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AbstratThe need for mosaiing arises when we want to stith two or more images together so asto view them as a single ontinuous image. There are various ways to onstrut mosaisof images, one of them being Spherial Mosais. Several algorithms have been designed toompute spherial mosais. This report desribes an algorithm for onstruting spherialmosais from a olletion of images taken from a ommon optial enter. It also omparestwo di�erent optimization tehniques ( loal and global ) and shows why global optimiza-tion tehnique is muh more superior to the loal one. Partially overlapping images, anadjaeny map relating the images, initial estimates of the rotations relating eah imageto a spei�ed base image, and approximate internal alibration information for the am-era form the inputs for the algorithm. The algorithm's output is a rotation relating eahimage to the base image and revised estimates of the amera's internal parameters.This algorithm, based on global optimization tehnique, o�ers several advantages. First,image apture instrumentation provides both an adjaeny map for the mosai, and aninitial rotation estimate for eah image. Seond, it optimizes an objetive funtion basedon a global orrelation of overlapping image regions. Third, representation of rotationsas quaternions signiantly inreases the auray of the optimization.
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Chapter 1IntrodutionThe need for mosaiing arises when we want to stith two or more images together so asto view them as a single ontinuous image. There are various ways to onstrut mosaisof images, one of them being Spherial Mosais. As the name suggests, it allows anynumber of images to be merged into a single seamless view, simulating the image thatwould be aquired by a amera with a spherial �eld of view. Images shown here desribesa somewhat hemispherial point of view but it an be easily extended to full spherialarrangements of images.

Figure 1.1: Two typial mosais shown as sphere and ylinder5



Figure 1.2: The roughly hemispherial tiling for a node of the dataset
The amera instrument used annotates eah aquired image with an estimate of absolute6-DOF pose (exterior orientation) | 3 DOF of position, and 3 DOF of orientation forthe aquiring amera. Thus the aquisition system provides both an adjaeny map forimages in the mosai, and an initial estimate of the rotations relating eah image to itsneighbors. This forms one of the advantages of using this method. But these estimatesare not that aurate and alls for some pose-re�nement algorithm. How to optimize andre�ne these estimates is what this report desribes.
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1.1 Organization of ReportIn hapter two we will see what is some of the work done related to this topi of disus-sion. Chapter three will briey tell us about some basi onepts of image formation viaperspetive projetion and give an introdution to quaternions as a form of representationalong with some of its nie properties. We will also see how quaternions and its propertieshelp us in representing rotations in a very eÆient way as disussed in [5℄ and [2℄.Chapterfour reviews 2-D projetive transformations and methods to ompute them. Chapter �vepresents a losed-form method to deouple projetive transformations into two parts, onedesribing the intrinsi parameters of the amera, and another desribing the pure rota-tions to whih the amera has been subjeted. While theoretially elegant, this tehniqueis sensitive to errors in image formation and generally yields poor results for real imagerydue to the usage of loal optimization tehnique for re�ning the parameters. Solutionto the above problem is addressed in Chapter 6 whih desribes a global optimizationtehnique that omputes revised rotations and amera internal parameters diretly fromorrelations among images. Constraining the optimization to manipulate pure rotationsprodues signi�antly more aurate mosais. Conluding remarks are made in hapterseven.
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Chapter 2Related WorkMuh work has been done related to this topi of disussion. Of fundamental interestin mosai omputations is the warp relating a pair of overlapping images. The simplestmethod to ompute this warp uses four point orrespondenes between the two images.However, identifying suitable features and orrespondenes is a diÆult problem, andknown methods yield good results only for images with signi�ant overlap and minimalprojetive distortion.An alternative method would use orrelation of olor or luminane information presentin images to ompute the warp by nonlinear optimization (e.g., [4℄). Although suhtehniques avoid the need for feature detetion and orrespondene, they do not guaranteethat a series of pairwise warps will produe a globally onsistent set of relative orientationsas they use the loal optimization tehnique. The example for the same is desribed inhapter �ve.The hoie of rotation also plays an important role. Various methods are available torepresent rotations. Some of them are� The Axis-angle representation for estimating small rotations [4℄� The Quaternion representation beause of its onveniene and ompatness [5℄This algorithm makes use of the quaternion representation.Full view spherial panoramas have been omputed by [3℄. However, their global alignmentalgorithm requires a ombination of both orrelation-based and feature-based optimiza-tion. In ontrast, the algorithm desribed here optimizes orrelation diretly to performglobal alignment, avoiding both the need to identify and orrespond suitable features.
8



