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1 Motivation and Problem Definition

Figure 1: Grottoes, such as the ones from China and India form a treasure for mankind. If data from the ceiling
and the statues are available as point samples, can we capture the inter-reflections?

Photo-realistic computer graphics attempts to match as closely as possible the rendering of a scene with its

actual photograph. Virtual scenes should have a similar property. Of the several techniques that are used to

achieve this goal, physically-based approaches (i.e., those that attempt to simulate the actual physical process

of illumination) provide the most striking results.

My thesis problem is that of producing global illumination (GI) solution for point models. For example, these

three-dimensional point models may be 3D scans of cultural heritage structures (see Figure 1) and we may wish

to view them in a virtual museum under various lighting conditions.

CHALLENGES: The point clouds of interest are not solitary models, but may consist of hard to segment

entities thereby inhibiting a surface reconstruction algorithm that produces meshes. Acquiring 3D point sam-

ples is easy and cheap now but GI solutions are not existent and neither are they cheap. Further, the global

illumination algorithm should handle point models with any of diffuse or specular material properties, there by

capturing all known light reflections, namely, diffuse reflections, specular reflections, specular refractions and

caustics.

PROBLEM DEFINITION: To compute global illumination solution (specular and diffuse) of complex scenes

represented as point models

2 Layout of the report

The report is organized as follows. § 3 enlists the phases to solve my thesis problem along with the progress

status for each phase. It is supported with publications and technical reports in § 4. An introduction to point

models and GI is presented in § 5 and § 6 respectively. We then move on to the details of the algorithms used
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in each of the enlisted phases. GI effects, in a broad sense, are the result of Diffuse and Specular types of

light reflections and refractions. We give a brief overview of the algorithms used to capture diffuse effects

on point models in § 7. Within the same, § 7.1 presents an introduction to the FMM algorithm for Radiosity

based diffuse global illumination kernel designed for point models. We then discuss the importance of mutual

point-pair visibility for correct global illumination results and the algorithm developed for achieving the same

in § 7.2. Parallel implementations on Graphics Processing Units were used for achieving multi-fold speed-ups

for both the above algorithms as the sequential implementations were very slow and not suited for practical

applications. The GPU-based versions of the same are overviewed in § 7.3. Details pertaining to all the above

algorithms have already been presented in my previous APS reports [Gor07, Gor08].

We then list algorithms, in § 8, which capture specular inter-reflection effects (reflections, refractions, caus-

tics) for point-models. We present algorithms which helps us solving view-dependent, first-object intersection

queries essential for ray-tracing. The ray-tracer and caustics-generator are implemented on the GPU using

CUDA. This work was done in the course of this year. § 10 concludes and outlines a brief summary of my

thesis work.

3 Work Progress

• We compute diffuse inter-reflections using the Fast Multipole Method (FMM) [Gor06] (Done)

• Mutual point-pair visibility queries required for correct diffuse global illumination. We invent Visibility

Maps(V-Maps) to provide an efficient solution [Gor07] [GKCD07] (Done)

• CPU-based implementations of visibility and FMM algorithms were quite time consuming and hence did

not have a high practical usage. Parallel implementation of visibility and FMM algorithms on Graphics

Processing Units(GPUs) using CUDA [CUD] was done so as to achieve multi-fold speedups for gener-

ating the diffuse global illumination solution [GAC08] [Gor08] (Done)

• Inter-reflection effects include both diffuse (Done) and specular effects like reflections, refractions, and

caustics. We present algorithms to solve quickly the view-dependent, first-object intersection visibility

queries for capturing specular reflections. These, when essentially combined with the algorithms for

capturing the diffuse inter-reflections, will give a complete global illumination package for point models.

The algorithms required for achieving these effects are detailed in this report (ONGOING)

4 Publications

1. Visibility Map for Global Illumination in Point Clouds by R. Goradia, A. Kanakanti, S. Chandran and A.

Datta was accepted as an oral paper at Proceedings of ACM SIGGRAPH GRAPHITE, 5th International
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Conference on Computer Graphics and Interactive Techniques, 2007. It presents our V-map construction

algorithm on the CPU [GKCD07].

2. GPU-based Hierarchical Computation for View Independent Visibility by R. Goradia, P. Ajmera and S.

Chandran was accepted as an oral paper at ICVGIP, Indian Conference on Vision, Graphics and Image

Processing, 2008. This paper details our fast, GPU-based V-map construction algorithm [GAC08].

3. Fast, parallel, GPU-based construction of space filling curves and octrees by P. Ajmera, R. Goradia, S.

Chandran and S. Aluru was accepted as a poster at ACM SIGGRAPH SI3D ’08: Proceedings of the 2008

symposium on Interactive 3D graphics and games, 2008. It presents a GPU-based, parallel octree, and

first-ever parallel SFC construction algorithm [AGCA08].

The following are some technical reports, yet to be published.

• Fast, GPU-based Illumination Maps for Point Models using FMM by R. Goradia, P. Ajmera and S.

Chandran. This work details FMM algorithm for point models to achieve a global illumination solution

and the enhanced, fast version of the same on the GPU.

• GPU-based, fast adaptive octree construction algorithm by R. Goradia, P. Ajmera, S.Chandran and S.

Aluru. It presents two, different, memory-efficient parallel octree construction algorithms on the GPU,

which can be combined with the current GPU-based FMM framework.

• Specular Inter-reflections on Point Models by R. Goradia, S. Kashyap, and S.Chandran. We discuss

algorithms to get a quick answer to first object intersection queries required for capturing caustics and

other specular reflections and refractions during ray-tracing of point models. The ray-tracer and caustics-

generator are implemented on the GPU using CUDA.
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5 Point Based Modelling and Rendering

Figure 2: Point Model Representation. Explicit structure of points for bunny is visible. Figure on extreme right
shows the same bunny with continuous surface constructed

Point models are nothing but a discrete representation of a continuous surface i.e. we model each point as

a surface sample representation (Fig 2). There is no connectivity information between points. Each point has

certain attributes, for example co-ordinates, normal, reflectance, emmisivity values.

Figure 3: Example of Point Models

In recent years, point-based methods have gained significant interest. In particular their simplicity and total

independence of topology and connectivity make them an immensely powerful and easy-to-use tool for both

modelling and rendering. Directly rendering them without the need for cleanup and tessellation makes for a

huge advantage.

Second, the independence of connectivity and topology allow for applying all kinds of operations to the points

without having to worry about preserving topology or connectivity. This allows for efficiently reducing aliasing

through multi-resolution techniques [PZvBG00, RL00, WS03], which is particularly useful for the currently

observable trend towards more and more complex models: As soon as triangles get smaller than individual

pixels, the rationale behind using triangles vanishes, and points seem to be the more useful primitives. Figure 3

shows some example point based models.
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6 Global Illumination

Figure 4: Global Illumination. Top Left[KC03]: The ‘Cornell Box’ scene. This image shows local illumination.
All surfaces are illuminated solely by the square light source on the ceiling. The ceiling itself does not receive
any illumination. Top Right[KC03]: The Cornell Box scene under a full global illumination solution. Notice
that the ceiling is now lit and the white walls have color bleeding on to them.

Local illumination refers to the process of a light source illuminating a surface through direct interaction.

However, the illuminated surface now itself acts as a light source and propagates light to other surfaces in the

environment. Multiple bounces of light originating from light sources and subsequently reflected throughout

the scene lead to many visible effects such as soft shadows, glossy reflections, caustics and color bleeding. The

whole process of light propagating in an environment is called Global Illumination and to simulate this process

to create photo-realistic images of virtual scenes has been one of the enduring goals of computer graphics.

More formally,

Global illumination algorithms are those which, when determining the light falling on a surface, take into

account not only the light which has taken a path directly from a light source (direct illumination), but also

light which has undergone reflection from other surfaces in the world (indirect illumination).

Because GI effects are natural, we wish to see the effects of Global Illumination (GI) – the simulation of the

physical process of light transport that captures inter-reflections – on point clouds of not just solitary models,

but an environment that consists of such hard to segment entities (Fig. 1). Most computer generated pictures do

not perform GI due to speed limitations (movies are a big exception).

Global Illumination effects are the results of two types of light reflections and refractions, namely Diffuse and
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Specular.

6.1 Diffuse and Specular Inter-reflections

Diffuse reflection is the reflection of light from an uneven or granular surface such that an incident ray is seem-

ingly reflected at a number of angles. The reflected light will evenly spread over the hemisphere surrounding

the surface (2π steradians) i.e. they reflect light equally in all directions.

