
A Variation on SVD Based Image Compression

Abhiram Ranade Srikanth S. M.∗ Satyen Kale†

Department of Computer Science and Engineering
Indian Institute of Technology

Powai, Mumbai 400076
ranade@cse.iitb.ac.in, srikanth sm@symantec.com, satyen@cs.princeton.edu

Abstract

We present a variation to the well studied SVD based im-
age compression technique. Our variation can be viewed as
a preprocessing step in which the input image is permuted
as per a fixed, data independent permutation, after which
it is fed to the standard SVD algorithm. Likewise, our de-
compression algorithm can be viewed as the standard SVD
algorithm followed by a postprocessing step which applies
the inverse permutation.

On experimenting with standard images we show that
our method performs substantially better than the standard
method. Typically, for any given compression quality, our
method needs about 30 % fewer singular values and vectors
to be retained. We also present a bit allocation scheme and
show that our method also performs better than the more
familiar Discrete Cosine Transform (DCT).

We show that the original SVD algorithm as well as our
variation, can be viewed as instances of the Karhunen-
Loeve transform (KLT). In fact, we observe that there is
a whole family of variations possible by choosing differ-
ent parameter values while applying the KLT. We present
heuristic arguments to show that our variation is likely to
yield the best compression of all these. We also present ex-
perimental evidence which appears to justify our analysis.

1. Introduction

The use of Singular Value Decomposition (SVD) in im-
age compression has been widely studied[1, 3, 9, 10]. If the
image, when considered as a matrix, has low rank, or can
be approximated sufficiently well by a matrix of low rank,
then SVD can be used to find this approximation, and fur-
ther this low rank approximation can be represented much
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more compactly than the original image. More specifically,
suppose we are given an image A which we will assume
for simplicity is an N × N real matrix. Then we first fac-
tor it into its SVD representation A = UΣV T , where Σ is
a diagonal matrix with entries along the diagonal ordered
in a non-increasing order, and U, V are orthogonal matri-
ces [4]. Then a rank r approximation to A is the matrix
Ar = UrΣrV

T
r , where Σr is the top-left r× r submatrix of

Σ, Ur consists of the first r columns of U , and V T
r the first r

rows of V T . The SVD decomposition is interesting because
Ur, Σr, V

T
r provide the best rank r approximation to A in

the sense of packing the maximum energy from A. Fur-
thermore, for compression, the decomposition is interesting
because unlike A which has N 2 entries, the total number of
entries in Ur, Σr, V

T
r are only 2Nr + r. It often turns out

that even with small r, the approximation Ar gets most of
the energy of A, and is visually adequate. Hence the attrac-
tiveness of the method.

Our first contribution in this paper is to propose a slight
modification to the above process, which gives us much bet-
ter compression than the standard compression process de-
scribed above. Our modification consists of a preprocess-
ing step in which the entries in the image A are permuted
with a data independent permutation S which we call shuf-
fle (equation (1)). The resulting matrix X = S(A) is then
decomposed using SVD. Suppose Xr = U ′

rΣ
′

rV
′

r
T denotes

the approximation obtained for X . We experimentally find
that for the same value of r, the image S−1(Xr) is a much
better approximation for A than Ar (Section 4). Thus for
the same compression, we have better quality. We also pro-
vide a heuristic argument to justify our experimental finding
(Section 3).

Our second contribution is to observe, that the original
algorithm, which we will call SVD1, as well as our vari-
ation of it, which we will call SSVD (for shuffled SVD)
can be both viewed as applications of the Karhunen-Loeve
transform for compressing a single image (Section 2). The

1To distinguish it from the mathematical operation of factoring a ma-
trix, which we will denote as SVD.



standard definition of the Karhunen-Loeve transform (KLT)
is concerned with compression of an ensemble of images
rather than single image. However, by chopping up a sin-
gle image into an ensemble of smaller images, we can use
the KLT to compress a single image as well. We observe
that the standard SVD and our new SSVD are nothing but
different ways of partitioning the input image into an en-
semble which can be compressed using the KLT. While it is
well known that the KLT can be computed by a single SVD
computation[2], we believe that the connection between the
use of KLT to compress an ensemble of images and SVD
(which compresses a single image) as well as our variation
SSVD was not known.

