is

1 For this idea applied in the context of faces see [19].

not speci�ed but is left to the algorithm designer. Finally, the items (i.e. im-
ages/documents or whatever) in the database might contain noise.

A manifestation of this problem in the context of document retrieval is that
of synonymy. Suppose we have a collection of documents from which we need to
retrieve those concerning cars. A simple minded way of doing this would be to
return those documents which explicitly contain the term \car". However, this
procedure would miss documents which contain \automobile" but not \car",
though clearly such documents should also be retrieved. You might suspect that
this problem could be solved by using dictionaries which contain synonyms.
However, consider the problem of retrieving documents about \Marathas" {
clearly this should return documents containing \Bajirao" or \Peshwa" even
though these documents might not explicitly contain the term \Maratha". This
problem, which might be called the extended synonymy problem, is one of the
problems elegantly solved using the spectral approach.

It is customary to represent the document database by matrix in which the
ijth entry indicates whether the jth term/word is present in the ith document.
The key hypothesis, as before, is that the rows interpreted as points will not
be uniformly distributed, but will lie in a small dimensional subspace. This is
explained in a manner very similar to that in the students-marks example. The
latent factors in this case are what might be called topics[8] (anologous to the
skills in the students example). Each document contains di�erent amounts of
discussion of each topic, just as each student posseses di�erent pro�ciency in
each skill. Each term has di�erent probability of occuring when di�erent topics
are being discussed, just as each skill is tested to di�erent extents by the di�erent
subjects. The rank of the term document matrix is expected to be equal to the
number of topics, except for the noise that is inevitable. The noise will arise
partly because this model is only a heuristic, but also because the probability
estimates must eventually get (randomly) rounded up/down to actual presence
or absence of terms.

Consider now the process of �nding documents that match a query: we es-
sentially take a dot product of the query and the documents in the database, but
only after projection on the subspace de�ned by the important singular vectors.
This may be thought of as eliminating noise (since we ignore the dimensions
labelled irrelevant/noisy). Because of it we can e�ectively recognize extended
synonymy { and use it in the matching process, while having no knowledge
about the semantic relationships amongst the terms!

Here is a brief explanation through an example simpli�ed for ease of exposi-
tion. Suppose we have a database in which there are documents about two broad
topics, religion and transportation. Assume for simplicity that each of these top-
ics has its own distinct vocabulary. Thus the matrix would have a block form if
we knew all this and we ordered the terms/documents corresponding to religion
before those corresponding to transportation. Suppose that this matrix is matrix
C of Section 3.1. Suppose the fourth and �th term in this matrix correspond to
the words \automobile" and \car". Suppose we now have a query that requires
documents about \car". A straightforward dot product with the C will return a

positive match for rows 6 and 7 { corresponding to the documents in which the
word acutally appears.

Suppose now that we consider do products in the subspace de�ned by the �rst
two singular vectors. As discussed earlier, these are v1 = (0 0 0 :56 :44 :44 :56)T

and v2 = (:58 :58 :58 0 0 0 0)T . Now notice that if project the documents and
the query into this subspace and only then take the dot product, then not only
the 5th and 6th, but also the 4th document vector will have non-zero product
with the query vector. Thus we will likely return document 4 also in the result.

This phenomenon is explained by noting that SVD e�ectively takes into
account the indirect associations between the \car" query and document 4. This
association arises through documents 5 and 6. It is this association which drags
the singular vector midway between documents 4,5,6 { which in turn causes a
match between document 4 and the \car" query.

4.3 Summarization

In the text summarization problem, we are given a set of sentences, and we are
required to select a subset which could be considered to be a good summary of
the entire set.