Specular reflection, on the other hand, is the perfect, mirror-like reflection of light from a surface, in which

light from a single incoming direction (a ray) is reflected into a single outgoing direction. Such behavior is

described by the law of reflection, which states that the direction of incoming light (the incident ray), and the

direction of outgoing light reflected (the reflected ray) make the same angle with respect to the surface normal,

thus the angle of incidence equals the angle of reflection; this is commonly stated as θi = θr.

The most familiar example of the distinction between specular and diffuse reflection would be matte and

glossy paints as used in home painting. Matte paints have a higher proportion of diffuse reflection, while gloss

paints have a greater part of specular reflection.

Figure 5: Left: Colors transfer (or ”bleed”) from one surface to another, an effect of diffuse inter-reflection.
Also notable is the caustic projected on the red wall as light passes through the glass sphere. Right: Reflections
and refractions due to the specular objects are clearly evident

Due to various specular and diffuse inter-reflections in any scene, various types of global illumination

effects may be produced. Some of these effects are very interesting like color bleeding, soft shadows, specular

highlights and caustics. Color bleeding is the phenomenon in which objects or surfaces are colored by reflection

of colored light from nearby surfaces. It is an effect of diffuse inter-reflection. Specular highlight refers to the

glossy spot which is formed on specular surfaces due to specular reflections. A caustic is the envelope of light

rays reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another
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surface. Light coming from the light source, being specularly reflected one or more times before being diffusely

reflected in the direction of the eye, is the path traveled by light when creating caustics. Figure 5 shows color

bleeding and specular inter-reflections including caustics.

Radiosity and Ray-Tracing are two basic global illumination algorithms used for diffuse and specular effects

generation (respectively). We compute a radiosity based diffuse solution using the Fast Multipole Method.

We will study the behavior of light paths w.r.t the diffuse and specular objects in the scene and accordingly pace

ourselves with the algorithms required to produce GI effects in such a scene.

7 Diffuse Global Illumination
Diffuse Interactions
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Figure 6: Example showing the behavior of light w.r.t the diffuse objects. The light source emits light in all
the directions (figure on the extreme left). We trace one of those rays which hits the diffuse back wall. The
majority of light energy gets absorbed, and the remaining is reflected in all hemispherical direction (figure in
the middle). One such ray goes and hits another wall. Thus the path travelled here is LDD or in all generality
LD+

To understand the diffuse GI effects, we need to understand the paths light takes up in the scene consisting

of purely diffuse objects. Fig. 6 shows such a scene, where the room and the spheres are diffuse objects. As we

can understand, the light source emits light in all directions. We trace one of those rays. It hits a diffuse surface,

and majority of it gets absorbed. The remaining small portion of light energy is reflected in all hemispherical

direction (property of diffuse B.R.D.F). One such ray goes and hits another wall. Thus the path travelled here

is LDD (light to diffuse, diffuse to diffuse) or in all generality LD+. To capture all such interactions is an N2

problem, since each point in the model (with diffuse properties) might contribute whatever energy it receives

to every other point in the model. However, N in point models is very large, in hundreds of thousands, making

a N2 solution impractical to implement. We try to solve this seemingly irreducible complexity problem using

the Fast Multipole Method in O(N) time.
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7.1 FMM based Diffuse Global illumination

Diffuse global illumination requires the computation of pairwise interactions among each of the surface ele-

ments (points) in the given data (usually of order > 106) and thus is a N-body problem. We use the technique

of the Fast Multipole Method, to capture diffuse inter-reflections, which is a N-body solver algorithm and

also starts with points as primitives. Thus my problem of capturing diffuse effects naturally fits in the FMM

framework. The FMM attempts to reduce O(N2) seemingly irreducible complexity to O(N + M) or even

O(N logN +M) and hence achieves good speeds. Three main insights that make this possible are:

1. Factorization of the kernel into source and receiver terms

2. Most application domains do not require that the function f be calculated at very high accuracy.

3. FMM follows a hierarchical structure (Octrees)

7.2 Visibility between point pairs

Figure 7: Example showing importance of visibility calculations between points [GKCD07]

Computing a mutual visibility solution for point pairs is a major, necessary step for achieving correct

diffuse reflection results. For example, in Fig. 7, shadows wouldn’t have been possible if there wasn’t any

visibility information. Thus, an important aspect of capturing the radiance is an object space view-independent

knowledge of visibility between point pairs.Visibility calculation between point pairs is essential as a point

receives energy from other point only if it is visible to that point. But its easier said than done. Visibility between
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point pairs is an N3 problem, as the visibility between two points depends on all other points in the scene.

Further, its complicated in our case as our input data set is a point based model with no connectivity information.

Thus, we do not have knowledge of any intervening surfaces occluding a pair of points. Theoretically, it is

therefore impossible to determine exact visibility between a pair of points. We, thus, restrict ourselves to

approximate visibility.

We construct a V-map on the given scene to provide a view-independent visibility solution for global illumi-

nation for point models ( [GKCD07] [Gor07]). The basic idea is to partition the points in the form of an octree.

When large portions of a scene are mutually visible from other portions, a visibility link is set so that groups of

points (instead of single points) may be considered in discovering the precise geometry-dependent illumination

interaction. Ray shooting and visibility queries can also be answered in sub-linear time using this data structure.

Details of the above mentioned algorithms are available in [Gor07].

7.3 GPU-based FMM and V-Map Construction Algorithms

CPU-based sequential implementations of FMM and V-map construction algorithms are quite time consum-

ing and hence do not have a high practical usage. Parallel implementation of V-map construction and FMM

algorithms on Graphics Processing Units(GPUs) using CUDA [CUD] programming environment was then

performed so as to achieve multi-fold speedups for generating the diffuse global illumination solution. The

following paragraph gives an overview of how this algorithm is structured (Details for the same are available in

[Gor08]).

FMM algorithm, used for solving my problem of diffuse global illumination for point models, consists of the

following five phases:

1. Octree Construction

2. Generating interaction lists

3. Determine visibility between octree nodes (where our V-map is applied). Visible links here determine

the paths of light energy transfers between octree nodes.

4. Upward Pass

5. Downward Pass and Final Summation

Our parallel FMM algorithm specifically solves the last two phases (Upward pass, Downward pass and Final

summation stage) on the GPU. These phases are the ones which take more than 97% of the run time (not taking
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visibility phase into account). Hence we first implemented these two stages on the GPU while the Octree

Construction and Interaction List Construction stages were performed on the CPU. We assume, as a part of

pre-processing step, that we have been given an octree constructed for the input 3D model along with the

interactions lists for each of the octree nodes (containing only visible nodes). The octree can be constructed on

the CPU or on the GPU while the interaction lists construction happens on the CPU. Visibility between octree

nodes is determined by using a CPU-GPU combo algorithm detailed in [GAC08].

7.4 GPU-based Parallel Octree Construction for FMM

The FMM enables an answer to the N-body problem of GI to be evaluated in just O(N) operations. One of

the main insight that makes this possible is the underlying hierarchical structure of the Octree. Three different

parallel octree construction algorithms were designed so as to be used with the parallel FMM-GPU framework.

The algorithms are detailed in [Gor08].

Work on achieving fast, GPU-based diffuse global illumination solver for point models using parallel

octrees, V-map and FMM algorithms was completed last year [Gor08]. However, to capture all the GI

effects (like glossy reflections, refractions and caustics) we require a specular-effect solver as well. We

discuss, in section § 8 how we handle the specular effects like caustics, reflections and refractions with

the help of a fast, first-object intersection solver. The ray-tracer and caustics-generator are implemented

on the GPU using CUDA.

8 Specular Inter-reflections

After having seen the algorithms and techniques for computing diffuse global illumination on point models, let

us now focus on computing specular effects (reflections and refractions) including caustics for the point models.

These, combined with already calculated diffuse illumination gives the user a complete global illumination

solution for point models.

First we would like to study the behavior of light paths in a scene comprising of both the diffuse and specular

objects. In addition we should also have a look at what changes need to be made in our diffuse GI algorithms

for such scenes. We then look into the details of how and what all specular effects to achieve.

8.1 Light Paths in a Diffuse-Specular Scene

Consider the scene given in Fig. 8. It shows two specular spheres placed in a room with diffuse walls. Light

emitted from the light source on the ceiling can take up 4 different paths, viz, LDD, LSD, LDS and LSS

(l-light, D-diffuse, S-specular). The figure shows all 4 different paths. We want to capture all these paths to get
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Figure 8: Example showing the behavior of light w.r.t the diffuse and specular objects. The light emitted can
take up 4 different paths, viz LDD, LSD, LDS, LSS. Figures show all the 4 paths.

both the diffuse and specular GI effects in the given scene.