Chapter 3A Brief Review of the BasiConepts
3.1 Image formation by perspetive projetion
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P = [Px Py Pz]Figure 3.1: Overview of Perspetive ProjetionAbove �gure shows the proess of image formation by perspetive projetion, illustratedfor a point s = [x y z℄ as viewed by a amera at world-spae position p = [px py pz℄.The rotation from the global oordinate system XYZ to the amera oordinate systemX 0Y 0Z 0 is spei�ed by a 3� 3 rotation matrix R.Now, s = R(s� p)where s = [x y z℄ are the oordinates of s in the amera's oordinate system. Now wesale the x and y o-ordinates by depth as 9



xI = xz yI = yzAfter saling it, we now apply the intrinsi amera parameters to omplete the transfor-mation. The �nal values are: x0 = fxI + x y0 = fyI + yThus, the entire transformation an be represented in a matrix form as :264 x0y0z0 375 �= KM " R �Rp0 1 #264 xyz 375 (3.1)where Kthe 3� 3 (upper-triangular) internal amera parameter matrix:264 f 0 x0 f y0 0 1 375and M is the 3� 4 anonial perspetive projetion matrix:264 1 0 0 00 1 0 00 0 1 0 3753.2 Introdution to Quaternions3.2.1 Why Quaternions ?A ommon problem in omputer vision is solving for rigid body motions or poses on-sisting of a rotation and translation in 3D spae. For example, given a set of points xiand orrespondenes pi, it is often of interest to ompute the 3� 3 rotation matrix R and3-vetor translation t suh that Rxi + t = piAlthough this system of equations is essentially linear, a number of problems arise whenformulating solutions that aount for the non-linear onstraints on the omponents ofR. The onstraints arise from using nine values of rotation matrix R to represent threeindependent variables of 3D rotation. The rotation matrix is onstrained to be orthogonalwhih is satis�ed when RTR = I (i.e., the rows and olumns are orthonormal). Also, therotation must not be a reetion; this is satis�ed when the determinant is 1 (j R j = 1).A number of tehniques have been developed to deal with this added omplexity. One ofthe most onvenient is the quaternions representation.10