Bellare et al[6] present an interesting algorithm for this problem based on
SVD. Their work contains a number of additional ideas, e.g. use of WordNet to
understand relationships between words such as synonymy. We will only state the
essence as it relates to SVD. Treating each sentence as an independent document,
they �rst create a matrix A as described earlier, i.e. aij indicates presence of jth
term in the ith sentence. Next they compute U�V T = A. Noting that this can
be written as U� = AV , they pick as small a subset of rows A0 as possible such
that A0Vk � �Uk�k, where � is some �xed constant smaller than 1, and k is
suitably chosen. In the above, we write R � S to mean each rij � sij for all i; j.
The idea is that the rows or A0 adequately cover (to extent �) the important
singular vectors of A, and hence can be considered to be a good summary. The
sentences corresponding to the subset A0 are output. It appears that this method
gives good results.

4.4 Compression

If Uk�kV
T
k provides a good enough approximation to A, then we could consider

using Uk, �k and Vk as a representation for A. A has mn entries, Uk; Vk have
mk and nk respectively, and �k has k. Thus the A can be represented using
k(m + n + 1) numbers rather than mn. This can be a considerable saving if k
is small. In many applications, such as when the matrix A consists of an m� n
image, with aij denoting the grayscale value2 of the ijth pixel, good enough
approximation can indeed be obtained with small k [3, 10, 20].

2 Similarly for colour.

5 Graph Partitioning

There are many ways to de�ne the graph partitioning problem, we consider one
of these. Suppose removal of a collection C of the edges in a graph G = (V;E)
partitions V into two sets V1; V2 such that no edge in E � C connects vertices
from V1 to V2. Then we de�ne the ratio of C to be

jCj
min(jV1j; jV2j)

Then the ratio cut problem is to �nd the cut with the minimum ratio.
One way to relate this problem to SVDs is to observe that vertices of the

graph can be likened to documents and edges to terms.3 Such an interpretation
is more appropriate for hypergraphs, since a term may appear in several docu-
ments, and a hyper edge may also appear in several vertices rather than edges.
Here we present another way to relate SVD to the partitioning problem.

Suppose a graph is embedded in some Euclidean space such that adjacent
vertices are placed closer than non adjacent vertices, and in either case no two
vertices are too close. Suppose further that such an embedding occupies a d1 �
d2 � � � � � dw volume of space. Now if we slice this volume by a hyperplane
perpendicular to the ith dimension, then the geometric size of this cut will beQ
k 6=j dk. Clearly, this will be minimum when di is largest. The geometric cut

will induce a partition of the embedded graph. While the geometric size of the
cut can in general be very di�erent from the number of edges crossing the cut, we
could consider �nding such minimum size cuts to be a reasonably good heuristic
for �nding small edge cuts of the graph. The problem of �nding the largest di
is in some sense similar to the problem of �nding the direction in a solid body
in which the moment of inertia is the smallest (Section 4.1). This is how we use
the SVD.

This heuristic is commonly implemented using embedding induced by the
edge incidence matrix of the graph, i.e. the rows of this matrix give the em-
bedding of the corresponding vertex in an m dimensional space, where m is the
number of edges. Suppose for simplicity that the graph is k regular. Vertices con-
nected by an edge are at a distance

p
2k � 1; while those not connected are at

a distance
p
2k: In other words, no two vertices are too close, however adjacent

vertices are slightly closer than non adjecent vertices. So this simple embedding
satis�es the naive requirements mentioned earlier. As we remarked, the naive
requirements are very weak, and in general unlikely to give good partitions, but
it turns out that this simplest, most natural embedding is useful! In fact the
following algorithm is guaranteed to �nd a good ratio cut.
Algorithm:

1. Form the edge incidence matrix A of the graph. For this we number the
edges in any order, and set aij = 1 if edge j is incident on vertex i and 0
otherwise.

3 And topics are in fact the desired partitions.

2. Find q = [q1; q2; : : : ; qn] = the second left singular vector. This is equivalent
to projecting the vertices on the line given by the second right singular
vector.