As we have seen in § 7, to capture the diffuse effects we need to take care of the LDD paths taken by the light.

However, now the problem gets a bit more complicated since the new path LSD also deposits energy on the

diffuse component in the scene. Further, the deposited energy must be absorbed and then distributed equally

in all the hemispherical directions, similar to what happens in LDD paths. Thus, to capture the LSD or in

general LS+D energy transfers correctly, we pre-process these transfers and store the transferred energy at the

corresponding diffuse point objects. We then apply our FMM-based radiosity approach, also taking this stored

energy due to LS+D paths into account, to take care of the LDD paths.
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Figure 9: Figure on left shows surfaces A and B being occluded from the light source by an opaque sphere.
A and B never receive any light. Figure on the right shows a similar scene setting except the sphere is now
a transparent, refractive one. LSD path transfer energy from the light source to A, while the LDD path
thereafter, transfers the stored energy at A to B.

Figure 9 shows one such example. Both surfaces A and B are invisible to the light source due to the

occluding sphere. In the first case (figure on left), A and B both will be in shadow due to opaque sphere

occlusion. On the other hand, in the second case, since the sphere is a refractive and transparent, we handle the

transfer of light via LSD path first, depositing some energy at A. We then call the FMM procedure to take care

of LDD paths, thereby transferring the stored energy from A to B. Note that during FMM none of the energy

will be transferred from the light source to either A or B.

Since the energy transfers between specular and diffuse have already been pre-processed, we must now make

sure these transfers don’t happen while performing FMM for LDD path interactions. Thus, while performing

FMM, neither is energy contributed from specular components in the scene nor is energy distributed to any

specular components in the scene. V-Map construction remains the same.

In case the light takes up LDS path or in general LD+S+D path, we simply ignore its contribution. Since the

ray of light emitted from the source first hits the diffuse object, the energy emitted from the diffuse object for

the secondary ray, in the direction of some specular object, is very negligible. Such paths are hence not taken

care of. LSS paths are nothing but LS+D paths and are handled in a similar fashion.

Thus, we need to capture the LS+D paths before the LDD paths to take care of specular interactions with the

diffuse objects. This LS+D paths taken up by the light give rise to one of our desired effects: The Caustics!

Note that whatever light paths we have studied so far are view-independent i.e. the effects captured by these

paths remain the same irrespective of the the viewing co-ordinates and angles. However, many specular effects

of reflections and refractions are view-dependent. To capture these effects from our specific view, we need to

trace rays, now not from the light source, but from our eye/camera. This backward tracing of ray has a common

name in graphics industry, Ray-Tracing
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8.2 Ray-Trace Rendering

Any ray-tracing algorithm starts by defining a camera (or ray origin), ray directions and a view-plane (refer

Fig. 10).

View Plane

Eye/Camera

Diffuse Splat

Specular Reflective Splat

Specular Reflective Splat

Specular Refractive Splat

Figure 10: Ray-Tracing situation. The view plane is a grid of pixels, and a ray (or multiple rays) is sent through
each pixel to find object intersections. It recurses till it finds a diffuse surface or bounces more than the pre-
defined limit. The color of the pixel is addition of all colors at the intersection point of the object the ray has
hit along its path

Ray tracing is so named because it tries to simulate the path that light rays take as they bounce around

within the world - they are traced through the scene. The view plane is divided into a grid of pixels and a

ray (or multiple rays in case of super-sampling) is sent through every pixel into the scene. Our objective is

to determine the color of each pixel as the ray traverses the scene undergoing reflections and refractions as it

intersects the scene objects.

This pass of ray-Tracing is performed after we have captured and stored all the view-independent effects. Thus

while we trace the ray, the path taken is either ES+D or ED (E-Eye). Whenever a ray hits a diffuse surface,

either directly from the eye or after multiple bounces from the specular objects, the value stored at that diffuse

intersection object is read back. This value is nothing but the contributions at that intersecting object from

the LS+D and LD+ paths captured previously. To summarize, to get complete GI effects, we consider the

following path LS ∗DS ∗ E.

After having known now what problem we are trying to solve, let us see how we capture these light paths and

eventually the specular effects.
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8.3 Previous Work: Specular Effects on Point Models

Attempts have been made to get these effects. Schaufler [SJ00] was the first to propose a ray-tracing technique

for point clouds. Their idea is based on sending out rays with certain width which can geometrically be de-

scribed as cylinders. The intersection detection is performed by determining the points of the point cloud that

lie within such a cylinder followed by calculating the ray-surface intersection point as distance-weighted aver-

age of the locations of these points. The normal information at the intersection point is determined using the

same weighted averaging. This approach does not handle varying point density within the point cloud. More-

over, the surface generation is view-dependent, which may lead to artifacts during animations. Wand [WS03]

introduced a similar concept by replacing the cylinders with cones, but they started with triangular models as

their input instead of point models. Adamson [AA03] proposed a method for ray-tracing point-set surfaces but

was computationally too expensive, the running times being in several hours. Wald [WS05] then described a

framework for interactive ray-tracing of point models based on a combination of an implicit surface represen-

tation, an efficient surface intersection algorithm and a specifically designed acceleration structure. However,

implicit surface calculation was too expensive and hence they used ray-tracing only for shadow computations.

Also, the actual shading was performed only by a local shading model. Thus, transparency and mirroring re-

flections were not modelled. Linsen [LMR07] recently introduced a method of Splat-Based Ray-Tracing for

Point Models handling the shadow, reflections and refraction effects efficiently. However, they did not consider

rendering caustics effects in their algorithm.

Our proposed method successfully gets all the desired specular effects (reflections, refractions and caustics)

along with producing a time efficient algorithm for the same. We also fuse it with the diffuse illumination

algorithm to give a complete global illumination solution.

Our proposed algorithm follow the Photon Mapping (for polygonal models) [Jen96] strategy closely. Therefore,

we start by giving a brief overview of this technique and then follow up with our own algorithms for achieving

specular effects.

8.4 Photon Mapping

The global illumination algorithm based on photon maps is a two-pass method. The first pass builds the photon

map by emitting photons from the light sources into the scene and storing them in a photon-map data structure

when they hit non-specular objects. There are two types of photon maps viz.

• Caustic Photon Map: contains photons that have been through at least one specular reflection before

hitting a diffuse surface: LS+D.

• Global Photon Map: an approximate representation of the global illumination solution for the scene for
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all diffuse surfaces: L(S|D)∗D

(a) (b)

Figure 11: Figure 11(a) shows the construction of the caustics photon map with a dense distribution of pho-
tons,and Figure 11(b) shows the construction of the global photon map with a more coarse distribution of
photons.

The construction of the photon maps is most easily achieved by using two separate photon tracing steps in

order to build the caustics photon map and the global photon map. This is illustrated in Figure 11 for a simple

test scene with a glass sphere and 2 diffuse walls. Figure 11(a) shows the construction of the caustics photon

map with a dense distribution of photons,and Figure 11(b) shows the construction of the global photon map

with a more coarse distribution of photons.

The second pass, the rendering pass, uses statistical techniques on the photon map to extract information about

incoming flux and reflected radiance at any point in the scene. The photon map is decoupled from the geometric

representation of the scene. This is a key feature of the algorithm, making it capable of simulating global

illumination in complex scenes containing millions of triangles, instanced geometry, and complex procedurally

defined objects.

In the rendering pass, the photon map is a static data structure that is used to compute estimates of the incoming

flux and the reflected radiance at many points in the scene. To do this it is necessary to locate the nearest

photons in the photon map. This is an operation that is done extremely often, and it is therefore a good idea to

optimize the representation of the photon map before the rendering pass such that finding the nearest photons

is as fast as possible.

The data structure should be compact and at the same time allow for fast nearest neighbor searching. It should

also be able to handle highly non-uniform distributions this is very often the case in the caustics photon map.

A natural candidate that handles these requirements is a kd-tree.
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8.5 Our Approach

We now present our algorithm to generate specular effects for point models. We apply a similar path/phases as

seen in photon mapping algorithm, but change some basic algorithms used to generate those specular effects.

