
GPU-based Hierarchical Computations for View Independent Visibility

Abstract

With rapid improvements in the performance and pro-
grammability, Graphics Processing Units (GPUs) have fos-
tered considerable interest in substantially reducing the
running time of compute intensive problems. The solution to
the view-independent mutual point-pair visibility problem
(required for inter-reflections in global illumination) can, it
would seem, require the capabilities of the GPUs.

In this paper, various ways of parallelizing the construc-
tion of the Visibility Map (V-map, a description of mutual
visibility) are presented to lead the way for an implementa-
tion that achieves a speedup of 11 or more. We evaluate our
scheme qualitatively and quantitatively, and conclude that
parallelizing the V-map construction algorithm is eminently
useful.

1. Introduction

Abstractly speaking, the problem we consider in this pa-
per assumes that we have data in the form of points, possibly
in high dimensions. The data is large — approximately few
lakhs of points — and we therefore are forced with a hier-
archy. We wish to compute some relationships on this data
at various levels in the hierarchy. More concretely, consider
the motivating problems sketched below.

• SCIENTIFIC COMPUTING [1] The n-body problem
is the problem of finding, given the initial positions,
masses, and velocities of n bodies, their subsequent
motions as determined by classical mechanics. Direct
simulation is often impossible; in methods such as the
Barnes-Hut simulation, the volume is usually divided
up into cubic cells in an octree, so that only particles
from nearby cells need to be treated individually for
the gravitational relationship, and particles in distant
cells can be treated as a single large particle centered
at its center of mass (or as a low-order multipole ex-
pansion [2]). This can dramatically reduce the number
of particle pair interactions that must be computed.

• IMAGE UNDERSTANDING [14] In the city photo
tourism application, a large collection of images (say,
of one or more monuments, scenic points, buildings,
major roads, etc.) are obtained and an attempt is made
to compute the 3D structure of the various scenes to
enable the navigation of the virtual tourist. The pre-
processing solution strategy (grossly abbreviated here)
is to collect SIFT [11] features of the images, discover

relationships (“what parts, if any, of these two image
are similar?”), and construct a hierarchy of the scenes.

• WEB INFORMATION RETRIEVAL [3] Blogs are to be
classified as belonging to various semantic categories
such as entertainment, sports, politics, and so on.
However, relationships exist between all pairs of blogs,
some strong, and others weak that prevent a strict parti-
tioning of web pages in the hierarchy. A preprocessing
step on the hierarchy enables focused retrieval if nodes
are allowed to be linked with other nodes.

• VIEW INDEPENDENT VISIBILITY [7] In point-based
graphics [6, 10, 8, 12], a scene represented as points is
to be rendered from various viewpoints keeping global
illumination in mind [5]. That is, a point may be il-
luminated by other points, which in turn are illumi-
nated by still other points, and so on. A visibility pre-
processing step for finding view independent mutual
point-pair visibility is useful before the costly render-
ing equation is solved. The visibility map (V-map)
data structure (see §3) was introduced for this pur-
pose. The basic idea here is to partition the points
in the form of an octree. When large portions of a
scene are mutually visible from other portions, a visi-
bility link is set so that groups of points (instead of sin-
gle points) may be considered in discovering the pre-
cise geometry-dependent illumination interaction. Ray
shooting and visibility queries can also be answered in
sub-linear time using this data structure.

A sequential implementation of the V-map given in [7]
takes hours (for octrees with height 8 or more). Reducing
the octree height (to say 7 or below) in the interests of time
yields unacceptable results (Fig. 11). GPUs have evolved
into an attractive [13] hardware platform for general
purpose computations due to their high floating-point
processing performance, huge memory bandwidth and the
comparatively low cost.

CONTRIBUTIONS: This paper is concerned with comput-
ing the V-map data structure on the GPU. Specifically,

1. If a black-box “kernel” is available to compute the
relationships (e.g., gravitational interaction, matching
of SIFT features, mutual relationships in blogs, point-
pair visibility), we show how a hierarchical data struc-
ture can be built efficiently (see §4) on the GPU using
CUDA. For example, our V-map data structure shows
11 fold speedup (averaged over various models and

1



octree heights 8 or more). While a point model of a
dragon placed inside a point modelled Cornell room,
sub-divided with octree height of 8, takes more than a
couple hours, on the CPU, for visibility computation,
GPU performs the same in some minutes (Fig. 8).

