
Precedence Constrained Scheduling in

(2 − 7
3p+1

) · Optimal

Devdatta Gangal Abhiram Ranade

Department of Computer Science and Engg.,

Indian Institute of Technology Bombay,

Powai, Mumbai 400076, India.

March 31, 2008

Abstract

We present a polynomial time approximation algorithm for unit time precedence constrained

scheduling. Our algorithm guarantees schedules which are at most
(

2 − 7

3p+1

)

factor as long

as the optimal, where p > 3 is the number of processors. This improves upon a long standing

bound of
(

2 − 2

p

)

due to Coffman and Graham.

1

1 Introduction

Precedence constrained scheduling is a classical NP-complete problem. It arises in several applica-
tions such as project management and parallel computing.

In this paper we consider the simplest variant. In this we are given a directed acyclic graph G,
a number p of processors, and a deadline ∆ which is an integer. The vertices in the graph represent
unit time tasks, and the arcs indicate precedence: if there is an arc from u to v, then task u must
be executed before task v. The problem is to decide if the given set of tasks can be executed in ∆
time steps using p processors, with each processor being able to execute only one task during any
time step. More formally, a length ∆ schedule for the graph is an assignment of an integer (time
slot) T (v) to each vertex v such that (i) 1 ≤ T (v) ≤ ∆, (ii) if u is a predecessor of v in the graph
then T (u) < T (v), and (iii) For all i we have |{v : T (v) = i}| ≤ p.

Deciding whether length d schedules exist is known to be NP-complete [8] for variable p. For
p = 2, Fujii, Kasami and Ninomiya[4] gave a polynomial time algorithm that constructs optimal
schedules. Whether the problem is NP-complete for fixed p ≥ 3 is not known. For the case in which
the graph G is a rooted tree, Hu[6] gave a polynomial time algorithm for computing an optimal
schedule. Approximation algorithms (those that find schedules which are no longer than a factor α
of the optimal schedule length) have also been studied. 2− 1

p
approximation is easy – any algorithm

that will not idle processors while work is available will achieve this. A remarkable algorithm, due
to Coffman and Graham[3] was shown to give 2− 2

p
approximation by Lam and Sethi[7]1. It is also

known[8] that better than 4
3 factor approximation is not possible unless P=NP.

Remarkably enough, the Coffman-Graham[3] algorithm subsumes the results in [4, 6]. In fact,
Coffman and Graham originally proposed their algorithm to solve the 2 processor case; and since
it is in fact a refinement of Hu’s algorithm, it also optimally solves the case when G is a rooted
tree. In some sense, therefore, it may be said that the Coffman-Graham algorithm has been the
last word on the problem for over 30 years.

1.1 Main Results

Our first result is an improved approximation algorithm, for p > 3. For p = 2 our algorithm gives
optimal schedules like Coffman-Graham’s algorithm, while for p = 3 it matches the 2 − 2

p
factor.

Theorem 1 There exists a polynomial time algorithm which finds a schedule of length at most

2 − 7
3p+1 times the optimal, where p > 3 is the number of processors.

Our second result is a family of input instances for which the Coffman-Graham algorithm must
give schedules of length essentially 2 − 2/p for large p.

Theorem 2 There exists a family of graphs Gpq such that for all p, we have:

lim
q→∞

TCG(Gpq)

TOPT(Gpq)
→ 2 − 2

p

1Also see [1] which corrects an error in [7].

1

where TCG(G) and TOPT(G) denote the lengths of the schedules produced for a graph G by the

Coffman-Graham algorithm and the optimal algorithm respectively.

Proof: Gpq consists of vertices labelled ui, vi, wjk, for i = 1, . . . , q2, j = 0, . . . , q−1, k = 1, . . . , q(p−
2). For i = 1, . . . , q2 − 1 there are edges (ui, ui+1) and (vi, vi+1). For j = 0, . . . , q − 1 and k =
1, . . . , q(p−2) there are edges (ujq+1, wjk) and (wjk, vjq+3). We require that q(p−2)+2 is a multiple
of p, and clearly there are infinitely many choices for this. TCG(Gpq) = (2q−1−2q/p+2/p)q, since
CG algorithm schedules vertices in decreasing order of the length of the longest path originating
at each. But TOPT (Gpq) ≤ q(1 + q) − 1. The result then follows.