8.5.1 Octree Creation: Changed

The octree we use for diffuse global illumination is constructed in a top-down fashion. It goes on sub-dividing

a node into 8 parts until each leaf has maximum of k points inside it (eg. Construct an octree till each leaf

has max. of 10 points). If k here is pretty small, we may well assume that points belonging to a particular

leaf belong to a same surface. Now we change this construction algorithm slightly (Fig. 12) by modifying

Root

D D D D D DS S S S SLeaves

D – Leaf containing points with diffuse properties
S – Leaf containing points with specular properties

An internal node can contain 
both diffuse and specular 
points in its subtree

Figure 12: Modified octree for a scene containing both diffuse and specular points

the termination criteria, so as to accommodate specular points too. We now terminate an octree construction

process if a particular leaf has less than k points and all the points in a particular leaf are either specular or

diffuse. Thus, a leaf cannot have both specular and diffuse points inside it. We term a leaf containing just

diffuse points as a diffuse leaf and the leaf containing specular points as a specular leaf.

8.5.2 Caustics on Point Models: LS+D path

This phase achieves the specular view-independent effect of caustics. It takes the octree constructed on point

model as input along with the respective V-Map. The output of this phase is sent as an input to the FMM

algorithm (LDD paths) to consider the diffuse interactions.

The caustic effect generation algorithm consists of following phases:

• Generate caustic photons at the light source
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• Trace photons (LS+D) in the scene and deposit the photon on a diffuse surface after at least one hit from

a specular surface. Every point in the model has some radius associated with itself (radius is an input

parameter) which gives an approximate local surface area the point covers. We coin these points with

their associated radius as splats. We thus, use a Ray-Splat intersection algorithm to find the intersection

of photons with these splats.

• Form a kd-tree on the caustic photon map for fast search of photons during ray-tracing. After tracing

photons through the scene, we need to store them when they hit the diffuse surface (LS+D). Note that

the photons are only stored when they hit diffuse surfaces (or, more precisely, non-specular surfaces). The

reason is that storing photons on specular surfaces does not give any useful information: the probability of

having a matching incoming photon from the specular direction is zero, so if we want to render accurate

specular reflections the best way is to trace a ray in the mirror direction using standard ray tracing. For

all other photon-surface interactions, photon-data is stored in a global data structure, the caustic photon

map. Given the caustic photon map, we can proceed with the rendering pass. The photon map is view

independent, and therefore a single photon map constructured for an environment can be utilized to

render the scene from any desired view. It can thus be viewed as a pre-computation step.

• Render using ray-tracing (view-dependent)

The path taken by photons to construct a caustic map is LS+D. Note that we do not continue tracing the

photon after it hits the diffuse surface (the path traced is LS+D and NOT LS+D+), as the contribution of

that photon drastically reduces, knowing that diffuse surface have a high enough absorption coefficient and it

sends equal output energy in all hemispherical directions. Thus, the energy of the photon sent in one of the

thousand hemispherical directions is very very low, and hence ignored. For the same reasons, we also do not

send photons from the light source onto the diffuse splats to aid in generating caustic effects.

8.5.3 Photon Generation

The photons emitted from a light source should have a distribution corresponding to the distribution of emis-

sive power of the light source. If the power of the light is Plight and the number of emitted photons is ne, the

energy of each emitted photon is

Pphoton = Plight/ne.

For the light source, we define the maximum number of photons (ne) it can contribute (eg.400000). Since

the caustic effects generated on a diffuse surface are caused after at least one specular hit by the ray originating
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from the light source, we can safely send rays from the light source only to the “specular” leaf-nodes in the

octree visible to the light source and the light source’s ancestors.

The visible list (part of the V-Map) of the light source (and its ancestors) assists in sending rays only to visible

specular leaf nodes. This accounts for a lot of time-saving, as we don’t have to send packets of rays in every

direction from the light source searching for the probable caustic generators (as in [DBMS02] [GWS04]).

r

c

-- Distance from centroid of the disk to 
center of the splat

-- Radius of the splat

If “D” is the distance from centroid 
of the disk to center of a splat plus 
the splat’s radius, the radius “r” of 
the disk is set to the “maximum D”

Figure 13: Radius of an average disk (of a particular leaf node) is equal to the maximum “d”, where “d” is the
distance from the center of the disk to the splat’s center plus the radius of that splat

Moving further, for a particular specular leaf nodeA visible to the light source, we need to know how many

photons to shoot in the direction of A. As we know, every leaf node has an average disk D [Gor07] with its

center being the centroid of the points in the leaf and radius r (Fig. 13) equal to the maximum “d”, where “d”

is the distance from the center of the disk to the splat’s center plus the radius of that splat. Thus to find how

many photons to shoot in the direction of node A, we find the solid angle subtended by this average disk D of

A from the light source (Fig. 14).

4π is the total solid angle for a light source. We find the percentage of the total area that is covered by the disk

of A, when we project it onto a unit sphere surrounding the light source. This multiplied by the total number

of photons(ne) gives number of photons to shoot at this node.

number Of Photons = ne ∗ solidAngle(A)/(4π)

A solid angle subtended at a point is given by,

SolidAngle = (Area covered× cosθ)/d2

where d is the distance between the object and the point which subtends the solid angle, and cosθ gives the

inclination of surface towards that point.
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Unit Sphere around 
the light Source

Subtended Solid Angle by 
the average disk of a node 
with centroid “c”, radius “r” 
and average normal “n”

Figure 14: Solid Angle subtended by an average disk of some specular leaf node around the light source. It
gives you an approximate area covered by the node and determines the number of photos to be sent in that
particular direction

Referring Fig. 14, Let d be the distance between the light source point and the node A’s centroid and Dist

be the distance vector (specifically d = ‖Dist‖). Let n be the average normal of the specular leaf A. The dot

product DP between this distance vector Dist and the cell’s average normal n tells us how much of the cell’s

surface is facing the given light source point.

Area covered by average disk of A is πr2. Thus the solid angle subtended by A is

SolidAngle node A = (πr2 ×DP )/d2

Once we know the solid angle, we know that some x photons needs to be shot in the direction of A. Leaf

A may well have several points inside it and each point in turn has a splat with some radius associated with it.

So, next we find how many photons must be sent to each splat within leaf A. If NP are the number of points

in A, then we send

PPS = x/NP photons per splat

where PPS = photons per splat. The remainder of photons i.e. x%NP are distributed randomly to splats in

A. Thus there will be some splats in A receiving 1 extra photon as compared to other splats.

After knowing PPS for every splat in A, we need to know the photon-hit locations on a particular splat.

Uniform photon-hit grids on a splat will not give good results as it generates artifacts in caustic effects. Hence,

we require a random sampling on each disk, the number of random points generated being equal to PPS for
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that splat. Any good random number generator can be used for the same.

Thus we now know where to send the photons and how many photons to send in each particular direction from

the light source. The generation of photons at the light sources, and sending them to the visible specular

nodes, is done in parallel on the GPUs, i.e. each thread generates one photon and sends it to the respective

visible specular node. This completes the photon generation and primary ray trace ,using the visible list, from

the light source.

8.5.4 Photon Tracing

Once the photon has been emitted from the light source, we directly place the photon on the splats of some

specular leaf A without actually tracing through the octree with the help of visible list of the light source node

and its ancestors. On hitting a specular leaf, a photon is either transmitted (refracted) or reflected depending on

the material properties of the splat it intersects.1 A photon either reflects or refracts. Depending on whether it

reflects or refracts, a new ray direction for the photon is chosen and the photon is sent out in that direction.

Figure 15: A secondary ray (in brown) is generated in the green leaf. To find the first object of intersection
along the ray, we need to get to the red leaf next to the green one. We find the intersection point of the ray with
the green leaf, on the plane through which the ray exits (shown in glow), increment along the ray by ∆, and the
new point i. We now traverse from the root downwards, to find which leaf contains point i. We eventually land
up at the red leaf.

We now need to trace this refracted or reflected photon, along the ray-direction, through the octree, until it

hits another diffuse or specular object. We start by finding the next octree leaf along the ray-direction. To find

this next leaf, we need to find the intersection point on the plane of the current leaf from where the ray exits,

increment by ∆ along the ray direction from the intersection point and find the leaf containing this new point

(Fig. 15). We provide a fast method to find this containing leaf in § 8.5.11.

If the rays hits a filled leaf cell of the octree, intersection of the ray with all splats stored within that cell is

checked for. If the ray does not intersect any of the splats stored in that cell or if the cell is empty, the algorithm
1Note that some part of a photon can be reflected and some be refracted at the same time, say with a glossy translucent splat, but

such cases are a part of future work.
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proceeds with the adjacent cell in the direction of the ray. If the ray intersects a specular splat stored in the

current cell, it computes the precise intersection point and generates the new reflected/refracted ray. If the ray

hits multiple splats stored in the current cell, the algorithm computes the intersection points and pick the most

appropriate one. On the other hand, if the ray hits a diffuse splat, it deposits the caustic photon energy on that

splat. The above algorithm thus stops when we reach a diffuse surface and deposit the photon there.

