
Global Illumination for Point Models

Rhushabh Goradia
Guide : Prof. Sharat Chandran

Annual Progress Seminar 2007

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

16.08.2007

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Outline

1 Introduction

2 Visibility Maps

3 Parallel FMM on GPU

4 Specular Interreflections

5 Future Work

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Outline

1 Introduction

2 Visibility Maps

3 Parallel FMM on GPU

4 Specular Interreflections

5 Future Work

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Problem Definition

Problem Statement
To compute a global illumination solution for complex scenes
represented as point-models

Things to look out for:
Point Models

Global Illumination - Diffuse and Specular

The Fast Multipole Method

Graphics Processing Units

Point-Point Visibility

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Problem Definition

Problem Statement
To compute a global illumination solution for complex scenes
represented as point-models

Things to look out for:
Point Models

Global Illumination - Diffuse and Specular

The Fast Multipole Method

Graphics Processing Units

Point-Point Visibility

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Point Models ?

Model each point as a surface sample representation
Each point has [co-ordinates, normal, reflectance,
emmisivity] values

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

What are Global Illumination Algorithms?

Global illumination algorithms are those which, when
determining the light falling on a surface, take into account not
only the light which has taken a path directly from a light source
(direct illumination), but also light which has undergone
reflection from other surfaces in the world (indirect illumination).

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Examples showing GI Effects

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Global Illumination effects

GI effects are the results of two types of light reflections and
refractions

Diffuse
Specular

Incident Rays Reflected Rays

DIFFUSE REFLECTION

Incident Rays

Reflected Rays

SPECULAR REFLECTION

Smooth Surface

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Global Illumination: Diffuse and Specular effects

Color Bleeding
Soft Shadows
Reflections and Refractions
Specular Highlights and Caustics

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Specular Effects using Ray Tracing

Image Plane

Light Source

Reflected Ray

Eye

Shadow Ray

RAY − TRACING : Basic Idea

Refracted Ray

Color(Pixel) = Direct Color + Reflected Ray Color +
Refracted Ray Color

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Radiosity as a GI method

Rendering Equation for Radiosity between two points

B(x) = E(x) + ρ(x)

Z
Ay

[~ny.(~rx − ~ry)][~nx.(~ry − ~rx)]

π| ~ry − ~rx|4 B(y)dAy

Illumination Maps(IM) are color values at every point in
the model, due to application of Radiosity as the GI
algorithm.

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

The Fast Multipole Method (FMM)

FMM is concerned with evaluating the effect of a “set of
sources” Y, on a set of “evaluation points” X.

More formally, given

X = {x1, x2, . . . , xM}, xi ∈ R3, i = 1, . . . ,M,

Y = {y1, y2, . . . , yN}, yj ∈ R3, j = 1, . . . , N

we wish to evaluate the sum

f(xi) =
N∑

j=1

φ(xi, yj), i = 1, . . . ,M

Total complexity : O(NM)

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

The Fast Multipole Method

f(xi) =
N∑

j=1

φ(xi, yj), i = 1, . . . ,M

The FMM attempts to reduce this seemingly irreducible
complexity to O(N + M).
The three main insights that make this possible are

Factorization of the kernel into source and reciever terms
Many application domains do not require that the function f
be calculated at very high accuracy.
FMM follows a hierarchical structure (Octree)

Each node has an associated Interaction Lists

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM: Highly Parallel in Structure

Besides being very efficient (O(N) algorithm), the FMM is
also highly parallel in structure.
Thus implementing it on a parallel, high performance
multi-processor cluster will further speedup the
computation of diffuse illumination for our input point
sampled scene.
Our interest lies in a design of a parallel FMM algorithm
that uses

Static decomposition
No explicit dynamic load balancing

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM and Graphics Processing Units

Graphics Processing Units (GPUs) are dedicated
processors for graphics computations
Current GPUs have tremendous memory bandwidth,
computational power (much faster than CPUs), and are
programmable
Architecturally, GPUs are highly parallel streaming
processors optimized for vector operations, with both
MIMD and SIMD pipelines.
Harnessing the power of GPUs for general-purpose
computing (GPGPU)
FMM : One such algorithm

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Visibility Between Point Pairs

Visibility calculation between point pairs is essential to give
correct GI results as a point recieves energy from other point
only if it is visible

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Visibility Between Point Pairs

Its complicated in our case !! Why ?
Our input data set is a point based model with no
connectivity information
Thus, we do not have knowledge of any intervening
surfaces occluding a pair of points.
Theoretically, it is therefore impossible to determine exact
visibility between a pair of points.
We, thus, restrict ourselves to approximate visibility.