Theorem 2 in fact applies to any algorithm that uses the length of the longest path starting at a
vertex v as the scheduling rank of v – discussed below. The best lower bound known previously [2]
was 2− 2/

√
p. This bound [2] is in fact applicable to a wider class of algorithms, including the one

we will present.

1.2 Outline

In Section 2 we give an overview of the algorithm and the analysis. In Section 3 we present the
algorithm. In Section 4 we give the analysis.

2 Overview

Most scheduling algorithms, e.g. [3, 6] begin by computing a rank for each node, which indicates its
importance – or criticality. The algorithm then simply picks vertices in increasing order of ranks2

and schedules them at the earliest possible time consistent with the previously scheduled vertices.
The ranks often provide lower bounds on the schedule length. Our algorithm also has a similar
structure, though one of our key steps involves rearranging previously scheduled vertices.

An important question is how to decide the ranks. For this, we build upon the work of Garey
and Johnson[5] on scheduling with deadlines. In this problem, there is the additional requirement
that each node v must be scheduled by time ∆(v) given as a part of the input. A key idea in
this work is a procedure for refining the deadlines of each node by propagating deadlines from
its ancestors. Garey and Johnson schedule in order of the refined deadlines, and can determine
whether deadline respecting schedules exist for p = 2.

Although in our problem there are no externally specified deadlines, we begin by specifying a
(fictitious) common deadline ∆ for all terminal vertices. We then derive deadlines for other vertices,
where the notion of a deadline may be formalized as follows.

Definition 1 An integer d is said to be a deadline for vertex v w.r.t. common deadline ∆ iff there

is no schedule in which v is scheduled after d and all vertices are scheduled at time ≤ ∆.

2The algorithms[3, 6] both schedule in decreasing order of the length of the longest path originating at each vertex,
differing only in how ties in ranks are broken. Tie breaking is not needed in the example of Theorem 2.

2

Determining the smallest possible deadline for each vertex is equivalent to finding an optimal
schedule, of course. So the key question is how to get close. Our strategy for this is based on the
following Lemma. In this, as the rest of the paper, all deadlines are w.r.t. common deadline ∆.

Lemma 1 (Deadline Lemma) Let v be a vertex and N 6= φ a set of vertices such that:

1. There is a directed path from v to every u ∈ N having at least L + 1 edges.

2. D is a deadline for every vertex u ∈ N .

Then D − L −
⌈

|N |
p

⌉

is a deadline for v.

Proof: Suppose v is scheduled at step D −L− d|N | /pe + 1. Since there is a path of length L + 1
from v to every u ∈ N , it follows that every u ∈ N must be scheduled at step D − d|N | /pe + 2 or
later. Together such vertices u will take at least d|N | /pe slots to fit in. Thus some u ∈ N must be
scheduled at D + 1 or later. But since D is a deadline for u, it follows that some vertex must be
scheduled after ∆. Thus D − L − d|N | /pe is a deadline for v.

This Lemma may be used to compute deadlines D(v) for every non-terminal vertex v in reverse
topological sort order as follows.

D(v) = min
L,D

{

D − L −
⌈ |N(v,D,L)|

p

⌉}

(1)

where N(v,D,L) is the largest set of vertices u, having a path of length at least L + 1 from v
and having D(u) ≤ D. It is easily seen that this can be done in polynomial time. The maximum
range of integer values that L,D, |N(v,D,L)| can take is |G|. Hence for every v, the whole process
certainly terminates in |G|4. The deadlines used by Garey-Johnson[5] correspond to fixing L = 0
in (1) and are thus weaker than ours.

The relationship between deadlines and lowerbounds is straightforward.

Lemma 2 Suppose that some vertex v in G has deadline δ given global deadline ∆. Then every

schedule for G must have length at least ∆ − δ + 1.