We use the parallel compute capabilities of the GPU to trace photons. It traces multiple photons at the

same time in the scene. We use CUDA programming environment to implement the above algorithms.

8.5.5 Normal Field Generation

0Dj
-1 1

uj

cj

nl

pl

pi

ni

Figure 16: Generation of normal field (in green) over disk Dj from normals at splats covered by the average
disk Dj . Normal field is generated using local parameters (u, v) ∈ [−1, 1] × [−1, 1] over the disk’s plane
spanned by vectors uj and vj orthogonal to normal nj = ni. The normal of the normal field at center point cj
may differ from ni

When a ray intersects a splat, the new reflected or refracted direction is calculated using the normal of the

intersected splat. Thus normals at splats play a pivotal role in deciding the directions of reflected/refracted rays.

We thus pre-process (during octree construction) and store for every splat a uniformly varying normal field

which gives an accurate normal at any point of intersection on the splat.

Splats in their general form define a piece-wise constant surface. In particular, each splat has exactly one

surface normal assigned to it. Assuming that the point cloud was obtained by scanning a smooth surface,

the application of the rendering technique should result in the display of a smoothly varying surface. Since

ray tracing is based on casting rays, whose directions depend on the surface normals, there’s a need to define

smoothly varying normals over the entire surface of each splat. The normals at each point are used to determine

a smoothly varying normal field defined over a local parameter space of the splat. It can be beneficial to

consider further surrounding points and their normals for the normal field computations. Details on the normal
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field generation [LMR07] are presented below.

In order to generate a smooth-looking visualization of a surface with a piece-wise constant representation,

there is a need to smoothly (e. g. linearly) interpolate the normals over the surface before locally applying the

light and shading model. Since we do not have connectivity information for our splats, we cannot interpolate

between the normals of neighbored splats. Instead, we need to generate a linearly changing normal field within

each splat. The normal fields of adjacent points should approximately have the same interpolated normal where

the splats meet or intersect.

Since we have an average disk representing all points in a leaf, we generate the smooth varying normal field

on this disk (refer Fig. 16).

Let Dj = (cj , nj , rj) be one of the disks. cj represents the centroid of the node (center of the disk), nj repre-

sents the average normal generated by using splat’s normals, belonging to that node and rj represents the radius

of the disk. In order to define a linearly changing normal field over the disk, we use a local parameterization

on the disk. Let uj be a vector orthogonal to the normal vector nj and vj be defined as vj = njxuj . Moreover,

let ‖uj‖ = ‖vj‖ = rj . The orthogonal vectors uj and vj span the plane that contains the disk Dj . A local

parameterization of the disk is given by

(u, v) 7→ cj + uuj + vvj

with (u, v) ∈ <2 and u2 + v2 ≤ 1. The origin of the local 2D coordinate system is the center of the disk Dj .

Using this local parameterization, a linearly changing normal field nj(u, v) for disk is defined Dj by

nj(u, v) = −→n j + uνjuj + vωjvj

The vector −→n j describes the normal direction in the disks center. It is tilted along the disk with respect to the

yet to be determined factors νj , ωj ∈ <. Figure 16 illustrates the idea.

To determine the tilting factors νj and ωj is exploited the fact that the normal directions are known at the points

of point cloud P that are covered by the average disk. Let pl be one of these points. pl is projected onto the

disk, local coordinates (ul, vl) of pl are determined, and the following equation is derived

nl = −→n j + ulνjuj + vlωjvj

where nl denotes the surface normal in pl. Proceeding analogously for all other points out of P covered by

the disk Dj , a system of linear equations is obtained with unknown variables νj and ωj. Since the system is

over-determined, it can only be solved approximately to get the values of νj and ωj.

8.5.6 Ray Splat Intersection

When a ray hits a node, we check for its intersection with individual splats. We find the splat with nearest

intersection. If the splat is a specular one, we use the normal field of the average disk to get the appropriate
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Figure 17: (a) When the ray R hits splat S, we do not return the splat’s normal ns. Instead we get the normal
at the intersection point i from the normal field generated over that average disk (with center c) and return the
interpolated normal ncs. (b) Ray R intersects splat Sj at point i and is reflected. The reflected ray R

′
intersects

splat Sj+1 at point i+ 1. Since splats Sj and Sj+1 are over-lapping, intersection point i+ 1 should be ignored.
This behavior is achieved by not considering intersection points within an ∆ neighborhood of i. The dotted
circle in red with center i and radius ∆ shows this region

normal at the intersection point. Note that we perform intersection of the ray with individual splats, but use

the normal field generated on the average disk to get the appropriate normal at the point of intersection. This

assumes the points belonging to the same leaf belong to the same surface (refer Fig. 17(a)). Further, when a

splat Sj+1, the ray intersects, is very close (at a ∆ distance) to the splat Sj the ray has originated from, we

ignore that intersection assuming the intersected splat Sj+1 belongs to the same surface as the origin splat Sj

(refer Fig. 17(b)).

Once the ray hits a specular splat, we need to calculate the reflected or the refracted ray (refer Fig. 18). Let
−→
i be the incident ray entering the node. Say it intersects a splat i. Let θi be the angle between the normal n

at the intersection point (derived from the normal field of that node) and the incident ray
−→
i . If the ray reflects,

then let −→r be the new reflected ray. If it refracts, then let
−→
t be the new refracted/transmitted ray. Assume η1

to be the index of refraction of the medium the incident ray enters from and η2 is the index of refraction of the

intersecting splat. θt is the angle between the new refracted ray and the inverted normal n.

We now calculate the new reflected and the refracted direction for the ray using the following equations:

−→r =
−→
i − 2cosθi−→n )

−→
t = η1

η2

−→
i − (η1η2 cosθi +

√
1− sin2θt)−→n

with,

cosθi =
−→
i · −→n
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Figure 18: An example showing incident, reflected and transmitted rays

Surface Boundary

i

t

1

2

n

Case of Total Internal Reflection. Instead of 
incident ray “i” getting transmitted/refracted 
to ray “t”, it is reflected

TOTAL INTERNAL REFLECTION

Figure 19: The highlighted incident ray is reflected instead of being transmitted. It is a case of total internal
reflection

sin2θt = (η1η2 )2(1− cos2θi)

In case of refraction, there’s a condition that limits the range of incoming angles θi. Outside this range, the
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refracted direction vector does not exists (Fig. 19). Hence there is no transmission. This is called total internal

reflection. The condition is:

sin2θt ≤ 1

It can only happen if one goes from a denser material to a less dense material (e.g. glass to air). This is

because sin2θt can become greater than one if η1η2 > 1.

8.5.7 Photon Storing

While ray-trace rendering, a ray may hit any point in the scene. To know whether a caustic has been formed at

that point, we need to locate the nearest caustic photons stored in the photon map. This is an operation that is

done extremely often, and it is therefore a good idea to optimize the representation of the photon map before

the rendering pass such that finding the nearest caustic photons is as fast as possible.

The data structure should be compact and at the same time allow for fast nearest neighbor searching. It should

also be able to handle highly non-uniform distributions this is very often the case in the caustics photon map.

A natural candidate that handles these requirements is a kd-tree. Details on how to construct and search in a

kd-tree are available at [Wikb]. We use the ANN:A Library for Approximate Near neighbor Search [MA] for

constructing and searching through the kd-tree.

Discussion: To summarize, we have seen how to generate the caustic photons, how many to send in the desired

direction, with what intensity, trace them through the scene and finally deposit them on the diffuse surface.

We form a kd-tree on the deposited caustic photons, thereby aiding fast retrieval of the same while ray-tracing.

Further, we generate, trace, and store each caustic photon in parallel using GPU (with CUDA) to achieve speed-

ups in the caustic generation process.

Let us know look into some details of how we perform ray-trace rendering of the given point model scene.

§ 8.5.8 gives an overview of ray-tracing in general and how our algorithm fits into the ray-tracing framework.

§ 8.5.9 extends the ray-tracing algorithm of § 8.5.8 to CUDA based GPUs to provide a fast, close-to interactive

ray-tracer.

8.5.8 Ray-Trace Rendering using Octrees

This section gives insights on how we trace the rays from the view-dependent plane through the octree to get

to the first object of intersection. As we know, any ray-tracing algorithm starts by defining a camera (or ray

origin), ray directions and a view-plane (refer Fig. 10).