3. For each qj ; consider the partition in which all vertices i with qi � qj are on
one side of the cut, and qi > qj are on the other side. Of these return the
partition with the best ratio.

As should be clear, the above algorithm indeed uses a hyperplane perpendic-
ular to the second right singular vector to form the partition { and of the n� 1
possible hyperplanes, it selects the one which gives the best ratio. The reader
might be curious as to why the second singular vector is to be used rather than
the �rst. With the edge incidence embedding the points are not centered at the
origin, and for regular graphs, the �rst right singular vector (which can be seen
to be v1 = [1p

m
1p
m
: : : 1p

m
]T) points in the direction of the center of mass of the

vertices. Thus in A � Av1v
T
1 the points have simply been shifted so that their

center of mass aligns with the origin. Thus we should in fact be considering the
�rst singular vector of the new matrix which is nothing but the second singular
vector of the original matrix.

Proving that this ratio is reasonably good is somewhat hard and algebraically
mysterious. We only state the main theorem.

Theorem 1 ([1, 17]). Let � denote the optimal cut ratio. Then the ratio �a
obtained by the above algorithm satis�es: �a �

p
2�

Thus the ratio of the cut found by the algorithm can be a factor
q

2

�
larger

than the best possible cut ratio. However, in practice the algorithm appears to
give good cuts, and further it can be proved that the algorithm gives nearly
optimal ratios for many interesting classes of graphs[18]. For example for planar
graphs, the above algorithm is guaranteed to �nd partitions with ratio

p
1=n

which is existentially tight[18].
Better results are known for graph partitioning using more complex methods.

Arora, Rao and Vazirani[4] show how to �nd cuts that are only O(
p
log n) worse

than the optimal cut. As the authors point out, this result subsumes the results
for spectral partitioning, and in many senses builds up on spectral partitioning.4

5.1 The Laplacian

Suppose we arbitrarily orient and number the edges of the input graph. We now
construct an n�m matrix B where bij = 1 if the jth edge originates at the ith
vertex, bij = �1 if the jth edge terminates at the ith vertex, and 0 otherwise.
The Laplacian L of the graph is de�ned as BBT . Many traditional statements
of the spectral partitioning algorithm use the second smallest eigenvector of the

4 The work in [4] and also the previous important work in [13] start with a graph
embedding, but it is more carefully constructed than the edge incidence embed-
ding. These algorithms can also be viewed as approximately using a hyperplane to
partition the embedding.

Laplacian of the graph, rather than the second largest singular vector of the edge
incidence matrix.

This can be easily seen to be equivalent for regular graphs. For these we can
see that BBT = L = 2D � AAT : Now it is easy to prove that B will have the
same singular vectors as A, except that the ordering is reversed. Thus the ith
largest singular vector of A will be the same as the ith smallest singular vector
of B, which in turn is the same as the ith (largest) eigenvector of L.

5.2 Graph colouring

We note as an aside that partitioning using the smallest singular vector of A is
useful for graph colouring[2]. While this is a deep result, we might mention that
for colouring we want all neighbours to get separated, while in partitioning we
want fewest neighbours to get separated. So in some sense it is no surprise that
opposite ends of the spectrum get used for these two purposes.

6 Clustering

How do you partition the rows of a matrix A (or a set of points in m dimen-
sional space) so that \similar" rows (points that are geometrically close) get put
in the same partition or cluster? There are many ways of formalizing this ques-
tion. We already mentioned one strategy for partitioning documents (use latent
topics themselves), and here we consider another. This is the so called k-means
clustering:

Given points a1; : : : ; an 2 Rm, �nd c1; : : : ; ck 2 Rm so as to minimize

X
i

d(ai; fc1; : : : ; ckg)2

where d(a; S) is the smallest distance from a point a to any of the points
in S.

The ci are the centers of the clusters; each point is put in the cluster whose
center is closest to it. In this de�nition we minimize the sum square distance
from the points to the associated centers.