2. The specific kernel of point-pair visibility (namely, is
point p visible from point q) proposed in [7] is ana-
lyzed, and an alternate but related formulation is given
which is more suitable for GPU implementations.

The rest of the paper is organized as follows. For com-
pleteness, an overview of the NVIDIA’s G80 GPU and
CUDA is given in §2. The nature of tree computation for
the CPU-based V-map construction algorithm is presented
in §3. This tree computation algorithm is extended to the
parallel architecture of the GPU in §4. Three different ways
of parallelizing are presented to pave for the one chosen.
Details of an “atomic” point-pair visibility query appear in
§5 which is later incorporated in the parallel V-map imple-
mentation. Quantitative and qualitative results along with
some GPU based optimization used to improve the algo-
rithm’s run-time efficiency are explained in §6. We follow
this up with concluding remarks and future work in §7.

2. GPU Programming Model

Constant Cache

Texture Cache

Shared Memory

Processor M

In
st

ru
ct

io
n

U
ni

tProcessor 2Processor 1

Registers Registers Registers

Multiprocessor 1

Multiprocessor 2

Multiprocessor N

Device

Device Memory

Figure 1. Hardware Model of GPU

NVIDIA’s G80/G92 architecture GPUs are typical of
current generation graphics hardware which uses a large
number of parallel threads [4] to hide memory latency. Pro-
grams are written in C/C++, with CUDA specific exten-
sions. A program consists of a host component executed
on the CPU, and a GPU component. The host component
issues bundles of work (GPU kernels) to be performed by
threads executing on the GPU. Threads are organized as
a grid of thread blocks and are run in parallel. A typical

computation running on the GPU must express hundreds of
threads in order to effectively use the hardware capabilities.

The G80 (Fig. 1) has N = 16 multiprocessors operat-
ing on a bundle of threads in SIMD fashion. All multipro-
cessors can talk to a large (320MB) global device memory
(shown in blue). In addition, a set of 8192 registers per
multiprocessor, and a total constant memory of 64kB are
available. The M = 8 processors within each multiproces-
sor share 16kB of fast read-write “shared” memory (shown
in red). This memory is (ironically) not shared with other
(processors) in other multiprocessors. The memory access
times vary considerably for these different types of memory.

From the programmers perspective, the code executing
on the GPU has a number of constraints that are not imposed
on host code; the major ones being no support for dynamic
memory allocation and recursion in the kernel code.

In summary, we need to design our parallel algorithm to
have large number of threads, use shared memory wisely,
and get around programming constraints.

3. The Visibility Map

We assume that the data of interest is available as points;
for example, these could be the points belonging to some 3-
D point model of say, the Stanford bunny, or might represent
centroids of triangular patches of some 3-D mesh. Given a
3D point model, we sub-divide the model space using an
adaptive octree (leaves appear at various depths). The root
represents the complete model space and the sub-divisions
are represented by the descendants in the tree; each node
represents a volume in model space.

Visible

Visible

Visible

Visible

Level 2

Level 3

Level 1

Node N

Node N V1 V2 V3 V4

V3

V1

V2

V4

Figure 2. Visibility links for Node N

The visibility map (or V-map) for a tree, as defined in [7],
is a collection of visibility links for every node in the tree.
The visibility link for any node p is a list L of nodes at the

2



Compute Visibility

A B

Root Complete 
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

Partial 
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

Compute Visibility

A B

Root

(a) (b) (c) (d)

a1
a2 a3

a4 b1

a2 b1

Figure 3. The visibility map is constructed recursively by a variation of depth first search. In general,
it is advantageous to have links at high level in the tree so that we can reason efficiently using
coherency about the visibility of a group of points.

same level; every point in any node in L is guaranteed to be
visible from every point in p. Fig. 2 shows the link struc-
ture for some node N . Combining all such link structures
defined for every node gives the complete V-map of the tree.
CPU V-MAP CONSTRUCTION: Consider a node-pair AB
in Fig. 3 for illustration to see if we should set the visibility
link between the two. The same procedure is repeated for all
node-pairs in the octree so as to define a complete V-map.