Of course, to build industry standard compression pro-
grams one needs several techniques and tricks, of which
SVD can only be one. For example, the familiar JPEG
compression standard employs Discrete Cosine Transform
(DCT) followed by sophisticated techniques for quantiza-
tion, ideas such as zig-zag ordering, run-length coding, and
Huffman coding. All these ideas contribute to the final com-
pression. We expect that a similar array of ideas, for each
level of the process, will have to be developed if SSVD is
to compete with JPEG. Vector quantization is one idea that
has been considered in the literature[3, 8, 9, 10]. In this pa-
per we report on another strategy. We have developed a bit
allocation scheme for representing the vectors constituting
the matrices U and V (Section 5). We compare our scheme
with a DCT coded with a quantization scheme described
in [7].We find that our scheme works better than the DCT
with quantization (although the full JPEG scheme, which
employs many more tricks at different levels will work even
better).

Most image compression algorithms in the literature typ-
ically divide the image into small blocks and then work on
the blocks separately. While SVD based algorithms can be
used with the entire image, typically they have been used on
blocks[1, 3]. We compare SVD and SSVD at block level
as well.

2. Comparison to KLT

Following Jain[5] we first define the KL transform for
random vectors as follows. Let x denote a p × 1 random
vector, i.e. x[i] are random variables over a certain proba-
bility space, for 0 ≤ i < p. For convenience we will index
matrices and vectors starting from 0 rather than from 1. Let
R = E[xxT ] denote the autocorrelation matrix of x. Let R
be diagonalized as R = ΦΛΦT . Then the KL transform of
x is y = ΦT x. Note that Φ depends on x, and hence both Φ
and y are needed to represent x.

We next define[5] the KLT for an ensemble of images
A0, . . . , Ap−1. For this we first linearly order the pixels in
each image into a vector. Suppose xi denotes the linearized

version of Ai. Next we use the collection of the vectors
as the probability space for the random vector x and adapt
the previous definition. Let X denote the matrix formed by
using xi as its column vectors. The autocorrelation matrix
for x is then simply R = 1

pXXT . Now let Φ be defined

by the diagonalization R = ΦΛΦT . Then the KLT of X is
Y = ΦT X . Since Φ is data dependent, to represent X we
need both Φ as well as Y .

Suppose X = UΣV T is the SVD factorization of X .
Then we have that ΦΛΦT = R = 1

pXXT = 1

pUΣ2UT ,

and hence Φ = U and Λ = 1

pΣ2. Further, Y = ΦT X =

UT X = ΣV T . Thus, given Y we can obtain Σ and V sim-
ply by normalizing its rows. Thus, the KLT representation
(i.e. Y and Φ) of the image ensemble represented by X is
essentially the same as the SVD of X . This relationship is
well known[2].

To use this to encode a single image A, we need to spec-
ify a way to break the image A into images A0, . . . , Ap−1

which are linearized and then made into the matrix X .
Thus, we need to supply an operator P which can be used
to construct X = P (A). Clearly, the columns of P (A) will
be the images in the ensemble (after they are linearized).
In general, P could be any reshaping/permutation operator,
and we will see some examples next.

2.1. SVD as KLT

Let A be N × N . Suppose we let P be the identity, i.e.
X = A. The images in the ensemble are the columns of
X = A. Thus the KLT of X will be exactly the SVD of A.