Proof: Suppose a schedule with length ∆− δ exists for G, with v scheduled at time t > 0. Shifting
the schedule ahead by δ, we will have all vertices finishing by ∆ and v scheduled at t + δ which
contradicts the fact that v has deadline δ.

Our analysis must determine the value of the least deadline assigned to any vertex, for this will
establish the strongest lower bound on the schedule length. Estimating this requires an analysis of
the schedule constructed by the algorithm. Our arguments for this are much more sophisticated
than those in [5], and form the bulk of the rest of this paper.

3

Main algorithm:

1. Include a dummy vertex A with edges to all the other vertices. For every terminal vertex v,
set D(v) = ∆, where ∆ is any number, say 0. Compute deadlines D(v) for all vertices as per
equation (1).

2. Order the vertices in increasing order of the deadline, breaking ties arbitrarily.

3. Schedule A at time 1 on processor 1.

4. for vertex v = 1 . . . n

(a) RearrangePredecessors(v)

(b) Let t = earliest time at which v can be scheduled.

(c) Schedule v in slot t on the smallest numbered free processor.

RearrangePredecessors(v){

1. Let t′ be largest such that slot t′ contains some predecessor of v.

2. Let A = vertices in slot t′ − 1 and slot t′.

3. If all vertices in A have the same deadline, and A has at most p predecessors of v, and slot t ′ has
fewer than p vertices
then
Move the predecessors of v to slot t′ − 1, moving out other vertices from slot t′ − 1 to slot t′ as
necessary.

}

Figure 1: Scheduling Algorithm

3 Algorithm

For convenience we augment our graph G with a vertex A, with edges to all the other vertices. We
fix the global deadline ∆ to any fixed number; it should be clear that this value does not affect the
relative deadlines.

We will think of the schedule as a 2 dimensional array, with column t indicating the vertices
scheduled at time t. We will also refer to column t of the schedule as slot t. We will use (t, p)
to denote the vertex scheduled in slot t on processor p. For functions f on vertices, we will write
f(t, i) instead of f((t, i)) for simplicity.

The first step of our algorithm, Figure 1, is to estimate deadlines D(v) for all vertices. We start
by setting D(v) = ∆ for all terminal vertices. The deadlines for other vertices are then calculated
using equation (1).

We next schedule vertices in non-decreasing deadline order, starting with A at time 1. It is
easily seen that D(v) are consistent with precedence, i.e. for any edge (u, v) we have D(u) < D(v).

4

Thus we are assured that A has the least deadline and that the predecessors of every vertex v
chosen in step 4 (main algorithm, Figure 1) are already scheduled. In step 4(a) we rearrange the
predecessors of v if possible. Since vertices in slots t′ − 1, t′ have the same deadline, shuffling them
in step 3(a) will not upset precedence constraints, and is equivalent to breaking ties differently in
the main algorithm. If all predecessors of v get moved to slot t′ − 1 then v will get scheduled in
slot t′. The precise benefit of this rearrangement will be quantified in Lemma 8.

4 Analysis

Let T denote the length of the schedule. A collection of contiguous slots u, u + 1, . . . , v will be
called a region, and will be written as [u, v]. Let d([u, v]) be the deadline drop for [u, v] defined
as D(v + 1, 1) − D(u, 1). Slot u will be said to have a deadline drop if d([u, u]) > 0. Define
L([u, v]) = v − u + 1.

The main result follows from three lower bounds we prove on d([1, T − 1]). The first bound
which is implicitly present in [5] is an extension of the familiar “load bound” – the schedule length
must be at least the total number of vertices divided by the number of processors. The second
bound derives from our deadline estimation procedure (equation 1) and is an extension of the
familiar “latency bound” – time must be at least the length of the longest path. The third bound,
Lemma 10, is not related to any familiar bounds. We begin by noting some elementary facts about
the sequence ∆ = D(T, 1), D(T − 1, 1), . . . , D(1, 1) = D(A).