To establish the visibility link between A and B we need
to check if all the points in the leaves defined by A are visi-
ble to all the points in B. In doing so, we might as well take
advantage of this work, and set the visibility links of all
descendants of A with respect to all descendants of B. In
Fig. 3(a) we see (green arrows to the extreme left) how we
recursively go down and compute the visibility between a1

and b1 with the help of their leaves. This information is now
propagated upwards in the sub-tree depending on the type of
relation established at the leaves. In our example, Fig. 3(b),
if all leaves of a1 are visible to all leaves of b1, then the vis-
ibility link between a1 and b1 is set (using dynamic memory
allocation) with no links between their leaves However, if
only some leaves of a1 are visible to some leaves of b1, then
its a case of partial visibility and no new link is propagated
upwards between a1 and b1 (Fig. 3(c)). The same process
is repeated then for a2 and b1 (Fig. 3(d)) and then for rest
of the descendants. It is easily observed that recursion (not
available on the GPU) is a natural way of efficiently con-
structing the V-map.
DISCUSSION: While the setting given above (e.g., links
only at the same level) is specific to the visibility problem,
other applications given in the introduction may restrict the
pairing of nodes to a subset of the all node pairs set. It is
common in the scientific computing literature to define this
subset as an interaction list. Every node has its own inter-

action list and its cardinality may vary from node to node.
As mentioned earlier, a sequential implementation of the

V-map construction given in [7] takes hours (for octrees
with height 8 or more). Employing octrees of greater height,
it is therefore desirable to exploit the inherent parallelism in
the V-map construction algorithm and get both quick and
accurate results. Parallelism stems from the fact that the
visibility between a node pair, say a1 and b1 in Fig. 3 is
entirely independent of the visibility between another node
pair, say a2 and b1.

4. V-map Computations on GPU

Various ways to parallelize are addressed below.

4.1. Multiple Threads Per Node Strategy

A

N

I0 I1 I2 I3

T0
T1

T3T2

Interaction List

Figure 4. Parallelism at a node level

One of the intuitive ways to parallelize the algorithm is to
make each thread compute the visibility between any node
A with a node in its interaction list. For example, as shown
in Fig. 4, thread T0 computes visibility between A and I0

(e.g.,. I0 can be the node B of Fig. 3), thread T1 computes
visibility between A and I1 and so on. Once visibility be-
tween A and all nodes in its interaction list is computed, we

3



Lookup from LVS

A B

Root Complete 
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

Partial 
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

(b) (c) (d)
Compute Visibility & Store in LVS

A B

Root

(a)

a2 a3

a1 a4 b1

Figure 5. The visibility map on the GPU uses thousands of threads concurrently by working at the
large number of leaves (a) and stores the result in a table. The links at other levels are set based on
a lookup computation.

move to another node N and repeat the same. Thus we al-
locate multiple threads per node but only one per node pair.
DISCUSSION: The number of threads running concurrently
is the size of the interaction list. The degree of parallelism
here is limited by the size of the interaction list of a node
which might be quite small (generally in tens or hundreds).
As commented previously (see §2), to unleash the power of
GPU we need thousands of threads running concurrently,
which is not the case here. However, the threads per node
strategy can be combined with other strategies (see below,
for example, §4.2).

A more serious limitation is that each thread has to per-
form recursion as well as dynamic memory allocation for
setting up links at the descendant levels. This is not pos-
sible on the current GPUs (Refer §2). Recursion can be
implemented with a user stack; but the dynamic allocation
problem persists.

4.2 One Thread per Node Strategy

A I0 I1 I2 I3

N I0 I1

Thread T0

Thread T1

Interaction List

Level
L

Level
L

Figure 6. Parallelism across nodes at the
same level

Another intuitive way to compute visibility is to let each
thread compute visibility between a node and all the nodes
in its interaction list, going down the octree level by level,
starting form the root. For example, as shown in Fig. 6

thread T0 computes visibility between a node A and all the
nodes in its list, thread T1 computes visibility between a
node N and all the nodes in its list and so on. Thus we al-
locate only one thread to compute visibility between a node
and its entire interaction list.
DISCUSSION: Note that all nodes at a particular level are
considered concurrently before moving on to the next level.
Thus the degree of parallelism is equal to the number of
nodes at a particular level considered and changes with ev-
ery level. The performance of the algorithm increases as we
go down the octree, as the number of nodes per level tends
to increase with greater octree depths (root being at depth
0).