2.2. SSVD as KLT

Let A again be N × N . Suppose further that N = n2

with n integer.
We now choose P to be the shuffle operator S mentioned

earlier. Informally, we form X = S(A) by (i) breaking A
into blocks of size n × n, (ii) taking the ith block in row
major order and arranging its pixels in row major order to
produce the ith row of X . More precisely

X [bi/ncn + bj/nc , (i mod n)n + j mod n] = A[i, j] (1)

To understand what the KLT of this X = S(A) will give we
need to understand how the images in this ensemble relate
to A. Each image in the ensemble, i.e. a column of X is
built by taking one element from each block of A, as defined
above. Hence, we can think of each image in the ensemble
as a low resolution sample of A.

2.3. Compression

As discussed earlier, to obtain compression we keep r
columns of U , r rows of V , and r × r submatrix of Σ. The



size of the representation is then r(d + 1) where d is the
sum of the dimensions of the matrix X . This representation
will be good if X has low rank. This will happen if the
columns of X are similar – equivalently if the images in the
ensemble are highly correlated.

In the case of SVD, the images in the ensemble are
columns of the image, and clearly we expect adjacent
columns to be similar. Notice however, that this similar-
ity drops off as the distance between the columns increases.
In the case of SSVD, the images in the ensemble are low
resolution subsamples of the original image. The jth point
in every sample is taken from a single n × n block of the
original image. Thus we expect these samples also to be
correlated. In fact, the corresponding points on two sam-
ples are never more than a distance 2n apart in the original
image. Whereas, in case of SVD, the corresponding points
on the columns can be as far apart as N = n2. Thus we
expect SSVD to perform better than SVD.

3. Heuristic Analysis

Obviously we can partition the image in many other
ways. For example, what if we break up A by rows? In
this case, X = AT . But SVD of A and AT is essentially
identical, except for reversing the roles of U and V . An-
other possibility is to break up A into blocks, rather than as
low resolution samples. But notice that the rows of S(A),
as defined above are the blocks. Hence breaking up the im-
age by blocks is equivalent for our purposes to breaking up
by low resolution samples. Of course, there are many other
possibilities. We could change the shape as well as the size
of the blocks. Which of these is the best? We consider this
question next in a heuristic manner.

Let our image A have M rows and N columns. Suppose
we partition A into subimages by taking contiguous blocks
of size m×n. The matrix X constructed using this will have
MN
mn rows each of length mn. Clearly using m = M , n =
1 corresponds to the SVD scheme, while choosing m =
n =

√
N is the SSVD scheme assuming M = N . We

will consider the performance of this family of partitioning
schemes on a simple image.

Our image consists of a single straight line of constant
intensity with length R and making an angle θ with the hor-
izontal against a totally dark, zero valued background. The
angle θ is chosen at random from the uniform distribution.
This image is outrageously simple, but we believe it will
indicate the general trends.

This line will pass through about R sin θ
m + R cos θ

n blocks.
Each block becomes a row of X . Thus, the rank of X can-
not be larger than the above quantity. However, if the in-
tersection of the line with the different blocks is identical,
then the corresponding rows will be identical, and hence the
rank would be lower. Unless the slope of the line has spe-

cial relationships with m, n the intersections will be differ-
ent; however when θ is close to 90◦ (alternatively, close to
0◦) the line will be digitized into several long vertical (alter-
natively, horizontal) segments each of which could produce
several identical intersections with different blocks. In this
case the rank will just be R cos θ (alternatively, just R sin θ).
Thus we may conclude that the following quantity is a good
estimate of the rank:

r = O

(

1 + min

(

R cos θ, R sin θ,
R sin θ

m
+

R cos θ

n

))

A simple integration shows that

E[r] = O

(

R

(

1

m
+

1

n

))

Above we have only argued an upper bound on the rank;
however it will be seen that the same expression is a lower
bound on the rank as well, to within a constant factor. For
SVD (m = M , n = 1), the expected rank is thus O(R),
while for SSVD (m = n =