Here are some of the advantages and mathematial nieties of the quaternion representa-tion of rotation.� Quaternions an be omposed/multiplied in a straightforward manner to aumulatethe e�ets of omposed rotations.� The inverse of a quaternion (speifying the inverse rotation) is obtained by simplynegating 3 omponents of the quaternion vetor.� The rotation between two rotations an be omputed by multiplying one quaternionwith the inverse of the other.� One an easily transform a quaternion into an axis-and-angle representation. Usingthis and the previous item, one an ompute a rotational distane metri betweentwo rotations | the angle of rotation between them.� Quaternions an be easily transformed to a 3� 3 rotation matrix for eÆient om-putation when rotating vetors.� With the quaternion representation, the rotation an be solved for in losed formwhen orrespondenes between three-dimensional point sets are available.� Maintaining the onstraints (orthogonal with unit determinant) of rotation is madesimple with quaternions by standard vetor normalization.� The unit quaternion representing the best rotation is the eigenvetor assoiatedwith the most positive eigenvalue of a symmetri 4�4 matrix. The elements of thismatrix are ombinations of sums of produts of orresponding oordinates of thepoints.� Suppose that we are given the oordinates of a number of points as measured in twodi�erent Cartesian oordinate systems. The photogrammetri problem of reoveringthe transformation between the two systems from these measurements is referredto as that of absolute orientation. Let us all the two oordinate systems "left"and "right." A desirable property of a solution method is that, when applied tothe problem of �nding the best transformation from the right to the left system, itgives the exat inverse of the best transformation from the left to the right system.Symmetry is guaranteed when one uses unit quaternions to represent rotation.� It is muh simpler to enfore the onstraint that a quaternion have unit magnitudethan it is to ensure that a matrix is orthonormal.
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3.2.2 What are Quaternions ?The quaternion q is a four vetor [qx; qy; qz; q0℄T whih is often onsidered as a three-vetor u = [qx; qy; qz℄T and a salar s = q0. Also it has the property that q02 + qx2 +qy2 + qz2 = 1. Quaternion q is generally referred to as [u; s℄T for notational simpliity.The dot produt and vetor norm for quaternions is de�ned as usualq1 � q2 = u1 � u2 + s1s2j q j= (q � q)� 12Multipliation is de�ned over quaternions asq1q2 = [[s1u2 + s2u1 + u1 � u2℄; s1s2 � u1 � u2℄The omplex onjugate of a quaternion is de�ned by negating the vetor omponent and isdenoted q = [�u; s℄T . The omplex onjugate of a unit quaternion, jqj = 1, is the inverseof the quaternion with respet to multipliation, i.e., qq = qI , where qI = [0; 0; 0; 1℄T . AlsoqqI = qIq = q whih is why qI is referred as the identity quaternion.3.2.3 Rotations as QuaternionsA unit quaternion q an be used to perform a rigid rotation of a vetor x = [x; y; z℄T bytwo quaternion multipliations x0 = q 26664 xyz0 37775 q;where the salar omponent of x is simply set to zero. Observe that quaternion multipli-ation is not ommutative; this is onsistent with the fat that general three-dimensionalrotations do not ommute; however, quaternion multipliation is assoiative and distribu-tive.Working from this de�nition of quaternion rotation, one an derive a formula for theorresponding orthogonal (Eulidean) 3� 3 rotation matrix from a unit quaternionRu(q) = 264 (q02 + qx2 � qy2 � qz2) 2(qxqy � q0qz) 2(qxqz + q0qy)2(qyqx + q0qz) (q02 � qx2 + qy2 � qz2) 2(qyqz � q0qx)2(qzqx � q0qy) 2(qzqy + q0qx) (q02 � qx2 � qy2 + qz2) 375The subsript u in Ru is used to denote that this is the rotation matrix when given a unitquaternion. Given an arbitrary quaternion, Ru would no longer be unitary but rather asaled rotation matrix. 12



Chapter 42-D Projetive Transformations

Figure 4.1: Transforming pixels from image 1 to spae of image 2Figure illustrates the relationship between two images taken from a �xed optial enter,but with di�ering orientations. In suh ases, pixels in one image an be mapped to theother image by a 2-D projetive transformation [1℄. As stated in [1℄, Given a pair ofimages taken by ameras with the same internal parameters from the same loation, thenthere is a projetive transformation P taking one image from the other. Furthermore,P is of the form P = KRK�1 where R is a rotation matrix and K is the alibrationmatrix. Unlike simpler 2-D transformations (translation, rotation, aÆne), the projetivetransformation does not preserve parallel lines. This is evident in the above �gure, wherethe lines bounding image 1 interset after transformation.As depth e�ets do not our aross two images taken from the same optial enter [1, 4℄,the general perspetive projetion (Equation 3.1) simpli�es to:13