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Application Domains

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Problem Statement Revisited

Problem Statement
Capturing interreflection effects in a scene when the inputs are point

samples of hard to segment entities

Mutual visibility between point pairs: A necessary step for achieving correct

global illumination effects. (Done)

Inter-reflection effects include both diffuse and specular effects like reflections,
refractions, and caustics.

We compute diffuse inter-reflections using the Fast Multipole
Method(FMM) for radiosity kernel. (Done)
We desire parallel implementation of visibility and FMM algorithms on
GPUs for faster diffuse global illumination solution. (To be done)
Specular inter-reflections are computed using ray-tracing and caustic map
generation. (To be done)

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Outline

1 Introduction

2 Visibility Maps

3 Parallel FMM on GPU

4 Specular Interreflections

5 Future Work

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

What are Visibility Maps (V-Maps)?

Assumes a hierarchy is given (Octrees).

Level 1

Level 2

Level 3

Level 0

The visibility map for a tree is a collection of visibility links for every node in the

tree. The visibility link for any node p is a list L of nodes; every point in any node

in L is guaranteed to be visible from every point in p

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

What are Visibility Maps (V-Maps)?

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

LEVEL 3
(LEAF)

LEVEL 2

LEVEL 1

LEVEL 0
(ROOT)

With respect to at any level,

−− PARTIALLY VISIBLE

−− COMPLETELY INVISIBLE

−− COMPLETELY VISIBLE

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Visibility Maps Queries?

Visibility maps entertain efficient answers to the following
queries.

1 Is point x visible to point y?
2 What is the visibility status of u points around x with

respect to v points around y?
Repeat a “primitive” point-point visibility query uv times
V-Map gives the answer with O(1) point-point visibility
queries.

3 Given a point x and a ray R, determine the first object of
intersection.

4 Is point x in the shadow (umbra) of a light source?
All the above queries are done with a simple traversal of the
octree.

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Previous Approach: Basic Point-Pair Visibility

p

qnq

np

x1

nx2nx1

x3n

3x > Delta

x4

x2

nx4

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Previous Approach: Hierarchical Visibility Algorithm

��

��

��

��

��

��
��

��

��

��
��

��

��

��

��

��

��
��

��

��

��
��

�
�
�

�
�
�

�
�
�
�

Leaf − Leaf Visibility

Point − Leaf Visibility

Node − Node Visibility

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Previous Approach: V-Map Construction Algorithm
procedure OctreeVisibility(Node A)
for each node B ∈ interactionlist(A) do

if notLeaf(A) then
state=NodetoNodeVisibility(A,B)

else if Leaf(A) then
state=LeaftoLeafVisibility(A,B)

end if
if equals(state,valid) then

Retain B in interactionlist(A)
else if equals(state,partial) then

for each a ∈ children(A) do
for each b ∈ children(B) do

interactionlist(a).add(b)
end for

end for
interactionlist(A).remove(B)

else if equals(state,invalid) then
interactionlist(A).remove(B)

end if
end for
for each R ∈ child(A) do

OctreeVisibility(R)
end forRhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Correctness of Visibility

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Correctness of Visibility

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Limitations

Three different thresholds
Threshold values are dependent on the input scene
complexity
Finding the k nearest occluders is time consuming
In the point–pair visibility algorithm, we dont use any
conditions which helps us to exit instantaneously as soon
as an invisibility case is detected.
Extra computations performed in case of partial visibility
case. Introduces a factor of atleast O(logN)