One of the drawbacks of this parallel algorithm is the fact
that it does not utilize the commutative nature of visibility.
That is, if node N1 is visible to node N2, then N2 is also
visible to N1. Although such cases can be detected, and
threads made to stop execution, almost half of the threads
would be wasted. Further, the same limitations (§4.1) of
dynamic memory allocation and recursion apply to this par-
allel algorithm, thereby making this case undesirable.

4.3. Multiple Threads per Node-Pair

Here we consider a node A and say node B belongs to
its interaction list. We compute the visibility between all
leaves of A with all leaves of B, in parallel on the GPU
(and afterwords repeat the same for other node-pairs in the
tree). The recursive part is computed on the CPU which
uses traditional dynamic memory management.

To achieve the same, we introduce a minor modifica-
tion to the original CPU-based algorithm (compare Fig. 3(a)
with Fig. 5(a)). In the CPU-based approach, we first re-
curse in the sub-trees of A and B and then having reached

4



the leaf level, compute the leaf-leaf visibility. In contrast,
in our GPU implementation, we first compute all leaf-pair
visibility between two nodes and store it in a Boolean array
LVS (Leaf Visibility Status). The CPU does the standard
recursion, and having reached the leaf level, use a simple
look-up to LVS to find the already computed answer.

For example, in Fig. 5, we first compute visibility of all
leaves of A with respect to all leaves of B and store it in the
LVS (Fig. 5(a)). We then recurse their sub-trees, as in the
CPU implementation, and look up the visibility value from
the LVS (Fig. 5(b)) to find whether the descendants (say a1

and b1) are completely visible (Fig. 5(c)) or partially visible
(Fig. 5(d)). We repeat the same for all other descendant
pairs (say (a2, b1)).

5. Leaf-Pair Visibility

n

x2
n

n
n

n

2

3

np

q

x5

4

5

p

q

x3

x4

x1n1

Figure 7. Visibility between points p and q

Having presented the strategy for constructing, in par-
allel, a global V-map for a given tree, we now discuss the
leaf-leaf visibility algorithm performed by each thread. We
build on the atomic point-pair visibility algorithm (Fig. 7)
given in [7] and extend it for computing visibility between
leaves.

5.1. Prior Algorithm

As presented in [7], to compute visibility between any
two points p and q, we check if they face each other. If yes,
we then determine a set of potential occluders using a 3D
Bresenham’s line algorithm. Bresenham’s algorithm out-
puts a set Y of points which are collinear with and between
p and q. Going down the octree recursively, all points from
the leaves containing any point from Y is added to a set X.
The Bresenham step-length is based on the sampling reso-
lution of the original point dataset.

The potential occluders are pruned further based on the
tangent plane intersection tests. In Fig. 7, the set X consists
of potential occluders points (x1, x2, x3, x4, x5). In fact,
only points x2 and x3 are considered as actual occluders.
Point x1 is rejected as the intersection point of the tangent
plane lies outside segment pq, point x4 because it is more
than a distance ∆ away from pq, and point x5 as its tan-

gent plane is parallel to pq. If K (a parameter) of actual
occluders are found, q is considered invisible to p.

Instead of point pairs p and q, one may also use leaves,
and apply the same idea. p and q (of Fig. 7) are now the
leaf’s centroids (not centers) and the potential occluders are
the centroids of the leaves intersecting line segment pq. ∆
is the distance from the centroid of an intersecting leaf to its
farthest point and is different for every leaf [7].
DISCUSSION: Applying this idea for the GPU model, we
see that in this way of computing leaf-leaf visibility, we
require each thread to recursively go down the octree for
finding the potential occluders between the leaf pair consid-
ered. As octree height increases, the size of leaves becomes
small, thereby reducing the step length of the 3D Bresen-
ham’s Line algorithm by a significant amount. This drasti-
cally increased the load and the computations as it requires
more recursive traversals of the octree. In our GPU imple-
mentation, the Bresenham approach is therefore abandoned
in computing potential occluders; however, the second stage
of actual occluders is retained.