264 x0y01 375 �= KR264 xyz 375 (4.1)Inverting Equation 4.1 yields: 264 xyz 375 �= R�1K�1 264 x0y01 375 (4.2)Above equation onverts image o-ordinates to 3-D. Thus pixel oordinates in image 2an be obtained by projeting bak into image 2's spae using Equation 4.1:264 x2y21 375 �= KR2R�11 K�1 264 x1y11 375 (4.3)Thus the 2-D projetive transformation that maps pixel (x1; y1) of image 1 to pixel (x2; y2)of image 2 is :
P = KR2R�11 K�1 (4.4)As a onsequene, only eight parameters are needed to desribe the matrix P. Thus 2-Dprojetive transformations are also known as 8-parameter warps.
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Chapter 5Computing Warps and OrientationEstimates with Loal Optimization
5.1 Computing WarpsThis setion presents a novel idea to ompute the warps [4℄. The idea is to omputea warp that (loally) minimizes image-spae error by using nonlinear optimization afterhaving the initial estimates. The error funtion for this optimization simply measures thedi�erene in brightness between two images 1 and 2 (in the overlap region), after pixelsin image 1 are mapped to image 2's spae. The di�erene in brightness is measured by asum-of-squared di�erene (SSD) error metri using the luminanes L1 and L2 of images1 and 2, respetively: E12 =Px1;y1(L1(x1; y1)� L2(P (x1; y1)))The SSD form is well suited for numerial optimization, as only �rst order derivatives arerequired to ompute updated values for the iteration.We de�ne a single error term ase2x1;y1 = (L1(x1; y1)� L2(x2; y2))2The optimization onsists of analytially determining derivatives of the above term withrespet to P. It use Levenberg-Marquardt (LM) non-linear optimization tehnique for thesame. The derivative �ex1;y1�P is expressed as an 8-omponent vetor onsisting of derivativesw.r.t eah entry of P.
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The steps are:� Initialise the warp with value that is losed to optimum. Several tehniques havebeen proposed for this step. In this algorithm, the initial rotation estimates are pro-vided by the aquisition instrumentation itself and we also know the approximateamera alibration. It is thus straightforward to ompute a good initial estimateusing Equation 4.4 with the internal parameter matrix determined by amera ali-bration and rotations supplied by physial instrumentation.� The overall gradient term G is omputed by aumulating over all error terms:G = �Px1;y1 ex1;y1 �ex1;y1�P� Similarly, the Hessian term orresponding to two adjaent images 1 and 2 is:H = �Px1;y1 �ex1;y1�P (�ex1;y1�P )T� Thus, the optimization proeeds by inrementing the value of P by�P = �(H + �I)�1Gwhere � is a stabilization parameter set initially to a high value, and redued to 0 as theoptimization onverges.The following �gures shows images in whih the �rst image represents image after theinitial estimates of the warp.Note that inorret transformations arising from inaurateestimates of amera pose result in mismathes between pixels, ausing the blurring andghosting as seen. The seond image is the image after optimization.

Figure 5.1: Part(a) shows one image of a hemispherial tiling blended with its adjaentimages. Part(b) illustrates blurring due to inorret pose estimates. Part() shows thesame view after optimization.
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Figure 5.2: The projetive warp between two images before and after optimization5.2 Orientation Estimates from WarpsAfter having alulated and optimized the warps we now an reover rotation from warpsusing Equation 4.4 if the amera alibration is known aurately. If not, the followinglosed-form solution an be used to derive amera alibration from the warp itself.5.2.1 Closed-Form Solution for Internal ParametersWe have the following equation with us:P = KR2R�11 K�1Let R = R2R�11 . Therefore the equation beomesR = K�1PKif we solve for R. Sine R = R�T (the orthonormality ondition for rotations), we have,17



K�1PK = KTP�TK�TLet C = KKT . Therefore we get, PC = CP�Twere C = 264 f 2 + 2x xy xxy f 2 + 2y yx y 1 375But how do we obtain matrix C ?Now, the solution forC an be expressed in terms of eigen-vetors of the projetive matrixP. The eigen-values of P are the same as that of R, sine they are related by a similaritytransform. We know the eigen-values of the rotation R are 1; ei�; and e�i�, where � isthe angel of rotation. Let e0; e1 and e2 be the eigen-vetors of P orresponding to thesethree eigen-values, respetively. Therefore the most general symmetri solution to C isC = 0e0eT0 + 1(e1eT2 + e2eT1 )The oeÆients 0 and 1 are solved by enforing the onstraints that the C33 = 1 andC12 = C13C23.After having known C we an now easily estimate internal amera parameter matrix Kand then the re�ned and optimized rotation matrix R.

18



5.3 Demerits of above disussed TehniqueFrom emperial evidenes it has been seen that this tehnique of estimatingrotations seems to be inaurate. This an be observed in form of large gaps betweenimage borders although within the region of overlap, the two warps appear idential.