Was implemented for non-adaptive octrees

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Point Pair Visibility for Non-Adaptive hierarchy

n

x2
n

n
n

n

2

3

np

q

x5

4

5

p

q

x3

x4

>R

R

x1n1

Visibility between points p and q
Finding Potential Occluders

using bresenham line algorithm

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

New Approach: Leaf-Leaf Visibility Algorithm

c1

c2

cZ

cZ3
c1

c2

c1

c2

cZ4

c1

c2

c1

c2

cZ1
cZ2

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

New Approach: V-Map Construction Algorithm
procedure OctreeVisibility(Node A)
for each node B in old interaction list (o-IL) of A do

if NodetoNodeVisibility(A,B) == VISIBLE then
add B in new interaction list (n-IL) of A
add A in new interaction list (n-IL) of B

end if
remove A from old interaction list (o-IL) of B

end for
for each C in children(A) do

OctreeVisibility(C)
end for

Initialize the o-IL of every node to be its seven siblings
V-Map constructed by calling initially for the root, which
sets up the relevant visibility links in n-IL
NodetoNodeVisibility(A,B) constructs the visibility links for
all descendants of A w.r.t all descendants of B (and
vice-versa) at the best (i.e. highest) possible level.

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

New Approach: V-Map Construction Algorithm

procedure NodeToNodeVisibility(Node A)
if A and B are leaf then

return(LeafToLeafVisibility(A, B))
end if
Declare boolean matrix M (children(A).size ∗ children(B).size),count=0
for each a ∈ children(A) do

for each b ∈ children(B) do
state=NodetoNodeVisibility(a,b)
if equals(state,visible) then

Store true at corresponding location in M ; count = count + 1
end if

end for
end for
if count == s1 ∗ s2 then

free M and return VISIBLE
else if count == 0 then

free M and return INVISIBLE
end if

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

New Approach: V-Map Construction Algorithm

if count < s1 ∗ s2 && count > 0 then
for each a ∈ children(A) do

for each b ∈ children(B) do
Update n-IL of a w.r.t every visible child b (simple look up in M) & vice-versa,
free M

end for
end for
return PARTIAL.

end if

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Computational Complexity

Assume N = Θ(n2), n = points in input model.

Visibility problem provides answer to N pairwise queries. Hence we measure the
efficiency w.r.t N

Octree Visibility has the recurrence: T (h) = 8T (h− 1) + N (for a Node A at
height h)

Complexity for NodetoNodeVisibility(A,B) is determined by the calls to point-pair
visibility algorithm

Assuming the latter to be O(1), the recurrence relation for the former is
T (h) = 64T (h− 1) + O(1).

The overall algorithm consumes a small amount of memory (for storing M)
during runtime.

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Limitations: Extending to Adaptive Octrees

Cornell room(160,000 points) with

buddha model(534000 points)

Level 2

Level 3

Level 1

p

q

Problem in finding Potential Occluders

using bresenham line algorithm

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Ray-Sphere Intersection Algorithm

Figure: Ray-Sphere intersection algorithm to determine
point-point visibility

If node is not a leaf and pq intersects the node then
traverse its children
If node is a leaf then check whether tangent plane of that
node intersects pq within radius R then node p and q are
invisible otherwise declare p and q visible

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Adaptive V-Maps

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Comparisions

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Comparisions

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Comparisions

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Global Illumination

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Global Illumination

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Global Illumination

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Global Illumination

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Qualitative Results: Global Illumination

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Quantitative Results

Points N
2 possible V-Map Links % Memory(MB) Memory(MB) Build V-Map

Model
(millions) links (millions) (millions) Decrease N

2 links V-Map links Time(mins)

ECR 0.1 1.4 0.27 79.5% 5.35 1.09 20.6

PCR 0.14 3.85 0.67 82.62% 15.43 2.68 23.8

BUN 0.15 1.53 0.38 74.64% 6.09 1.5 21.7

DRA 0.55 2.75 0.43 84.54% 11.0 1.7 23.5

BUD 0.67 1.58 0.39 74.75% 6.33 1.6 23.9

GAN 0.15 1.56 0.38 75.64% 6.2 1.55 22.0

GOD 0.17 1.62 0.4 75.31% 6.4 1.63 22.9

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Discussion

The models are not very detailed because of a pre-processing step of
point-based simplification

Also, some roughness and discretization appears due to low level of subdivision
used (Octree is divided roughly till level 7)

More sub-division can be done but the processing time increases quite a bit (and
hence we require a faster, parallel FMM radiosity kernel solver on GPU so as not
to trade off quality for time)