Lemma 3 For all t we have D(t, 1) ≤ D(t + 1, 1). If slot t contains fewer than p vertices, then

D(t, 1) < D(t + 1, 1), and also every vertex in slot t′ > t must be a descendant of some vertex in

slot t. If D(t, 1) = D(t + 1, 1) then slot t contains p vertices, all of deadline D(t, 1).

Proof: When some vertex v gets placed in slot (t+1, 1), slot t cannot have been completely empty.
At that time, (t, 1) must already have been occupied. Since we schedule in non-decreasing order
of deadline D(t, 1) ≤ D(t + 1, 1). If slot t contains fewer than p vertices, then the only reason a
vertex w in slot t′ > t cannot be placed in slot t is that some vertex v in slot t is an ancestor of w.
Finally, suppose that D(t, 1) = D(t + 1, 1). Since the deadlines are the same, the former cannot be
an ancestor of the latter. But then, the only reason the latter didnt get placed in slot t must be
that slot t is full already, and clearly with nodes of the same deadline.

Say a vertex v is critical for vertex (y, 1) or for region [x, y − 1] if D(v) ≤ D(y, 1).

Lemma 4 (Load Bound [5]) Let n be the number of vertices in [x + 1, y − 1] critical for (y, 1)

and nx the number of vertices in slot x. Then d([x, y − 1]) ≥
⌈

n+1
pnx

⌉

provided nx < p, and y ≤ T .

Proof: Since slot x is not full, all vertices in [x+1, y−1] and the vertex (y, 1) must be descendants
of some vertex in slot x. Of these, the n that are critical for (y, 1) and (y, 1) itself must have deadline
at most D(y, 1). Thus at least (n + 1)/nx of these must be descendants of some vertex u from the
nx vertices in slot x. Thus using equation (1) with L = 0, we have D(u) ≤ D(y, 1) − dn + 1/pnxe.

5

But d([x, y − 1]) = D(y, 1) − D(x, 1) ≥ D(y, 1) − D(u).

When applied to region [1, T − 1] and using n1 = 1, this lemma essentially yields the familiar
bound d([1, T − 1]) ≥ (Total number of vertices)/p.

The above Lemma suggests that we divide the schedule into regions [x, y − 1] such that nx is
small; then for each region we are guaranteed a large drop. For nx = 1 we call such regions blocks.

For each block we will show a
(

2 − 7
3p+1

)

factor bound (Theorem 3), and the main theorem will

be proved by summing over the blocks. The block bounds will in turn be obtained by partitioning
them into segments. A notion similar to blocks (but not segments) is used also in [3, 5].

4.1 Blocks

Let y be the index of the last slot in the schedule. Starting at y scan backwards and determine the
largest x < y such that it contains just one vertex critical for (y, 1). Such an x must always exist,
since the very first slot only has A. Then region [x, y − 1] is called a block. If x is not the very first
slot, we repeat the procedure scanning backwards from x, identifying more blocks.

While analyzing a block X = [x, y − 1], we will only consider the critical vertices in it. Con-
sidering critical vertices is equivalent to only considering the schedule till the point when (y, 1) is
scheduled, and thus there will be at least one critical vertex in each slot, and Lemma 3 will apply.

Say a slot is full if it has p (critical) vertices, otherwise it is partial.

Lemma 5 (Latency Bound) Suppose block X = [x, y − 1] does not contain a full slot. Then

d(X) ≥ L(X). If X contains at least one full slot, then d(X) ≥ 1+ the number of partial slots.

Proof: From Lemma 3 we know that every partial slot in X has a drop. If X only has partial
slots, clearly d(X) ≥ L(X). Otherwise suppose slot z is the first full slot in X. If slot z also has
a deadline drop then we have the extra drop as needed. So suppose D(z + 1, 1) = D(z, 1). By
Lemma 3 We know that slot z must contain p vertices, all of deadline D(z, 1). Let A consist of
these p vertices and vertex (z + 1, 1). Since each slot x through z − 1 is partial, the vertices in A
must have an ancestor in each of these slots. Thus each vertex in A has a path from (x, 1) of length
z − x and is a descendant of (x, 1). Using equation (1) with L = z − x − 1, we get

D(x, 1) ≤ D(z + 1, 1) − (z − x − 1) −
⌈

p + 1

p

⌉

= D(z + 1, 1) − z + x − 1 = D(z + 1, 1) − L([x, z])

Thus d([x, z]) ≥ L([x, z]) = 1+ the number of partial slots in [x, z]. Noting that d([z + 1, y]) ≥ the
number of partial slots in [z + 1, y], the result follows.