We present here an algorithm due to Drineas et al[9] which gives a clustering
whose sum square distance is at most 2 times the optimal. This requires k to be a
constant. Note that even with this restriction, the problem remains NP-complete
for arbitrary m.

The algorithm is as follows. In the �rst step, we �nd the best k dimensional
subspace that contains the points using SVD. By \best" k dimensional subspace
we mean that k dimensional subspace whose total square distance from the
points is as small as possible. This is clearly the subspace de�ned by the largest
k right singular vectors of A. Then we project the points onto that subspace. In
the second step we �nd the k centers of the projected points in that subspace.

We will sketch how this can be done below. These centers, as it turns out,
give a 2 approximation for the original space. Notice that in some sense we are
considering the points to \really" be in the k dimensional subspace S0, and their
distance from this subspace to be the \error" which we minimized.

We illustrate the second step of the algorithm by considering k = 2. We need
to �nd two centers, for the points situated on some plane (as constructed in
the �rst step of the algorithm). The key observations are: (1) There must exist
a line (in fact the perpendicular bisector of the line joining the centers) that
separates the two clusters, and (2) The optimal center for a cluster must be the
centroid of the points in the cluster. Thus if we knew which line to choose, we
would be done. The key point is that there are only a polynomial number of lines
that need to be considered. Hence by trying out all possible lines, �nding the
centroids of the points on the sides of each choice, and evaluating the sum square
distance for each, we can pick the optimal centers. This idea can be extended to
k dimensions.

Let S0 denote the subspace found in the �rst step. Let a01; : : : ; a
0
n denote the

projections of the points into S0. Let the optimal centers for the projected points
be q1; : : : ; qk. Let c1; : : : ; ck be the actually optimal centers. Let S denote the k
dimensional subspace containing c1; : : : ; ck. Let c

0
1; : : : ; c

0
k be the projections of

c1; : : : ; ck into S0. Now note that

X
i

d(ai; fq1; : : : ; qkg)2 =
X
i

d(ai; a
0
i)
2 +
X
i

d(a0i; fq1; : : : ; qkg)2

�
X
i

d(ai; a
0
i)
2 +
X
i

d(a0i; fc01; : : : ; c0kg)2

In this the �rst step (equality) follows from the Pythagorean theorem: the �rst
term is the distance to the subspace S0, while the second term is the distance
within the subspace { these two are orthogonal and hence the Pythagorean
theorem applies. The second step (inequality) follows because q1; : : : ; qk were
optimal centers for the subspace S0.

Next we note that the second second sum
P

i d(a
0
i; fc01; : : : ; c0kg)2 is a sum

of term wise projection of the sums in
P

i d(ai; fc1; : : : ; ckg)2, the optimal sum
square distance. Likewise we will show that the �rst one is also similar:

X
i

d(ai; a
0
i)
2 =
X
i

d(ai; S
0)2

�
X
i

d(ai; S)
2

�
X
i

d(ai; fc1; : : : ; ckg)2

In this the �rst step follows since a0i is the projection of ai into S
0. The second

step because S0 minimized the sum of square distances from all points (this is
where we used the property of S0, i.e. that it is the best rank k approximation).
The third because c1; : : : ; ck 2 S.

Thus we have established that the sum square distance
P

i d(ai; fq1; : : : ; qkg)2
for the centers calculated by the algorithm is at most twice the optimal sum
square distance

P
i d(ai; fc1; : : : ; ckg)2, as required.