5.2. Computing Potential Occluders

At the time of construction of the octree, a sphere is ini-
tially, and implicitly constructed for every leaf node. The
center of each sphere is the center of the respective leaf, and
the radius is the distance from the center to the farthest point
in the leaf. The spheres for internal nodes are constructed
recursively using the maximum radius of their children (Fig.
9(a)). Spheres of siblings therefore might overlap, but this
makes our visibility test a bit conservative without hamper-
ing the correctness of the results. Note that, only the radius
of the sphere need to be stored, since the center is already
present in the octree.

Consider the leaf pair L1 and L2. We now recursively
compute the intersection status of the line segment pq (p be-

C

A

D

B

D1

D2

D3

p

q
C1 C2

C3

C4

r1
r2

r3 r4

(a) (b)

C

R

L1

L2

Figure 9. (a) Constructing parent sphere
from child, (b) Line Segment-Sphere Inter-
section test

5



(a) An empty Cornell room (b) Bluish Bunny (eye on the floor) (c) The Buddha (eye on the green
wall)

(d) Satyavathi

Figure 8. Visibility tests where purple color indicates portions visible to the candidate eye (in cyan)

ing centroid of L1 and q of L2) and the spheres of nodes of
the octree, starting from the root. It is significant to note that
we are not interested in computing the actual point of inter-
section, only the Boolean decision of intersection between
pq and the sphere under consideration. This is achieved
by performing a very simple dot-product computation. If
a node contains L1 or L2 or intersects line segment pq, we
recursively perform a similar test in the sub-tree of the in-
tersecting node. Otherwise we discard the node.

For example, we discard the sub-tree of node C (Fig.
9(b)) as it does not intersect pq nor does it contain L1 or
L2. On the other hand, we traverse the children of node
D and recursively repeat the same for sub-trees of children
D1 and D2. In this we reaching the (potential occluder)
intersecting leaf nodes.

Each thread then performs the same tangent-surface in-
tersection tests (as detailed in §5.1) for their respective leaf-
pairs. If mutually visible, each thread adds 1 to the corre-
sponding location in the Boolean array LVS which will be
eventually looked up.

6. Results and GPU Optimizations

The CUDA based parallel V-map construction algo-
rithm, implemented on G80 NVIDIA GPU, was tested on
several point models. We provide qualitative visibility val-
idation and quantitative results, along with details on the
GPU-based kernel optimization. Note that all input such as
the models in the room, the light source, and the walls of
the Cornell room are given as points.

6.1. Visibility Validation

We validate our proposed method here using an adaptive
octree structure. We remark that the user divides the octree
adaptively depending on the input scene density. Increasing
or decreasing the levels of subdivision for a given scene is

essentially a trade-off between quality of the visibility (user
driven), and the computational time.

Fig. 8(a) shows a point model of an empty Cornell room
with some artificial lighting to make the model visible. Note
the default colors of the walls. We now introduce a bluish
white Stanford bunny. In Fig. 8(b), the eye (w.r.t. which
visibility is being computed) is on the floor, marked with a
cyan colored dot. The violet (purple) color indicates those
portions of the room that are visible to this eye. Notice the
“shadow” of the bunny on the back wall. The same idea is
repeated with the eye (marked in cyan) placed at different
locations for various different point models (all bluish white
in color) of the Buddha (Fig. 8(c)), and an Indian Goddess
Satyavathi (Fig. 8(d)). We found that an octree of height 8
gave us accurate visibility results, however, it is more pru-
dent to go to higher depths such as 9 or 10.

6.2. Quantitative Results

Before moving on to the timing charts of our algorithm
implementation, we would like to present some of the GPU
optimization techniques we utilized so as to improve our
kernel’s run-time efficiency.

1. ASYNCHRONOUS COMPUTATIONS: Asynchronous
kernel launches were made by overlapping CPU com-
putations with kernel execution. Thus, while the CPU
is busy recursing the sub-trees of nodes to set visibil-
ity links at different levels of octree, our GPU kernel is
busy performing leaf-pair visibility computations for
the next node pair whose sub-trees will eventually be
visited by CPU when the kernel finishes its part.