The FMM solution takes approximate 2 hours per iteration. We make 3
iterations to get a complete GI solution

The V-Map computation takes approximately 20-25 minutes for about a million
points, which can further be improvised when implemented in parallel (if
analyzed properly, the visibility algorithm is embarrassingly parallel)

Note that the non-adaptive version with 6 levels in the octree took more than 10
hours for the Visibility Map computations

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Discussion

The speed of visibility algorithm can further be improved if we exploit its highly
parallel structure

Visibility algorithm can be implemented on a GPU, a highly parallel
multi-processor unit (Details are to be worked out)
The timings for global illumination solution via FMM can also be improved if FMM
can be implemented in parallel
We can use GPU for the same

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Other Related Work

Worked on Point Based Simplification algorithm

Smoothing of results while rendering by effectively detecting points lying in the
penumbra and umbra regions from the light sources (Still to be improved on)

Created new point models

Moving onto the adaptive division of octrees from the non-adaptive division was
difficult as many things from FMM and Visibility parts needed to be changed

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Outline

1 Introduction

2 Visibility Maps

3 Parallel FMM on GPU

4 Specular Interreflections

5 Future Work

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Problem Definition

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

The Fast Multipole Method (FMM)

FMM is concerned with evaluating the effect of a “set of
sources” Y, on a set of “evaluation points” X.

More formally, given

X = {x1, x2, . . . , xM}, xi ∈ R3, i = 1, . . . ,M,

Y = {y1, y2, . . . , yN}, yj ∈ R3, j = 1, . . . , N

we wish to evaluate the sum

f(xi) =
N∑

j=1

φ(xi, yj), i = 1, . . . ,M

Total complexity : O(NM)

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

The Fast Multipole Method

f(xi) =
N∑

j=1

φ(xi, yj), i = 1, . . . ,M

The FMM attempts to reduce this seemingly irreducible
complexity to O(N + M).
The three main insights that make this possible are

Factorization of the kernel into source and reciever terms
Many application domains do not require that the function f
be calculated at very high accuracy.
FMM follows a hierarchical structure (Octree)

Each node has an associated Interaction Lists

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM Algorithm: Building Interaction Lists

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM Algorithm: Upward Pass

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM Algorithm: Upward Pass

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM Algorithm: Downward Pass

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM Algorithm: Downward Pass

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

FMM Algorithm: Final Summation

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Parallel FMM: Overview

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Space Filling Curves

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Space Filling Curves: Construction

Consider a k times recursive bisection of a 2-D area into
2k2k2k = 2dk non-overlapping cells of equal size.
A SPACE FILLING CURVE (SFC) is a mapping of these
cells to a one dimensional linear ordering

1 2

3

4

5

6

7

0001

0000 0010

0011

0100

0101

0110

0111

1100

1001

1000 1010

1101

1110

1111

00

01

11

11

10

1011

(a) (b) (c)

100100

(3,1) = (11,01), Index=1011

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

SFC Linearization Algorithm

Choose a resolution k.
For each point, compute the index of the cell containing the
point.
Parallel sort the resulting set of integer keys.

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

SFCs on GPU

GPU’s memory is designed to store color and texture
information
The RGBA value of the cell will index the location of the
point contained in it
Indices sorted using efficient Bitonic Sort algorithm on
GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Parallel Compressed Octrees: Overview

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octrees: Overview

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Compressed Octrees

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Compressed Octrees

Need to encapsulate lost spatial information
Store 2 cells in each node v of the compressed octree

Large cell L(v):largest cell that encloses all the points the
node represents
Small cell S(v):smallest cell that encloses all the points the
node represents

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octrees and SFCs

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Parallel Compressed Octrees: Construction

procedure ParallelCompressedOctrees()

Consider n points equally distributed across p processors

k = pre-specified maximum resolution

For each point, generate the index of the leaf cell containing it which is the cell at
the max resolution k (can be done using effcient prefix-sum algorithm on GPU)

Parallel sort the leaf indices to compute their SFC-linearization, or the left to right
order of leaves in the compressed octree

Each processor obtains the leftmost leaf cell of the next processor

On each processor, construct a local compressed octree for the leaf cells within
it and the borrowed leaf cell

Send the out of order nodes to appropriate processors

Insert the received out of order nodes in the already existing sorted order of
nodes

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octree Textures on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octree Textures on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octree Textures on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octree Textures on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Octree Textures on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Queries for Compressed Octrees on GPU

Apart from point lookup operation, what other operations need to be performed
on compressed octrees ?