By Lemma 3, we know that the number of partial slots must be at most the length of the longest
path in the network. The above Lemma thus shows that the deadline drop (and hence the time)
must be at least 1 + the length of the longest path (except for the easy case of when there is no
full slot). In this sense it is an extension of the well-known “latency” lower bound. That our bound
is stronger by one will be important when blocks are small. Note also that this bound cannot be
proved using the deadline definition as in [5] – we need our stronger definition (equation 1).

6

Before giving further bounds, we first note that already we can match [1, 7]. Let Xi denote the
number of slots in X having exactly i (critical) vertices.

Lemma 6 For any block X, we have
L(X)
d(X) ≤ 2 − 2

p
.

Proof: From Lemma 4 we know d(X) ≥
⌈Pp

i=1
iXi

p

⌉

. If X has no full slots then from Lemma 5

we know that d(X) ≥ L(X) – this assures us an optimal schedule. So we will assume that X does
have at least 1 full slot. In which case we know from Lemma 5 that d(X) ≥ 1 +

∑p−1
i=1 Xi. Thus:

L(X)

d(X)
≤

∑p
i=1 Xi

max

(⌈

(
Pp

i=1
iXi)

p

⌉

, 1 +
∑p−1

i=1 Xi

)

Since we are only considering a single block, we have X1 = 1. For fixed numerator, the above ratio
is maximized when Xi = 0 for 3 ≤ i ≤ p − 1. Thus we have

L(X)

d(X)
≤ 1 + X2 + Xp

max
(⌈

1+2X2+pXp

p

⌉

, 2 + X2

)

For p = 2, we note that
⌈

1+2X2+pXp

p

⌉

= 1 + X2 + Xp, giving L(X)/D(X) ≤ 1. For p ≥ 3, we drop

the ceiling, maximize by equating the two terms in the denominator, and the bound follows.

The ratio applies to the entire schedule, since it applies to all blocks. Hence with a much simpler
algorithm and analysis we match the result in [1, 7]. We note that the RearrangePredecessors step
is not needed in this.

4.2 Segments

The analysis in Lemma 6 is tight when Xi = 0 for 3 ≤ i ≤ p − 1. But if a block only contains
slots with 2 vertices or p vertices, it is possible to get a sharper bound. In general, the analysis
can be sharpened if the slots in the block are only of certain kinds. Of course, a block will in
general contain all kinds of slots; however it is possible to partition it into segments whose slots
satisfy certain patterns. By deriving bounds for segments, it is possible to get an additional bound
(Lemma 10) for the drop for a block. This together with the previous bounds gives us the main
result.

From now on we only consider blocks having at least one full slot – for blocks with only partial
slots, we know that d(X) = L(X).

Assign labels 1, 2, f, g, b to slots based on the number of (critical) vertices and their deadlines
as follows. In general for any integer i, an i-slot is a slot with i (critical) vertices. The first slot of
each block having p vertices (if any) is called an f -slot. A slot with a deadline drop is good, one
without is bad. A good slot which is not an f -slot and has at least 3 vertices will be called a g-slot.
A bad slot which is not an f -slot will be called a b-slot. It should be clear that every slot is either
a 1-slot, a 2-slot, a g-slot, an f -slot, or a b-slot. If X is a region, we will use X1, X2, Xg, Xf , Xb to

7

Type Pattern

A1 1{2 + g}∗f
A2 1{2 + g}∗f2+b
A3 1{2 + g}∗f{g + b}∗b
B {g + b}2+b

C 2{g + b}+
b

D 2 + g

Table 1: Segment types

denote the number of 1 slots, 2 slots, g-slots, f -slots and b-slots respectively in X. Notice that the
total number of slots in X is clearly X1 + X2 + Xg + Xf + Xb.