7 Concluding Remarks

There are many issues in using SVD that need to be addressed specially for each
application. Some of these are as follows. Say we are dealing with documents:
should we use frequencies of each term in each document, or should the entries
just be bits indicating presence/absence? Should each row/column of the matrix
be centered at 0? We saw in the case of regular graphs that centering happens
automatically through the largest singular vector. Another idea used in PCA is
to normalize the vector lengths { it turns out that this idea is useful for graph
partitioning when the graphs are not regular[7]. When we work with images, say
for face recognition[19], it is useful to eliminate the e�ects due to variations in
lighting. Another interesting question concerns how to form the matrix A itself.
In Section 4.4 we indicated how an m� n image can be compressed by treating
the grayscale value of the ijth pixel as the ijth entry of the matrix. However,
it turns out that by placing the grayscale value of pixel ij in matrix entry i0j0

where i0 and j0 are �xed functions (independent of the image itself) of i; j, the
compression can be substantially improved [15].

The core of most recognition/matching problems is the estimation of some
latent parameters of the model which generates the given data, i.e. the matrix
A considered in this paper. In general, this estimation is done by maximum
likelihood techniques { that collection of model parameters is selected that is
most likely to generate the observed data. If the e�ects are bilinear (Section 2),
and the noise is Gaussian, then the subspaces constructed by SVD are most
likely to generate the given matrix A. Otherwise, the maximum likelihood es-
timation must be done with more ad hoc methods, e.g. using gradient descent
which might return models which are local maxima[16]. So in some sense SVD
represents a good tradeo� between simplicity of assumptions and the availability
of a dependable algorithm.

References

[1] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83{96, 1986.
[2] Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable

graphs (preliminary version). In STOC '94: Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pages 346{355. ACM Press, 1994.

[3] Harry C. Andrews and Claude L. Patterson. Singular Value Decomposition (SVD)
Image Coding. IEEE Transactions on Communications, 24:425{432, April 1976.

[4] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander ows, geometric em-
beddings and graph partitioning. In STOC '04: Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 222{231. ACM Press,
2004.

[5] Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spec-
tral analysis of data. In STOC '01: Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 619{626. ACM Press, 2001.

[6] Kedar Bellare, Anish Das Sarma, Atish Das Sarma, Navneet Loiwal, Vaibhav
Mehta, Ganesh Ramakrishnan, and Pushpak Bhattacharya. Generic text summa-
rization using wordnet. In Internationational Conference on Language Resources
and Evaluation (LREC), 2004.

[7] F. Chung. Spectral Graph Theory. Americal Mathematical Society, 1997.
[8] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas,

and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391{407, 1990.

[9] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. In Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 291{299, 1999.

[10] C. S. Mc Goldrick, W. J. Dowling, and A. Bury. Image coding using the singu-
lar value decomposition and vector quantization. In Image Processing And Its
Applications, pages 296{300. IEE, 1995.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 1996.

[12] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis.
Pearson Education Asia, 2002.

[13] Tom Leighton and Satish Rao. Multicommodity max-ow min-cut theorems and
their use in designing approximation algorithms. J. ACM, 46(6):787{832, 1999.

[14] Christos H. Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh
Vempala. Latent semantic indexing: A probabilistic analysis. In ACM Conference
on Principles of Database Systems, pages 159{168, 1998.

[15] A. Ranade, S. M. Srikanth, and Satyen Kale. A variation on svd based image
compression, 2006. To appear in Image and Vision Computing.

[16] Mehran Sahami, Marti A. Hearst, and Eric Saund. Applying the multiple cause
mixture model to text categorization. In Lorenza Saitta, editor, Proceedings of
ICML-96, 13th International Conference on Machine Learning, pages 435{443,
Bari, IT, 1996. Morgan Kaufmann Publishers, San Francisco, US.

[17] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Information and Computation, 82(1):93{133, 1989.

[18] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar
graphs and �nite element meshes. In IEEE Symposium on Foundations of Com-
puter Science, pages 96{105, 1996.

[19] M. Turk and A. Pentland. Face recognition using eigenfaces. Journal of Cognitive
Neuroscience, 3(1), 1991.

[20] P. Waldemar and T. A. Ramstad. Image compression using singular value decom-
position with bit allocation and scalar quantization. In Proceedings of NORSIG
Conference, pages 83{86, 1996.