The first step of ray-tracing is to generate primary rays from the camera and trace them in the scene till they

intersect an object. As in our case, we divide the scene into an octree. The steps on how we trace the primary

ray are presented below.
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-- Delta increment to the ray
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(node highlighted in red) , proceed to the next node along 
the ray direction ( node highlighted in blue)  , else, do ray-
splat intersections (node highlighted in green)

i+1
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Figure 20: Primary rays are sent from the camera into the scene. To compute the intersection of the ray with
the octree, a ray-box test is performed. The intersection point is incremented by ∆ and the leaf is searched
which contains this intersection point (done by traversing down from the root node). If the ray has hit an empty
octree node, it advances to the next node in the ray direction, else it computes ray-splat intersections with the
splats in the filled leaf node

1. Check if the ray (for each pixel) intersects the octree. We perform this by a ray-box intersection test,

assuming the root of the octree as a cube. If the ray does not intersect, color the pixel to the background

color

2. If it intersects, get the intersection point. Increment along the ray by ∆ from the intersection point

(Fig. 20)

3. Assuming ∆ to be very small, this increment gives us a point inside the octree

4. Find the leaf which contains the point. This being a log(N) operation, is a quite time-consuming step

which is applied repeatedly many a times while ray-tracing. Optimizing this step provides for a lot of

desired speed-ups to achieve close to interactive ray-tracing. § 8.5.11 explains our fast, optimized octree

traversal algorithm.

5. In case, we find a empty node containing that point,

• Find the plane of the node’s bounding cube from where the ray will exit
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• Find the intersection point of the ray with the plane

• Increment along the ray by ∆ and get the new point (point i+ 1 in the blue node, Fig. 20)

• If the new point is outside the octree, assign the background color

• If not, then find the leaf containing the point and repeat from step 4

6. In case, we find a filled-leaf containing the point,

• Do ray-splat intersections with all splats inside the leaf

• Get the appropriate nearest splat.

• Generate the secondary ray if the intersected splat is specular, else read the diffuse color value from

the splat.

• If ray does not intersect any of the splats inside, then find the exit plane for the ray from that leaf

• Find the intersection point of the ray with the plane and increment along the ray by ∆ (i+ 1 in the

gray node, Fig. 20)

• If the new point is outside the octree, assign the background color

• If not, then find the leaf containing the point and repeat from step 4

Thus, for primary rays starting from the camera position (or eye point) outside the octree, the intersection

of the ray with the bounding box of the octree is computed, i.e., with the cell represented by the octrees root.

The leaf cell to which the intersection point belongs is determined, and then algorithm continues from there.

From then on, primary and secondary rays can be treated equally.

If the rays hits a leaf cell of the octree, intersection of the ray with all splats stored within that cell is checked for.

If the ray does not intersect any of the splats stored in that cell or if the cell is empty, the algorithm proceeds

with the adjacent cell in the direction of the ray. If it ends up leaving the bounding box of the octree, the

respective background color is reported back. If the ray hits a diffuse splat, it reads the the color value of that

splat. Right now, we are assuming that a splat has uniform color, however this can be improved by having a

color gradient defined on a splat. If the ray hits multiple splats stored in the current cell, the algorithm computes

the intersection points and pick the most appropriate one.

In addition to the diffuse color, we search the kd-tree, defined to store the caustic map (§ 8.5.7), if there are any

caustic photons deposited in the near vicinity. To search through the kd-tree we can apply any of the following

two searches:

• Fixed Radius Search: Find maximum of k or all photons within a fixed radius
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• K-near neighbor search: Search for k nearest photons from the query point, irrespective of their distance

from the query point

We right now apply the fixed radius search.

On the other hand, if the intersected splat has specular properties, we generate the new reflected or refracted

ray directions (§ 8.5.6) depending on the splat’s material properties, and the normal field defined over the

node(§ 8.5.5). In addition, we apply a shading model (Phong’s shading) to get the specular/glossy highlights.

The color of the pixel, which the ray represents, now takes on some part of diffuse color the specular material

is made of, plus the color the reflected or refracted ray returns. The secondary reflected or refracted ray inten-

sity is reduced by some percentage depending on the absorption coefficient of the specular material (which is

generally quite low).

The secondary rays are traced in the scene similar to the primary rays. Every time a secondary ray hits a

specular surface, new reflected or refracted ray is generated, the shading model applied, the new ray’s intensity

reduced, and the color of the pixel, the ray represents, updated with the addition of secondary color to whatever

color the pixel had so far. We stop until we hit a diffuse surface or the ray has bounced more than b times, b

being some pre-defined maximum bounce limit set by the user.

Discussion: To summarize, we need to do a ray-traversal along the primary/secondary rays to do find first ob-

ject of intersection along the direction of the ray. Note that there is no need to generate shadow rays at any

intersection point as the shadows are already pre-computed while performing diffuse interactions. Issues

like what shading model to use on specular objects, handling both reflective and refractive objects, blending of

color in case of multiple splat hits in a node, blending of pixel color in case of super sampling etc. needs to be

resolved.

8.5.9 Ray-Tracing Point Models using CUDA-GPU

This section extends the algorithm provided in § 8.5.8 to the CUDA-GPUs for achieving good speed-ups. We

use the parallel pipelining architecture of GPUs to perform parallel and fast ray-tracing of the given point model

scene. Details on CUDA and GPUs can be found at [CUD].

8.5.10 Octree Data Structure on the GPU

We make use of the texture memory on GPU to implement octrees, the primary reason being the fast texture

cache available on CUDA GPUs. If we get a sufficient number of hits in the cache, it is comparable to accessing

data from the fast shared memory of the GPU.

1-D textures defined using CUDA allows for 227 elements to be accessed, thereby allowing us to define quite a
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deep octree. Each location in the texture is called a texel. A texel was primarily used for storing color values

(Red (R), Green (G), Blue (B), Alpha (A)). Each of these values can be 8−bits or 32−bits in size. Thus a texel

can store minimum of 32− bits of information to the maximum of 128− bits. We make use of these texels to

store the octree nodes and point data (instead of color values). Note that we want to minimize the storage per

node so that maximum number of nodes are present in the texture cache, and hence maximum cache hits are

possible.

To achieve a highly storage-efficient octree, we modify the octree to a N3 tree. With N = 2 this means that

every internal node has exactly 8 children. Thus even if a node has for example 6 filled children nodes and 2

empty nodes, we even store the 2 empty nodes in addition to the 6 filled nodes.

Pointer to I1 ‘s First Child

E E E E EL LL L L LLL L LLLLI1 I2

Pointer to I2 ‘s First Child

All 8 children of I1

grouped together
All 8 children of I2

grouped together

E – Empty Node

L – Leaf Node

I – Internal Node

Octree Node Pool 
in Texture memory

(a)

Node Texel – 32 bits

R G B A

8 bits 8 bits 8 bits 8 bits

30 bits used for storing address of 
the first child (if Internal Node) or 
address to the point data in data 
pool (if node is a leaf)

1 bit to check if the 
current node is empty

1 bit to check if the 
current node is a leaf

(b)

Figure 21: (a) Octree Node-Pool in texture memory of the GPU. All 8 children of any internal node are stored
together in contiguous memory locations in the nodepool. (b) Every location in the nodepool is a 32 − bits
texel. It tells the address of the first child, whether the current node is a leaf or internal node and whether it is
empty or not

As shown in Fig. 21 (a), all children of a node are grouped together. This saves memory, because a node

now needs just a single pointer to all its 8 children, thereby compromising the extra space taken up by empty

nodes. Each node (internal or leaf) is stored as a 32 − bit texel (Fig. 21 (b)). The first 30 − bits of the texel

holds the address of the first child of the internal node (the rest 7 children are stored contiguously in texture
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memory after the first child) or the address to the data in case the node is a leaf. The remaining 2 bits are used

to identify whether the current node is empty or is it a leaf. We call this a node pool.
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Figure 22: Figure shows 8 children of some internal node. All 8 children of any internal node are stored
in contiguous memory locations in the nodepool. Further, these 8 children are stored in the SFC order i.e.
according to their SFC index. In the figure, node 0 is stored before node 1, node 1 before node 2 and so on

Further, all the 8 children of any internal node are stored in some pre-defined order. We make use of a local

SFC ordering amongst the children (Fig 22). We store no other extra information in this memory-efficient

octree. Note that we do not require a parent pointer, as we always traverse downwards in the octree while

trying to figure the node containing some intersection point (§ 8.5.8). Further, the point data is also stored as

another 1D-texture. The details of the same are presented in § 8.5.12.

Thus, after having defined as to how the octree is stored in GPU’s texture memory, let us now take a closer look

at the math behind the octree traversal.