Table 1 defines the different kinds of segments, each specified as a regular expression denoting
the labelling of its slots. To partition a block into segments, we start at the end of the block, and
peel off a segment if its pattern is a suffix of the labelling of the block. We repeat until the entire
block is partitioned in this manner.

Lemma 7 Any block S having at least 1 full slot can be partitioned into segments, the first of which

is of type A1, A2, or A3 and the rest of type B,C,D.

Proof: A block having at least 1 full slot must have the label pattern 1{2 + g}∗f{2 + g + b}∗. In
this case we will show that it must satisfy the grammar

S → A1|A2|A3|SB|SC|SD

which immediately proves the Lemma. Figure 2 shows how the patterns can be peeled off scanning
S from the end. Starting from the state labelled S at the top, we traverse the edges according
to the slot labels. For example, if we encounter a 2-slot, then we follow the leftmost branch and
enter the state SD. This state signifies we have encountered a pattern D and that we must resume
scanning starting again in state S. A1, A2, A3 are terminal states in which the respective patterns
have been detected.

The important segment types are B, and C. For estimating the drop across segments of type B,
we first need to demonstrate the effect of the rearrangement step of the algorithm.

Lemma 8 (B Segment Lemma) Let [t, t+ k +1] be a B segment. Then d([t, t+ k +1]) ≥ k +1.

Proof: Here we only consider the case k = 1 which is indicative. k > 1 is left to Appendix A.

Since k = 1 the pattern for [t, t + 2] is {g + b}2b. Suppose d([t, t + 2]) = 1. But since t + 1
already has a deadline drop, slots t and t + 2 must be b-slots, i.e. D(t + 1, 1) = D(t, 1) and
D(t + 3, 1) = D(t + 2, 1) = D(t + 1, 1) + 1. Consider the set B of vertices in slot t + 2 and the
vertex (t + 3, 1). All these have the same deadline D(t + 2, 1) = D(t + 1, 1) + 1.

If (t + 1, 2) is not a predecessor of any vertex in B, then (t + 1, 1) must be a predecessor of
all vertices in B. But then D(t + 1, 1) ≤ D(t + 2, 1) − d(p + 1)/pe = D(t + 1, 1) − 1. This is a

8

B → {g + b}2+b A2 → 1{2 + g}∗f2+b

SD

S → 1{2 + g}∗f{2 + g + b}∗

{2, g} S f

b

f

A1

A1 → 1{2 + g}∗f

A3

A3 → 1{2 + g}∗f{g + b}∗bf{g + b}
2

2

f{g + b}
{g + b}

2

SC C → 2{g + b}+
bSB

D → 2 + g

A2

Figure 2: Partitioning into segments

contradiction. Hence (t+1, 2) must be a predecessor of some vertex in B. Hence its deadline must
also be D(t + 1, 1).

Suppose some x ∈ B has at most p predecessors in slots t, t + 1. Since these predecessors have
the same deadline, a rearrangement would have taken place, enabling x to be placed in slot t + 1.
Since this has not happened, every x ∈ B must have at least p + 1 predecessors in slots t, t + 1. So
there are a total of (p + 1)2 predecessor relations from B to vertices in slots t, t + 1. These have a
total of p + 2 vertices, and hence at least one, say w must have (p + 1)2/(p + 2) ≥ p + 1 successors.
Thus D(w) ≤ D(t + 2, 1) − dp + 1/pe = D(t + 1, 1) − 1. Giving a contradiction again.

Lemma 9 (C Segment Lemma) Let X = [u, v] be a C segment. Then d(X) ≥ X2 + Xb/3.