2. LOOP UNROLLING: Any flow control instruction (if,
switch, do, for, while) can significantly impact the ef-
fective throughput by causing threads to diverge. Thus,
major performance improvements can be achieved by
unrolling the control flow loop. We found that espe-

6



5 6 7 8 9 10

0

500

1000

1500

2000
GPU

CPU

Max Octree Levels

Max 
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1675 1.87 0.34 0.18

6 2181 6.24 2.51 0.40

7 7837 21.54 99.31 4.61

8 20971 68.25 652.51 9.56

9 27514 83.47 1159.04 13.88

10 39111 95.98 1839.96 19.17

Bunny in Cornell Room

(a)

5 6 7 8 9 10

0

200

400

600

800
GPU

CPU

Max Octree Levels

Max 
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1407 1.35 1.01 0.75

6 4612 1.87 1.56 0.83

7 9215 4.62 6.79 1.47

8 16891 23.89 150.03 6.28

9 22117 39.11 456.68 11.68

10 28981 54.19 780.23 14.39

Buddha in Cornell Room

(b)

5 6 7 8 9 10

0

200

400

600

800

1000
GPU

CPU

Max Octree Levels

Max 
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 965 0.85 0.42 0.49

6 1358 1.08 1.05 0.97

7 5380 6.74 35.96 5.34

8 12587 18.25 128.82 7.05

9 21452 45.91 483.84 10.54

10 29523 73.83 995.16 13.48

Dragon in Cornell Room

(c)

5 6 7 8 9 10

0

500

1000

1500

2000
GPU

CPU

Max Octree Levels

Max 
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1232 0.76 0.52 0.69

6 2012 1.4 1.05 0.75

7 7902 32.43 135.45 4.18

8 14500 76.53 587.02 7.67

9 28936 94.37 998.26 10.58

10 45191 101.12 1747.85 17.28

Ganesha & Satyavathi in Cornell Room

(d)

Figure 10. V-map construction times (CPU & GPU) for models with differing octree heights

cially the loops with global memory accesses (as is the
case in our algorithm) can benefit from unrolling.

3. OPTIMAL THREAD AND BLOCK SIZE: Obtained via
an empirical study, each thread block must contains
128 − 256 threads and every thread block grid no less
than 64 blocks for optimal performance on G80 GPU.

4. OPTIMAL OCTREE HEIGHTS: As every thread works
on single leaf-pair, multiple threads are independent.
Each leaf pair may have a different number of potential
occluders to be considered. The thread that finishes
work for a given leaf-pair simply takes care of another
leaf-pair, without the need for any shared memory or
synchronization with other threads. To effectively use
the GPU, the number of leaf-pair should be sufficiently
large. With 16 multi-processors, we need at least 64
thread-blocks, each having 256 threads to utilize the
GPU. Thus the number of leaf pairs considered concur-
rently should be at least 16384 for good performance.

Fig. 10 shows the running time of our implementation.
Each graph in Fig. 10 refers to a particular model, and
shows the only-CPU, and CPU-GPU combo running time
for various octree levels (5-10). For example., Fig. 10(a)
shows results for the Stanford bunny in the Cornell room
while Fig. 10(b) shows the same for Buddha. The table also
shows the number of leaves (at various depths) in the var-
ious adaptive octrees. This is an important parameter on
which the degree of parallelism indirectly depends. The
running times tabulated, also depends on the number of
threads per block. A block size of (16 × 16) gives the best
results with 256 threads per block.

The CPU and GPU have almost identical run times if the
model has octree height of 6 or below. For best through-
put from the GPU we need at least 16384 leaf-pairs to be
considered concurrently which is generally not the case for
octrees built till level 6. The GPU starts out performing the
CPU for octrees with greater heights (Fig. 10). However,
the quality of the visibility solution is below par for octrees
with heights 7 or below (Fig. 11). Thus, to get a good ac-
ceptable accuracy in results (Fig. 8) and throughput from
GPU, we use octree heights of at least 8. Speedup is also
given in the tables. We achieve an average speed-up (across
all models) of 15 when the input models are divided with oc-
tree of height 10. Thus, we see that the CUDA implemen-
tation of V-map construction algorithm is efficient and fast.
Once constructed, they allow for an interactive walkthrough
of the point model scene.

Figure 11. Dragon viewed from the floor
(cyan dot). The quality is unacceptable for
octrees of heights of 7 (left) or less. The fig-
ure on the right is for an octree of height 9.

7



Figure 12. Point models rendered with diffuse global illumination effects of color bleeding and soft
shadows. Pair-wise visibility information is essential in such cases. Note that the Cornell room as
well as the models in it are input as point models.