How do we modify the octree implementation on GPU to store multiple data
corresponding to each leaf-cell ?

How do we modify the octree implementation on GPU (specifically the memory
model) to store information about large-cell and small-cell of every node, along
with the indices to its children ?

How to access the last leaf node belonging to another processor, which is
required for construction of local compressed octree ?

Being a shared memory system, can we ignore the all-to-all communication step
required previously ?

How to identify and take care of out-of-order nodes ?

How to handle multiple access by processors to same memory location
simultaneously ?

Answer to these hints/queries forms the start point for a parallel compressed
octree construction on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Queries for Compressed Octrees on GPU

Apart from point lookup operation, what other operations need to be performed
on compressed octrees ?

How do we modify the octree implementation on GPU to store multiple data
corresponding to each leaf-cell ?

How do we modify the octree implementation on GPU (specifically the memory
model) to store information about large-cell and small-cell of every node, along
with the indices to its children ?

How to access the last leaf node belonging to another processor, which is
required for construction of local compressed octree ?

Being a shared memory system, can we ignore the all-to-all communication step
required previously ?

How to identify and take care of out-of-order nodes ?

How to handle multiple access by processors to same memory location
simultaneously ?

Answer to these hints/queries forms the start point for a parallel compressed
octree construction on GPU

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Parallel FMM: Overview

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Parallel FMM: Phases

The FMM computation consists of the following phases
Building the compressed octree
Building interaction lists
Computing multipole expansions using a bottom-up
traversal
Computing multipole to local translations for each cell
using its interaction list
Computing the local expansions using a top-down traversal
Projecting the field at leaf cells back to the particles

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Computing Multipole Expansions

Each processor scans its local array from left to right

If leaf node is reached compute its multipole expansion directly

If node’s multipole is known, shift and add it to parent’s multipole expansion
provided the parent is local to processor

Use of postorder?
If the multipole expansion due to a cell is known but its parent lies in a different
processor, it is labeled a residual leaf node
If the multipoleexpansion at a node is not yet computed when it is visited, it is
labeled a residual internal node

Residual nodes form a tree (termed the residual tree)

The tree is present in its postordertraversal order, distributed
across processors

Multipole expansions on the residual tree can be computed using an efficient
parallel upward tree accumulation algorithm

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Computing Multipole to Local Translations

An all-to-all communication is used to receive fields of
nodes from the interaction lists that reside on remote
processors
Once all the information is available locally, the multipoleto
local translations are conducted within each processor as
much as in the same way as in sequential FMM

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Computing Local Expansions

Similar to computing multipole expansions
Calculate local expansions for the residual tree
Compute local expansions for the local tree using a
right-to-left scan of the post order traversal
The exact number of communication rounds required is the
same as in computing multipole expansions

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Parallel FMM on GPU

Implementing the discussed algorithm on GPU essentially means shifting to a
shared memory system

Replace the time consuming all-to-all communication steps by calls to local
memory

We saw an idea to start off implementing compressed octrees on GPU

Once the octrees are implemented, all it remains are traditional memory access
operations of GPU to read and write the data at desired locations, and doing
computations on those data on each GPU processing element in parallel

Shared memory makes it much more easier to build and use the interaction lists,
store and compute on the residual trees and eliminate the time required for data
communication

Just a starting point for parallel implemention of FMM on GPU.
Many intricate and vital details are still ignored

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Outline

1 Introduction

2 Visibility Maps

3 Parallel FMM on GPU

4 Specular Interreflections

5 Future Work

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Problem Definition

Computing specular-interreflections, including caustics for point models

Combining this with the on-going work on computing diffuse inter-reflections for

point models, to give a complete global illumination solution

Approach
Photon Mapping accounts for both diffuse and specular inter-reflections in
a scene and produces good results
Currently works for only polygonal models and is slow
Analyze it from the perspective of applying it to point models
We will see that for point models, we need to make some changes in the
Ray Tracing Approach
Further we try to optimize the slow steps of Photon Mapping Algorithm so
as to speed up the whole system and make it as interactive as possible