8.5.11 Fast Octree Traversal Algorithm

As seen in § 8.5.8, we need to trace along the ray. We find the ray’s intersection with the octree’s root, get the

intersection point (and increment by ∆), the leaf cell to which the intersection point belongs is determined, and

then algorithm continues from there.
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As mentioned above, each traversal starts from the root node. During the traversal, the active node is interpreted

as a volume with range [0, 1]3. The ray’s origin p ∈ [0, 1]3 (3 is the dimension) is located within this node. Note

that p is a vector with (x, y, z) components, each normalized to the range [0, 1]. Now, it is necessary to find out

which child-node n is contains ray-origin p. Thus if R is the root node, we let p ∈ [0, 1]3 be the point’s local

co-ordinates in the root’s volume bounding box, and find child node n of root containing p. If c is the pointer

to the grouped children of the root node in the node pool, the offset to the child node n containing p is simply

int(p ∗N), the integer part of multiplication between p and N (N = 2) (since we have the N3 tree (§ 8.5.10)).

The formula is:

n = c + int(p ∗N)

Child node 
(0,0)

Child node 
(0,1)

Child node 
(1,1)

Child node 
(1,0)

c

p = (0.6,0.4)

n = c + int(p * N)
= c + int((0.6*2, 0.4*2))
= c + int((1.2,0.8))

= c + (1,0)

Pointer to I1 ‘s First Child

EI1

All 4 children of I1 grouped 
together in N2 Tree

E – Empty Node L – Leaf Node I – Internal Node

Octree Node Pool 
in Texture memory

c

EL L

c + (1,0) = c + (y*2 + x*1)
= c + (1*2 + 0*1)
= c + 2

= Third Child 

jump of 2

Figure 23: Example node group in a node pool of a N2 tree with N = 2. This formula returns the value
c + (1, 0). c here is the pointer from the parent node to its first child in the nodepool. Value (1, 0) gives you
the child number (or the jump from the first child address) using the formula (y ∗2 + x∗1) i.e. (1∗2 + 0∗1)
(in case of 3D it will be (z ∗ 4 + y ∗ 2 + x ∗ 1)). This formula works because we store the 8 children node in
a specific SFC order

As explained in § 8.5.10, the child nodes are SFC ordered based on their location within the parent node.

Referring Fig. 23, we see the integer part of p ∗N gives us some x, y and z values. Given these values and the

SFC ordering we can figure out the child node which contains p.

Since the traversal is not finished yet, it is necessary to update the p to the range of the currently found child

node and continue the descent further. The appropriate formula to update p is:

p = p ∗N − int(p ∗N)
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The new p is the remainder of the p ∗ N integer conversion. Now the traversal continues with the above

mentioned formulae, and loops until a leaf (or an empty node) is found. After finding the node containing the

point, the algorithm continues as mentioned in § 8.5.8. Note that this is just the SFC based traversal algorithm,

except we step through the SFC values, level by level, by calculating it on the fly (using the above formulae)

instead of pre-calculating it and then stepping through the needed bits. In addition to it, it is important to note

that even though a new descent is needed everytime a node is left, mostly the same pointers in the structure will

be followed, thus the hardware texture cache is very well prepared and appropriate.

8.5.12 Point Data Structure on the GPU

As mentioned in § 8.5.10, the input point data is also stored as an 1-D texture in the texture memory of the

GPU. Every point is the input data has the following attributes:

• Co-ordinates of the point (x, y, z – 3 floats)

• Normal at the point defining the local surface (n1, n2, n3 – 3 floats)

• Diffuse-Color of the point (c1, c2, c3 – 3 floats)

• Radius of the splat around the point (r – 1 float)

• Material Identifier, which stores the material properties, like reflectance, transmittance etc of the point

(mID – 1 float)

Each float occupies 4bytes (32−bits) in memory. Thus, with every point we need to store a total of 11 floats

or 44bytes. Note that each texel can hold a maximum of 128− bits of information (32− bits corresponding to

each of the R,G,B and A values in the texel). Thus, we can store maximum of 16bytes of data in a single texel.

As a result, we require 3 consecutive texels to store one single point data (3x16 = 48 bytes). We call this the

datapool.

Thus, in the case where we assume a single point per leaf, the data pointer in the leaf located in the node pool,

points to the corresponding point data in this data pool. To access all the information corresponding to the

particular point, we have to access 3 consecutive texels in the data pool memory.

However, a leaf seldomly contains just a single point. We divide the octree in the fashion such that each leaf

contains maximum of k points (roughly k is 10 to 25). Thus, to access all the k points belonging to the specific

leaf, we store all the k points in a contiguous fashion in 1D data pool texture memory. As number of points

varies from one leaf to another, we need to store the begin and end location of that contiguous block of points

for every leaf (beginP and endP ). As the leaf node is the part of octree node pool, it can store only one 32−bit

location, and hence can’t store both its beginP and endP locations.
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Figure 24: A leaf in the nodepool points to some location in the Begin-End texture. This location gives us the
start of the contiguous block of points belonging to this leaf in the datapool (beginP). The next location in the
Begin-End texture gives us the end of the block of points for this leaf (endP). This location also signifies the
beginP for some other leaf in the nodepool. Each texel location in the Begin-End texture is 32− bits in size

Thus, we now declare one more 1D texture (Fig. 24), viz a Begin-End texture, each texel representing one

32 − bits value. Each texel stores the beginP for some leaf and the texel next to it gives the endP for that

specific leaf. The leaf in the node pool now stores the texture pointer to the location containing its beginP .

Thus to access any point data after reaching the leaf, we follow the leaf pointer to this texture where we access

the beginP and endP location values. These values gives us the limits to the points, located in the data pool,

belonging to the current leaf. Further note that we need not explicitly store the endP locations for a leaf, as the

value in the next texel is the beginP for some other leaf and endP for the current one (this is valid because we

construct the octree in a specific fashion [Gor08]). Thus the size of the texture is equal to number of leaves in

the tree and not twice the number of leaves.

8.5.13 Multiple Leaves Per Splat

Many a times we face a situation where a point belongs to a particular leaf, but the splat that it represents

intersects more leaves than the one the point belongs to (Fig. 25 (a)). In such a scenario, ray tracing might go

for a toss and produce artifacts if these splats are not added to every leaf it intersects (Fig. 25 (b)) or they are

not considered if the ray intersects that leaf. As seen in Fig. 25 (b), even though the ray is intersecting splat

S, it gives a NULL intersection, as the point P representing S is located in the neighboring leaf and not the

current one.
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Sj
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rj

(a) (b)

Figure 25: (a) A splat Sj’s center cj is located in one of the leaf nodes, but it intersects many leaves in the tree.
In a situation, if some ray passes through one of the leaves Sj intersects, we have to check the ray’s intersection
with Sj . Hence, splat Sj is inserted into all additional leaves it intersects (yellow cells) (b) It shows a situation
where although a ray R intersects splat Sj , Sj is not considered since it belongs to some other leaf node. This
would eventually end p with the raytracer giving wrong output or an output with artifacts

Thus, these additional splat insertions are necessary as splats have an expansion and may stretch over several

leaves. Hence, further splat insertions are made in the leaves, however we keep the structure of the octree the

same i.e. no additional sub-divisions are made.

Sj

E

Sj

E

(a) (b)

Figure 26: We check whether the edges of the bounding square of splat Sj intersect the planes E that bound
the octree leaf cell. (a) Sj is inserted into the cell. (b) Sj is not inserted into the cell. This test is only performed
if the first test (bounding box test) is positive
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Figure 27: A leaf in the nodepool points to some location in the beginEnd texture. This location gives us
the start of the contiguous block of points belonging to this leaf in the datapool (beginP). The next location,
now, gives the number of extra splats (say E extra splats) added to this leaf (in the case shown above E = 4).
The next E locations stores the addresses of these added splats. The location after this, gives the endP of the
current leaf or in other words, the beginP of the new leaf

Since performing such an exact cell-splat intersection is computationally rather expensive, we insert the

splats into leaf cells that potentially intersect the splat. For each splat Sj we traverse the tree top-down applying

a nested test for each traversed cell. The first test checks for splat Sj whether the axes-aligned box with center

cj and side length 2 · rj intersects the cell. If the test fails, tree traversal for that branch stops. For all leaf cells,

for which the first test was positive, we perform a second test. The second test uses the local parameterization

of the splat. The local parameters (0, 0), (0, 1), (1, 0), and (1, 1) define a 2D square that bounds the splat. We

check the position of these four points against the leaf cell. If all four points lie on one side of one of the six

planes that bound the leaf cell, the splat cannot intersect the leaf cell, see Fig. 25 (b). Otherwise, we insert the

splat into the leaf cell, see Fig. 26 (a).