Figure 5.3: Image after loal optimization
At �rst glane, it might appear that the problem is due to inorretly reovered inter-nal parameters. However, even though a di�erent set of internal parameters might yieldother rotations, the angle of rotation is ompletely determined by the eigen-values of theprojetive warp P. As this is una�eted by the method by whih internal parameters areomputed, this problem is inherent in the warp solution itself. This alls for impos-ing a rotational onstraint during the optimization to obtain quantitatively orret resultsand remove the gaps found in the image resulting from the above disussed tehnique.Also, more fundamentally, relying on loal pairwise warps to ompute global quantitiesan lead to inonsistenies in the omputed internal parameters and rotations, and moregaps in the mosaied images. Thus, we need to go for a global optimization proedure.
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Chapter 6Computing Warps and OrientationEstimates with Global OptimizationThe optimization desribed in this hapter produes the best possible rotations for eahimage, given initial estimates. The advantage of this approah is that global onsisteny isguaranteed by omputing a unique rotation for eah image. That is, the pairwise rotationsinferred from this representation have the property that the aggregate rotation along anyyle in the image adjaeny map is the identity. In this manner, our representationavoids the possibility of gaps arising from inonsistent pairwise estimates.The approah followed is to optimize a global orrelation funtion de�ned for adjaentimages with respet to all orientations (represented as quaternions). As a by-produt,the algorithm omputes a spherial mosai, a omposite of all images orresponding to asingle node.6.1 OptimizationThe algorithm minimizes a Global Error Funtion:E =Pi;j Eij + Ejiwhere Eij is the SSD error between luminane values of adjaent images i and j.Eij =Pxi;yi(Li(xi; yi)� Lj(Pij(xi; yi)))2and Pij maps oordinates of image i to those of image j. This orrelation funtion isomputed only for pairs of adjaent images in the spherial tiling, and only for pixelsof image i that map to a valid pixel of image j. As in the pairwise warp estimation,this funtion is minimized by omputing derivatives w.r.t eah orientation and using LMNonlinear Optimization starting from the initial orientations.20



The various steps of omputation are:� The single error term for images i and j is given by:e2x;y = (Li(x; y)� Lj(x"; y"))2 with x" = x0z0 y" = y0z0and 264 x0y0z0 375 = v0 = P 264 xy1 375 = KR0R�1K�1 264 xy1 375� The derivatives for the above error term are alulated as follows:�v0�q = KR0(�R�1�q )vwhere
v = K�1 264 xy1 375� Then, the derivative of the term ex;y w.r.t the quaternion q is given by:�x"�q = �x0�q �x"�z0�qz0 �y"�q = �y0�q �y"�z0�qz0� and �nally we have . . . �ex;y�q = �Lj�x" �x"�q + �Lj�y" �y"�q� These derivatives �Lj�x" and �Lj�y" are approximated using the following onvolutionmatries applied at (x"; y")264 �1 0 1�2 0 2�1 0 1 375264 1 2 10 0 0�1 �2 �1 37521



The Gradient term orresponding to the quaternion qi is omputed over all terms thatdepend on qi: Gi =Pxi;yi exi;yi �exi;yi�qiIt is omputed in the oordinates of image i, w.r.t the quaternion qi.Similarly, theHessianterm orresponding to two adjaent images i and j is:Hij =Pxi;yi �exi;yi�qi (�exi;yi�qi )TNow, in an unonstrained optimization, the inrements would be omputed as �H�1G.Applying these inrements diretly to the qi, however, would produeNon-Unit Quater-nions whih do not orrespond to pure rotations !!To onstrain the updated quaternions to be unit vetors, we enfore the following addi-tional onstraints on the inrementsÆqi : 8i : qi � Æqi = 0Using Lagrange multipliers �i to enfore these onstraints, the equation for omputingthe inrements beomes: " H QQT 0 #" �Q� # = �" G0 #where
Q = 266664 q1 0 : : : 00 q2 : : : 0... ... ... ...0 0 : : : qn