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Photon Mapping

A two-pass method
First pass builds the photon map by emitting photons from
the light sources into the scene and storing them in a
photon map when they hit non-specular objects

The distribution of emitted photons must correspond to the
emmissive power of the light source
Photons can be reflected, refracted and absorbed depending
on the solution of the Russian Roulette
Position, power and incident direction of every photon is
stored in the Photon map

Second pass, the rendering pass, makes kNNqueries on
the photon map to extract information about the radiance
values

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Photon Mapping

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Photon Maps

Caustic Photon Maps: LS + D photons
Diffuse Photon Maps: LS|D ∗ D photons

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Example output of Photon Mapping

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Splat-Based Ray Tracing(SBRT)

Based on the concept of Surface-Splatting

Deals with intersection of rays and splats (disks around points)

Ray-Tracing produces good results if the surface has smoothly changing
normals. Splat generation must produce such normals

Splat with optimal radii are computed so that there is minimum overlap and no
holes left in the scene

A splat may cover many points. Normals (of those points) in a splat used to
compute a smoothly varying normal field

Ray-Splat intersection performed at the time of rendering

Uses Octrees for traversal

Responsible for generating reflections, refractions and shadows in the scene
using secondary and shadow rays. No Caustics !

Merge with traditional Photon Mapping to get caustics

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Interactive Requirement

Our specular-effects generation algorithm takes as input a
point model with diffuse global illumination solution already
calculated for it
Diffuse global illumination solution being view-independent
allows us for interactive walk-through of the input scene
However, specular effects being view-dependent needs to
be calculated for every new view-point in the ray-trace
rendered frame
Thus, if specular effect generation takes a lot of time, we
loose out of having an interactive walk-through of the
scene
We desire not to loose this advantage, and try to optimize
every algorithm required for specular effect generation

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Optimizing Photon Generation

Only Caustic photon generation will take place
Some of the cost factors for photon generation can not be
improved on. For example,

Rays will be incoherent during photon generation
Each light path will require several surface interactions (for
reflection and refraction) in order to generate a caustic
photon

However, the number of paths that actually yield caustic
photons can be influenced, and should be maximized
We use Selective Photon Tracing (SPT) for the same

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Selective Photon Tracing

Selective Photon Tracing(SPT) was originally used to
generate fast photon maps for dynamically changing object
positions
We do not consider the temporal domain, but rather use
SPT for adaptively sampling path space

In a first step, a set of "pilot photons" is traced into the
scene in order to detect paths that generate caustics
For those pilot paths, periodicity properties of the Halton
sequence are exploited to generate similar photons around
those paths

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Optimizing Photon Tracing and Intersections

The intersection tests performed for generating caustic photon map is similar to

those performed while doing SBRT (ray-splat intersections)

Further, SBRT uses Octree data-structure for traversal of the primary and
secondary rays during ray-tracing. The use of Octree data structure provides us
with quite a few advantages:

We can re-use the Octree data structure generated for input point model
while doing diffuse illumination
The same traversal algorithm which SBRT uses on Octrees can be used
for photon traversal as well
Further more, we can go for an even more optimized algorithm for Octree
Traversal using neighbor finding. Here we traverse the octree
horizontally via neighbor finding instead of traversing vertically starting
from the root to the desired node

Thus, we already have a well-established data structure (Octree) and algorithm

(ray-splat intersection) for performing optimal photon traversal and intersection

tests of rays and splats around points

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Fast Photon Retrieval using Optimized kNN-Query
Algorithm

Although, kd-trees provides for fast kNN queries, they are
still slow for interactive settings we desire
Solving the kNN problem via kd-trees requires a search
that traverses the tree downwards
More importantly, a search-path pruning algorithm, based
on the data already examined, is required to avoid
accessing all data in the tree. This introduces serial
dependencies between one memory look up and the next,
consequently slowing down the retrieval process
So we go for a even more optimised algorithm, Low
Latency Photon Retrieval Using Block Hashing