Proof: By Lemma 3, D(w, 1) ≤ D(v + 1, 1), for w ≤ v + 1. Thus all vertices in b-slots and at
least 1 vertex in a g-slot must have deadline at most D(v + 1, 1). Thus there are at least pXb + Xg

vertices critical for (v + 1, 1). Hence, by Lemma 4,

d(X) ≥ d(pXb + Xg + 1)/2pe ≥ dXb/2 + (Xg + 1)/2pe

If Xb is even we have d(X) ≥ 1+Xb/2 ≥ X2 +Xb/3 as needed. If Xb = 1, Xg ≥ 1 by the definition
of the segment, and hence d(X) ≥ X2 + Xg ≥ X2 + Xb ≥ X2 + Xb/3. If Xb ≥ 3 is odd, then we
have d(X) ≥ (Xb + 1)/2 = Xb/3 + (Xb + 3)/6 ≥ Xb/3 + 1 = X2 + Xb/3.

Lemma 10 For any block X having at least 1 full slot, d(X) ≥ 2 + X2 + (Xb − 1)/3.

Proof: We will abuse X to denote a segment. If a segment X is of any type A, we will prove
d(X) ≥ 2 + X2 + Xb−1

3 . For segments of type B,C,D we show d(X) ≥ X2 + Xb

3 . Since every block

9

consists of one type A segment followed by some B,C,D segments, the result will follow by adding
up the segment bounds.

Let the slots of X be u, . . . , v.

B: X is {g + b}2+b. By Lemma 8 we have d(X) ≥ X2 + 1 ≥ X2 + Xb/3.

C: X is 2{g + b}+b. Immediate from Lemma 9.

D: X is {2 + g}. Clearly d(X) = 1 ≥ X2 + Xg ≥ X2 + Xb/3 since X2 ≤ 1 and Xb = 0.

A1,A2: Note that Lemma 5 is applicable for prefixes of blocks as well. Thus we have d(X) ≥ 1+
number of partial slots ≥ 1 + X1 + X2 + Xg ≥ 2 + X2 + (Xb − 1)/3 since X1 = 1 and Xb ≤ 1.

A3: X is 1{2 + g}∗f{g + b}+b. Let the f -slot occur at slot w. As argued in part C above,
there are at least pXb + Xg + 1 vertices with deadline at most D(v + 1, 1), including (v + 1, 1)
itself. Of these at least pXb + 1 have a path of length w − u ≥ X2 from (u, 1). Thus D(u, 1) ≤
D(v + 1, 1) − X2 −

⌈

(pX̃b + 1)/p
⌉

≤ D(v + 1, 1) − X2 − Xb − 1. So,

d(X) = D(v + 1, 1) − D(u, 1) ≥ 1 + X2 + Xb ≥ 2 + X2 + (Xb − 1)/3

Theorem 3 For any block X, we have
L(X)
d(X) ≤ 2 − 7

3p+1 , with the number of processors p > 3.

Proof: If there is no slot in X having p vertices, then we know from Lemma 5 that the schedule is
optimal. So we will assume that there is at least 1 slot having p vertices, i.e. Xf = 1. The number
of partial slots is X1 + X2 + Xg. Thus by Lemma 5

d(X) ≥ 1 + X1 + X2 + Xg (2)

From Lemma 4 we know

d(X) ≥ X1 + 2X2 + 3Xg + pXf + pXb

p
(3)

From Lemma 10 we know

d(X) ≥ 2 + X2 + (Xb − 1)/3 (4)

Noting that Xf = 1, view inequalities (2), (3), (4) as a linear program in variables Xb ≥ 1, X2 ≥
0, Xg ≥ 0 for fixed d(X), with the objective being

max
L(X)

d(X)
=

2 + X2 + Xg + Xb

d(X)
(5)

Solving the linear program in Appendix B we get that the objective is at most 2 − 7
3p+1 .

Proof of Theorem 1: Let the schedule be made of blocks X 1, . . . , X t. Then clearly the time
for the augmented graphs is 1 +

∑

i L(X i), since the last slot is not accounted in the blocks. The
time for the original graph G is thus

∑

i

L(X i) ≥
∑

i

(

2 − 7

3p + 1

)

d(X i) =

(

2 − 7

3p + 1

)

(∆ − D(A))

But ∆ − D(A) is a lower bound on the schedule length for G.

Acknowledgements: We would like to thank Sushant Sachdeva and Shantanu Gangal for proof
reading the manuscript.