√
N ), it is O(R/

√
N). Thus

we should expect better compression with SSVD.
We next consider the question: of all the different

schemes for breaking up the original image into subimages,
is there likely to be a scheme that works better than SSVD?
For this we will consider the size of the representation pro-
duced under the different schemes. As we have seen ear-
lier, the size is r(d + 1). For our matrices X , we will have
d = MN

mn + mn. Thus the expected size is:

O

(

R

(

1

m
+

1

n

) (

MN

mn
+ mn

))

Clearly, for mn held constant this is minimized at m = n.
With this choice the size becomes O

(

R
n

(

MN
n2 + n2

))

. This
is minimized for n = (MN)1/4. For the case M = N we
get m = n =

√
N , which is precisely the choice made in

SSVD.
We note that a similar analysis will hold for images con-

structed by placing multiple lines at randomly chosen incli-
nations. Or in fact, if the image were to be constructed by
placing, say ellipses or rectangles at random orientations.
Of course, if the number of objects placed is very large, we
will get to full rank in both SVD and SSVD, but the point
is that we will get to full rank with fewer objects in SVD
than in SSVD.

Of course, it is possible to construct images for which the
standard SVD scheme will work better than SSVD. For
example, consider a dashed horizontal line. With SVD, the
matrix X = A will still have rank 1; however with SSVD
the matrix X = S(A) will have larger rank, depending
upon the gcd of n and the periodicity of the dashed line
(i.e. the size of the dashes plus the blank separation). The
question is whether we expect to have our images be dom-
inated by dashed horizontal/vertical lines, or whether we



(a) Original Image (b) SVD rank-2 approxi-
mation

(c) SSVD rank-2 ap-
proximation

(d) SVD rank-8 approxi-
mation

(e) SSVD rank-8 ap-
proximation

(f) SVD rank-14 approx-
imation

(g) SSVD rank-14 ap-
proximation

Figure 1. SVD and SSVD when applied on image Lena

expect that lines at other inclinations will also be common.
We expect the latter to be true, and hence SSVD likely to
produce a more compact representation. It will be seen that
this fairly naive analysis is supported by our experiments.

4. Experiments

We studied the performance of SVD and SSVD on a
number of standard images such as Lena, Mandrill, Cam-
eraman, etc., (images can be made available if needed).

We report the results on Lena in detail; while for the
other images we only report whether and to what extent the
results differed from those for Lena. The Lena image we
used was of size 256× 256.

4.1. Global SVD

By global SVD we mean application of SVD, SSVD on
entire image. Figure 2(a) compares SVD and SSVD when
applied to the entire image. The x axis gives the representa-
tion size, i.e. r(d + 1) = 513r. We see that at low PSNR,
SSVD requires nearly half the size as SVD. For higher,
PSNR, the size for SSVD is still about 30% less than that
for SVD. Figure 1 gives an indicative visual comparison.

We also experimented with other block sizes2; 4×4,
4×8, 8×8, 8×16, 8×32, 4×64, 2×128. Most of these
schemes fared worse than SSVD (which corresponds to
block size of 16×16). Block sizes 8×8 and 8×16 gave per-
formance generally comparable to SSVD (marginally bet-
ter for low PSNR and worse for high PSNR). This generally
validates the analysis for the best block size in section 3.

On most images global application of SSVD gives per-
formance superior to SVD. Similar to the performance on
image Lena, SSVD fares significantly better than SVD on
most images like Peppers, Barbara, Cameraman etc. On
a very few images like Mandrill, the performances were
close, while SSVD still yielded better performance. The
worst case we encountered was image Goldhill where SVD
very marginally dominates SSVD.

4.2. SVD on Blocks

In most studies of SVD based compression, SVD was
applied not to the entire image but to individual blocks.
Such local application is probably more suitable for the
subsequent Vector Quantization (VQ) step used by many

2The size of the representation in this case is r( MN

mn
+ mn + 1) as

noted earlier.
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(a) SVD and SSVD when applied on entire image
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(d) SSVD Variations

Figure 2. Various ways of applying SVD and SSVD to an image

researchers[3, 10]. So we decided to compare SVD and
SSVD in this setting too.