377775 ;�Q = 266664 Æq1Æq2...Æqn
377775 ;� = 266664 �1�2...�4n

377775The optimization solves the above equation for �Q and �. Convergene is deteted whenthe value of the objetive funtion hanges by less than some threshold.
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6.2 Optimization of Internal Camera ParametersIn addition to estimating orientations, the algorithm also performs an optimization onthe internal amera parameters. The overall optimization alternates between a step thatupdates all rotations, and a step that updates internal parameters of the amera. Thenew parameters are omputed using derivatives of v0 w.r.t the amera foal length f andimage prinipal point (x; y) as shown:�v0�f = (264 1 1 00 1 00 0 0 375R0R�1K�1 +KR0R�1 264 � 1f2 1 xf20 � 1f2 yf20 0 0 375)264 xy1 375�v0�x = (264 0 0 10 0 00 0 0 375R0R�1K�1 +KR0R�1 264 0 0 � 1f0 0 00 0 0 375)264 xy1 375�v0�y = (264 0 0 00 0 10 0 0 375R0R�1K�1 +KR0R�1 264 0 0 00 0 � 1f0 0 0 375)264 xy1 375And here is the optimized image: : :

Figure 6.1: Projetive warp between two images after diret optimization23



6.3 Relative Importane of Camera ParametersAre all the internal parameters equally important for this optimization? Asimpli�ed analysis shown below tells us that determining the foal length aurately ismore important than determining the oordinates of the image prinipal point.
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f f

x’

Figure 6.2: Rotation and amera parameters in 2-DFigure shows two 1-D images rotated by an angle �.Here the transformation between pixelx (with o�set angle � from the enter) in image 2 to pixel x0 in image 1 is given by:x0 = x + f tan(� + �) = x + f tan �+tan�1�tan � tan�Now tan � tan�� 1 for small angles.Thusx0 � x + f tan � + tan� = x + f tan � + x� x = f tan � + xx0 = f tan � + xThus we see, to 1st order, the mapping is insensitive to the prinipal point (x; y) andmore sensitive to the foal length f. Thus the image enter an be used as an initial valuefor optimization !!!So we have seen how a global optimization funtion and representing rotations as quaternionshelps in reduing the gaps between images and gives a very muh aeptable omposite imageas its output.
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Chapter 7Conluding Remarks
7.1 A Brief Review of the PaperTwo methods for optimization of the spherial mosai formed from the initial estimates weredesribed. The �rst method use the loal optimization tehnique while the seond used theglobal optimization tehnique.Here are a few advantages the above reviewed algorithm provides:� Global Optimisation tehnique provides better and aurate results than the loal opti-misation tehnique used previously.� It provides robust automati estimation of internal amera parameters as a by-produt.� The results are quite independent of the errors in estimating the initial prinipal-pointestimate.� It produes an image with an e�etively super-hemispherial �eld of view, eliminating theambiguity between amera translation and amera rotation found in narrow �eld-of-viewimages.� The spherial mosaied image formed an be of any desired e�etive resolution, subjetto the hoie of optis and number of raw images that are omposited.� Spherial mosaiing allows the resulting mosai to be treated as a rigid, omposite image.A few demerits of the above disussed tehnique are:� Straightforward implementation of our algorithm will fail where there are large texturelessregions.� High-pass �ltering alone introdues many disontinuities into previously smooth imageregions, orrupting the derivative omputations and preventing onvergene. Thus theirimplementation must �lter the images to remove textureless regions, while simultaneouslypreserving smoothness. Thus band-pass �ltering is preferred.25



� The traversing and mapping of pixels in eah image and the aumulation of the globalderivatives inreases the omputational osts.� The algorithm fails to onverge for large errors in estimating foal lenght. Thus, fairlygood amera alibration is required to provide initial foal length estimates.� The algorithm uses a gradient based approah for optimization and may get stuk withthe problem of loal minima. Other optimization tehniques like Simulated Annhealingmight just provide better results.
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7.2 ConlusionThis report desribed two methods to reover relative rotations and internal amera parametersfor the set of images aquired from a ommon optial enter.The �rst method is a losed-form solution using eigen-vetors of 8-parameter warps. This methodis theoretially elegant, but yields quantitatively inaurate results as it just performs loaloptimization. The seond method solves this problem by omputing rotations and internalparameters diretly from image-spae orrelation using a global optimization tehnique.We saw that this method gives better and aurate results than the former one. Overall, spherialmosaiing allows the resulting mosai to be treated as a rigid, omposite image and providesa huge �eld of view. If proper optimization of the estimates is performed, better results aredelivered.
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