10

References

[1] B. Braschi and D. Trystram. A New Insight into the Coffman-Graham Algorithm. SIAM

Journal of Computing, 23(3):662–669, June 1994.

[2] M. Charikar. Approximation Algorithms for Problems in Combinatorial Optimization, 1995.
B. Tech. Project Report, Department of Computer Sc. and Engg., IIT Bombay.

[3] E. Coffman and R. Graham. Optimal Scheduling for Two-Processor Systems. Acta Informatica,
1:200–213, 1972.

[4] M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequence of two equivalent processors. SIAM

J. Appl. Math., 17(3):784–789, 1969.

[5] M. R. Garey and D. S. Johnson. Scheduling tasks with non-uniform deadlines on two processors.
Journal of the ACM, 23(3):461–467, 1976.

[6] T. Hu. Parallel Sequencing and Assembly Line Problems. Operations Research, 9(6):61–68,
November 1961.

[7] S. Lam and R. Sethi. Worst-case analysis of two scheduling algorithms. SIAM Journal of

Computing, 6:518–536, 1977.

[8] J. Lenstra and A. Rinnooy Kan. Complexity of Scheduling under Precedence Constraints.
Operations Research, 26:22–35, 1978.

A Proof of Lemma 8

Proof: Assume that D(t + k + 2, 1) − D(t, 1) ≤ k. But since t + 1, . . . , t + k are 2 slots we know
that D(t + k + 1, 1) − D(t + 1, 1) ≥ k. Thus t and t + k + 1 must be b-slots, and further, the
deadlines for vertex 1 in slots t, t + 1, t + 2, . . . , t + i, . . . , t + k − 1, t + k, t + k + 1, t + k + 2 must
be D + 1, D + 1, D + 2, . . . , D + i, . . . ,D + k − 1, D + k,D + k + 1, D + k + 1 for some D.

Suppose some vertex v in slots t+1, . . . , t+k is a predecessor of all vertices in slots t+k+1, t+
k+2. Either v is itself in slot t+1, or has a predecessor in slot t+1. So w.l.o.g. we may assume that
v is in slot t+1. Now v has a path of length k to the p vertices in slot t+k+1 and vertex (t+k+2, 1)
all of deadline D + k + 1. Thus the deadline of v is at most D + k + 1− (k − 1)− d(p + 1)/pe = D.
But this is a contradiction.

Suppose no single vertex in slots t + 1, . . . , t + k is a predecessor of the vertices in slots t + k +
1, t + k + 2. From this it follows that no vertex in slots t + i, 1 ≤ i ≤ k is a predecessor of both
vertices in the following slot, and hence each must have at least one successor in the following slot,
and hence must have deadline at most D + i. Now (t + 1, 1) and (t + 1, 2) are also known to have
deadline at least D +1, and hence their deadline must be exactly D +1. Now each of (t+2, 1) and
(t+2, 2) have at least p+1 predecessors in slots t, t+1 (else rearrangement would have happened),
for a total of 2p + 2 relations. Hence at least one vertex from slots t, t + 1 must be a predecessor
of both vertices in slot t + 2. But now we have a contradiction as before.

11

B Solution of the LP

We first rewrite the LP inequalities (2), (3), (4) by defining Q = d(X) − 2 and Yb = Xb − 1.

X2 + Xg ≤ Q

Yb +
1 + 2X2 + 3Xg

p
≤ Q

X2 +
Yb

3
≤ Q

The objective (5) may be written as:

max
3 + X2 + Xg + Yb

2 + Q

It is easily seen that all the above inequalities must be tight at the optimum, with X2 = 2pQ+3Q+1
3p+1 ,

Xg = pQ−2Q−1
3p+1 , Yb = 3pQ−6Q−3

3p+1 . From this the value of the objective function is seen to be

2 − 7Q + 3p + 4

(3p + 1)Q + 6p + 2

which is at most 2− 7
3p+1 for p ≥ 4, and at most 4/3 for p = 3, noting Q ≥ 1. Optimality for p = 2

follows from Lemma 6.

12