This nested test is very simple and fast, yet produces no false negatives and only few false positives. False

positives means that we store a splat more often than necessary, which may impact the performance of the ray

tracing. False negatives, on the other hand, would mean that we miss some splats, which would actually impact

the correctness.

Adding splats to every intersecting leaf is easy, but it actually means adding 44 bytes of data per splat to every

leaf it intersects. This drastically can increase the memory requirements for the data pool texture memory. To

avoid this situation we store only the address of the intersecting splat (4 bytes) for a particular leaf instead of
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replicating the entire splat. Thus now, if a ray intersects a leaf, all the splats originally inside that leaf as well

as the splats from surrounding areas intersecting that leaf are checked for intersection with the ray.

We need to make some amendments in the Begin-End texture (as in § 8.5.12) so as to accommodate the ad-

dresses of these new splats. Referring Fig. 27, we see a leaf points to some corresponding location in the

Begin-End texture. This texel location stores the beginP for that leaf. beginP gives the beginning location

of the contiguous block of points belonging to that leaf in the data pool texture. The next texel location in the

Begin-End texture gives the number of extra splats (say E extra splats) added to this leaf. The next E locations

store the addresses of these added splats. The location after this, gives the endP of the current leaf or in other

words, the beginP of the new leaf. Thus, we add the addresses of those extra splats between the beginP and

endP of the current leaf in the Begin-End texture memory.

8.5.14 Coherent Rays and Super-Sampling

Sending out only a single ray per pixel might get us into aliasing troubles. Thus, it is appropriate to either

render larger images and downscale them for achieving anti-aliasing, or send multiple random rays per pixel

and do super-sampling. The final color of the pixel is some weighted average of the colors returned by the rays

shot from that pixel.

View Plane

Eye/Camera

View Plane

Eye/Camera

R1 R1

R4

R2
R3

R4

R3R2

Y Axis Y Axis

(a) (b)

Figure 28: As we can see (figure on left), rays take up more divergent paths if sent out in a linear fashion
as per pixel placements. If the rays are sent out w.r.t 2 × 2 pixel blocks, the coherence of these ray paths is
comparatively very high (figure on right)
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It however does mean that we are sending more number of rays for rendering a frame of the scene, thereby

increasing the running time linearly with the number of ray samples. However, this theory holds good if we

are performing ray-tracing on the CPU. While on GPU, larger number of rays per pixel will gather smaller

and smaller overhead, the reason being their coherence. Since all these rays travel the same path (mostly),

the amount of warp divergence will be very low. Further, referring Fig. 28, instead of sending rays in a linear

fashion as per the pixel placements, if we send them in a 2D block fashion, say rays from 2 × 2 pixel block,

the coherence of these ray paths is comparatively very high. Thus in a 2 × 2 pixel scenario, if we do 8×

super-sampling (8 rays per pixel), the entire warp (8× 4 threads) will be well behaved, mostly. Since, they will

mostly travel the same paths, the texture cache hits will also be high resulting in fast data access and execution.

Discussion: The data is arranged in 3 different textures stored on the GPU, one a node-pool, another a data-pool

and the third one (Begin-End texture) acting as a bridge between the node and data pool textures. Ray-Tracing

is performed as per the algorithm mentioned in § 8.5.8. Coherent, super-sampled rays are sent out and parallel

execution of finding intersections of those rays with the first-hit objects is performed on the GPU. The secondary

rays are appropriately generated and are traced till they hit the background or some diffuse surface. Fast, ray-

tracing algorithm combines advantages of the algorithm used to quickly find the leaf containing some point

while traversing along the ray and the usage of texture cache to get maximum hits for a set of coherent rays.

Appropriate reflection, refraction models are applied to compute the color values of every pixel in the scene.

8.5.15 Fusing Diffuse Global Illumination and Ray Tracing Together

Given a scene comprising of point based models, it is a mixed bag of both specular and diffuse objects. One

important issue is handling the fact that FMM based diffuse global illumination only covers the LDD∗ and

ignores any contribution from specular splats (LS+D), nor does it transfer any energy to them (LD∗S+), as

the paths LS+D and LDS∗ are handled during ray-tracing. Thus, while performing FMM on the given point

model scene [Gor07], we simply ignore the contributions of specular leaves during the pull phase and simply

ignore transfer of energy to specular leaves during the last stage of push phase of the FMM. As far as the V-Map

for the scene is concerned, no changes are made as the visible links between any diffuse and specular nodes or

between two specular nodes are simply ignored. The transfer of energy due to these links is accounted for in

ray-tracing. Thus, this completes the whole set-up of a complete global illumination package for point models.
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9 Results

As we have seen, all the algorithms have been worked out. However, the implementation is in progress and it

would take some while to get the results. I am hoping some results come up by the time of the APS presentation,

else the results will be mailed within some days after the presentation.

10 Conclusion and Report Summary

Point-sampled geometry has gained significant interest due to their simplicity. The lack of connectivity touted

as a plus, however, creates difficulties in many operations like generating global illumination effects. This

becomes especially true when we have a complex scene consisting of several models, the data for which is

available as hard to segment aggregated point-based models. Inter-reflections in such complex scenes requires

knowledge of visibility between point pairs. Computing visibility for point models becomes all the more diffi-

cult, than for polygonal models, since we do not have any surface or object information.

Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction be-

tween two primitives depends on the rest of the scene. One way to reduce the difficulty is to consider clustering

of regions such that their mutual visibility is resolved at a group level. Most scenes admit clustering, and the

Visibility Map data structure we propose enables efficient answer to common rendering queries.

V-Map was used in a diffuse global illumination solution using FMM on point models. Both the V-Map as well

as the FMM algorithm were implemented in parallel on the GPU which reported efficient speed-ups. V-Map

was used here to solve point-to-point view independent visibility queries between octree nodes.

We then extended V-Map to trace caustic photons through the point model scene and capture them on the target

diffuse surfaces. The visible list (part of the V-Map) of the light source (and its ancestors) assisted in sending

rays only to visible specular leaf nodes. This accounts for a lot of time-saving, as we don’t have to send packets

of rays in every direction from the light source searching for the probable caustic generators. Normal fields

were generated for each specular leaf so as to enable accurate secondary ray directions. The factors like num-

ber of photons to be send, and where to send were in sync with the emissive power of the light source and the

area occupied by the splat as seen from the light source (using the subtended solid angle). Kd-tree was used to

organize the caustic photon map, thereby enabling fast caustic photon retrieval during ray-tracing.

We used an efficient, but naive, octree traversal algorithm (on GPU) to do photon tracing as well as ray-trace

rendering. The texture cache on GPU was used for efficient octree storage and fast traversal through it, to get

answers to first-object intersection queries for ray-tracing. Point data was also organized into a 1D texture on

GPU memory, directly accessible by leaves of the octree. Provision for multiple leaves per splat was added to

avoid undesirable holes and artifacts during ray-trace rendering. Coherent rays and super-sampling was per-
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formed to aid a well behaved warp on GPU and avoid aliasing artifacts.

As the diffuse global illumination solution is view-independent, it provides us with an advantage of having an

interactive walk-through of the input scene of point models. However, specular effects being view-dependent

needs to be calculated for every new view-point in the ray-trace rendered frame. Thus, if specular effect gen-

eration takes a lot of time, we loose out of having an interactive walk-through of the scene. We desire not to

loose this advantage, and try to give a fast time-efficient algorithm for specular effects generation.
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Figure 29: Work-flow of my thesis. Capturing Global Illumination Effects on Point Models.

Issues pertaining to shading to be applied to specular glossy objects, blending of color in case a ray hits

multiple splats in an octree-leaf, blending of color for a single pixel in case of super-sampling, handling semi-

transparent and reflective plus refractive objects, setting up various material properties etc. needs to be handled.

We can say the base system is ready, only some tweaks and make-ups remain to make the output image beautiful

and visually pleasing.
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The diffuse global illumination and ray-tracing systems have been correctly merged so as to give a complete

global illumination package for point models. We, thus, have a two–pass global illumination solver for point

models. The input to the system is a scene consisting of both diffuse and specular point models. First pass

calculates the diffuse illumination maps, followed by the second pass for specular effects. Finally, the scene is

rendered using our ray-tracing technique. As my last note, I would like to provide, for your reference, a simple

work-flow of the work done by me during the entire period of my Ph.d and how each module gels with the

other to give a complete story to my thesis. Fig. 29 gives a pictorial view of the work-flow of my thesis.
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