Figure 2(b) shows the comparison when SVD and
SSVD are applied on the 16× 16 blocks of the image indi-
vidually. In this experiment we used the same rank r for all
blocks. As before we plot PSNR for the entire image against
the size of the representation for all blocks together. We see
in this case that, SSVD outperforms SVD. We however,
note that the performances are close.

Figure 2(c) shows the comparison when we represented
each block to bound the fractional energy error ε to a fixed
value. Specifically, suppose that σi’s are the singular val-
ues of a given block. For this block we chose r such that
σ2

1
+σ2

2
+···+σ2

r
∑

j
σ2

j

≥ 1 − ε. Different points of the curves were

obtained by selecting different values for ε. Even in this

case, we see that SSVD performs better than SVD and that
the performances are close.

Although SSVD is seen to perform better in this case,
we find from our experiments on a larger set of images (like
Mandrill, Peppers, Cameraman) that the performances of
SVD and SSVD are indistinguishable, when applied lo-
cally on the individual blocks of the image.

4.3. SSVD variations compared

Figure 2(d) shows in a single view the performance of
the different variations of SSVD we have used: global (ap-
plied to entire image), local (applied to blocks), local with
adaptive choice of ranks for each block. It appears that the
non-adaptive local performs the worst (but still better than
its SVD counterpart), while the local adaptive variation is



comparable to the global.
Our preliminary conclusion is that global SSVD is

among the best (if not the best) of all the variations, and
hence we have chosen it for the analysis/experiments of the
next section.

5. A Bit Allocation Strategy

Since the first few singular values/vectors pack most of
the image energy, it makes sense to allocate more bits to
them. We now give a scheme for this.

Let X = UΣV T . Then we may also write X =
∑r

k=1
σkukvk where r = rank(X), σk is the kth diago-

nal entry of Σ, and uk and vk are the column vectors of U ,
V respectively[6]. Alternatively, xij =

∑r
k=1

σkukivkj .
We will represent each element of uk and vk to wk bits,

with uniform quantization. Then the error in each element
will be bounded by Qk = 1

2wk
. Thus the error in xij is

about
∑

k σkQk(uki + vkj) ≤
∑

k 2σkQk. Thus the mean
square error (MSE) of the image is 1

mn

∑

ij (
∑

k 2σkQk)
2.

Thus this must be minimized subject to the natural con-
straint on the total size of the representation i.e.

∑

k wk =
w. Using Lagrange’s method of multipliers we obtain

wk − wk+1 = lg(σk) − lg(σk+1), 1 ≤ k ≤ r (2)

Now all wk can be determined.

5.1. The Full Scheme

The values of σk could also be represented with vary-
ing precision; however these are much fewer than the uki

and vkj entries. So we represent σk as 32 bit floating point
numbers.

The vectors uk, vk are stored as per the scheme described
above, except for one additional idea. For each vector uk,
we store two additional values uk max and uk min which de-
note the maximum and minimum of the values in uk. Then
the wk bits allocated to store each vector are used to repre-
sent each value within the range [uk min, uk max], rather than
the range [-1,1] which in general will be considerably larger.
We store the maximum and minimum only in 8 bits each.
The vectors vk are also represented similarly, of course. We
have found that storing the maximum and the minimum for
each vector improves the compression. Clearly, more vari-
ations of this kind may be possible, and perhaps greater ex-
ploration is needed.

Figure 3 shows the performance of SSVD using the full
bit allocation scheme. The performance of a DCT scheme
is also shown. For applying DCT we divided the image
(Lena) into blocks of size 8×8. The DCT coefficients were
quantized according to quantization matrix specified by [7].
The six bit-allocation schemes for DCT coefficients given

by [10] were used to obtain the six points on DCT curve
shown.
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Figure 3. SSVD vs. DCT
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