6.3. Visibility Map in Global Illumination

As a proof of applicability, we now use the parallel con-
structed V-map in a global illumination algorithm, where
the Fast Multipole Method [2] is used to solve the radiosity
kernel. Fig. 12 shows results with the color bleeding effects
and the soft shadows clearly visible. The V-map also works
well even in the case of aggregated input models (e.g., point
models of both Ganesha and Satyavathi placed in a point
model of a Cornell room in Fig. 12). Note that the input
is a single, large, mixed point data set consisting of Gane-
sha, Satyavathi, and the Cornell room. These models were
not taken as separate entities nor were they segmented into
different objects during the whole process.

7. Final Remarks

Rapid developments in graphics hardware have made
them an attractive platform for solving computationally in-
tensive problems in varied fields. One such problem is per-
forming various parallel computations on trees. Parallel
implementation of the View-Independent Mutual Point-Pair
Visibility problem is an example problem whose solution
has been implemented on the GPU in this paper. Various
ways to achieve the desired parallelism were presented, and
a suitable one chosen. The core kernel computation of leaf-
pair visibility was modified to perform line segment-sphere
intersections for better speedup.

Blocks containing 256 threads achieved optimal GPU
performance. Visibility results were validated and speedups
of up to 19 (w.r.t CPU) were reported for octrees con-
structed on models till maximum depth 10. By viewing this
V-map as a ‘preprocessing’ step, photo-realistic global il-
lumination rendering of complex point-based models have
been shown.

The parallel V-map construction algorithm presented can
also be used as an intuition to achieve parallelism for other
complex problems mentioned in the introduction.

References

[1] The N-Body Problem. http://en.wikipedia.org/
wiki/N-body problem. (Last seen on 30th June, 2008).

[2] J. Carrier, L. Greengard, and V. Rokhlin. A Fast Adaptive
Multipole Algorithm for Particle Simulations. SIAM Jour-
nal of Scientific and Statistical Computing, 9:669–686, July
1988.

[3] S. Chakrabarti. Mining the Web: Discovering Knowledge
From Hypertext Data. Morgan Kaufmann, 2002.

[4] CUDA. Nvidia Compute Unified Device Architechture
Programming Guide. http://developer.nvidia.
com/cuda. (Last viewed on 30th June, 2008).

[5] Y. Dobashi, T. Yamamoto, and T. Nishita. Radiosity for
point-sampled geometry. In Proc. of Pacific Graphics, pages
152–159, 2004.

[6] P. Dutre, P. Tole, and D. P. Greenberg. Approximate visibil-
ity for illumination computation using point clouds. Techni-
cal report, Cornell University, 2000.

[7] R. Goradia, A. Kanakanti, S. Chandran, and A. Datta. Vis-
ibility map for global illumination in point clouds. In ACM
SIGGRAPH GRAPHITE ’07, pages 39–46. ACM, 2007.

[8] J. Grossman and W. Dally. Point sample rendering. In Proc.
of Eurographics Workshop on Rendering, pages 181–192,
1998.

[9] A. Karapurkar, N. Goel, and S. Chandran. The Fast Multi-
pole Method for Global Illumination. ICVGIP, pages 119–
125, 2004.

[10] S. Katz, A. Tal, and R. Basri. Direct visibility of point sets.
In SIGGRAPH ’07, page 24. ACM, 2007.

[11] D. Lowe. Distinctive Image Features from Scale-invariant
Keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[12] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas. Reg-
istration of point cloud data from a geometric optimization
perspective. In Symposium on Geometry Processing, pages
23–31, 2004.

[13] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[14] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3d. In SIGGRAPH Conference
Proceedings, pages 835–846, NY, USA, 2006. ACM.

8

http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem
http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda

	. Introduction
	. GPU Programming Model
	. The Visibility Map
	. V-map Computations on GPU
	. Multiple Threads Per Node Strategy
	One Thread per Node Strategy
	. Multiple Threads per Node-Pair

	. Leaf-Pair Visibility
	. Prior Algorithm
	. Computing Potential Occluders

	. Results and GPU Optimizations
	. Visibility Validation
	. Quantitative Results
	. Visibility Map in Global Illumination

	. Final Remarks