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Block Hashing

The algorithm uses the Locality-Sensitive Hashing (LSH) function to

categorise photons by their positions

Further, the technique is designed under two assumptions on the behavior of
memory systems

Its assumed that memory is allocated in fixed-sized blocks
Its assumed that access to memory is via burst transfer of blocks that are
then cached

Thus if any part of a fixed-sized memory block is touched, access to the rest of

this block will be virtually zero-cost. Therefore, in BH all memory used to store

photon data is broken into fixed-sized blocks

Then, a kNN query proceeds by deciding which hash bucket is matched to the

query point and retrieving the photons contained inside the hash bucket for

rendering purposes

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Block Hashing

One attraction of the hashing approach is that evaluation of
hash functions takes constant time
In addition, once we have the hash value, accessing data
we want in the hash table takes only a single access
These advantages permit us to avoid operations that are
serially dependent on one another
Moreover, the algorithm results in coherent, non-redundant
accesses to block-oriented memory. The results of one
memory look up do not affect subsequent memory
lookups, so accesses can take place in parallel within a
pipelined memory system

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Block Hashing: Phases

Its, thus, a two-pass algorithm
A preprocessing phase consisting of

Organizing the photons into fixed-sized memory blocks
Creation of a set of hash tables
Inserting photon blocks into the hash tables

A query phase where the hash tables are queried for a set
of candidate photons from which the knearest photons will
be selected for each point in space to be shaded by the
renderer

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Block Hashing : Querying

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Merger into a Single System

We thus have a fast caustic photon generation code using Selective Photon
Tracing

We have ray-splat intersection code from SBRT for caustic photon traversing and
intersection

Traversing can be improved by using faster horizontal octree traversal using
neighbor finding

We use SBRT for ray tracing and getting the reflections and refractions

Usage of caustic photon maps and fast kNN query algorithm using Block
Hashing provides us with efficient caustics while rendering

We combine all these algorithms in a single system so as to get
efficient and high-quality specular effects for point models. This
is, however, just a starting point and many issues need to be
tackled while actual implementation

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Outline

1 Introduction

2 Visibility Maps

3 Parallel FMM on GPU

4 Specular Interreflections

5 Future Work

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Conclusion and Future Work

The lack of surface information in point models creates difficulties in operations

like generating global illumination effects and computing point-pair visibility

Point-to-Point Visibility is arguably one of the most difficult problems in rendering

since the interaction between two primitives depends on the rest of the scene

One way to reduce the difficulty is to consider clustering of regions such that

their mutual visibility is resolved at a group level (V-Map)

Visibility Map data structure we propose enables efficient answer to common

rendering queries

In this report, we have given a novel, provably efficient, hierarchical, visibility

determination scheme for point based models

By viewing this visibility map as a ’preprocessing’ step, photo-realistic global

illumination rendering of complex point-based models have been shown

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Conclusion and Future Work

Further, parallel implementation of FMM, used for diffuse illumination, is a

difficult task with load balancing, data decomposition and communication

efficiency being the major challenges

We discussed an algorithm which removes these disadvantages.

We now aim to exploit the parallel computing power of GPUs for

implementation of the FMM as well as the point-pair visibility determination

algorithm using V-Maps

We gave necessary hints for the same

Further, we saw how various algorithms from the literature were combined under

a single domain to get us a time-efficient system designed to generate the

desired specular effects for point models

We now aim to implement these algorithms, merge them together and get

the specular effects solution for point models

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Conclusion and Future Work

We, thus, will have a two-pass global illumination solver for point-based scenes
consisting of both diffuse and specular models

First pass will calculate the diffuse illumination maps
Second pass for specular effects

Finally, the scene will be rendered using splat-based ray-tracing technique

However, a question remains that since we are parting the diffuse and

specular effect calculations for the scene, how would we handle specular

objects (and their effects on diffuse objects) while calculating only diffuse

global illumination in the first pass of the global illumination solver

This important issue needs to be investigated thoroughly

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

Introduction Visibility Maps Parallel FMM on GPU Specular Interreflections Future Work

Thank you for your time !

Questions ?

Rhushabh Goradia Guide : Prof. Sharat Chandran IIT-Bombay

	Introduction
	Visibility Maps
	Parallel FMM on GPU
	Specular Interreflections
	Future Work

