
Visibility Map for Global Illumination in Point Clouds

Rhushabh Goradia Anil Kanakanti Sharat Chandran Amitava Datta

Indian Institute of Technology Bombay University of Western Australia

Email: {rhushabh,kanil,sharat}@cse.iitb.ac.in datta@csse.uwa.edu.au

Figure 1: Point models rendered with global illumination effects. Pair-wise visibility information is essential in such cases. Note that the
Cornell room as well as the models in it are input as point models.

Abstract

Point-sampled geometry has gained significant interest due to their
simplicity. The lack of connectivity touted as a plus, however, cre-
ates difficulties in many operations like generating global illumina-
tion effects. This becomes especially true when we have a complex
scene consisting of several models. The data is often hard to seg-
ment as individual models and hence not suitable for surface recon-
struction.

Inter-reflections in such complex scenes requires knowledge of vis-
ibility between point pairs. Computing visibility for point models is
all the more difficult (than for polygonal models), since we do not
have any surface or object information. We present in this paper a
novel, hierarchical, fast and memory efficient algorithm to compute
a description of mutual visibility in the form of a visibility map.
Ray shooting and visibility queries can be answered in sub-linear
time using this data structure. We evaluate our scheme analytically,
qualitatively, and quantitatively and conclude that these maps are
desirable.

Keywords: Point models, visibility map, radiosity, global illumi-
nation

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation

1 Introduction

Points as primitives have come to increasingly challenge polygons
for complex models [Pfister et al. 2000; Rusinkiewicz and Levoy

2000]; as soon as triangles get smaller than individual pixels, the
raison d’etre of traditional rendering can be questioned. More im-
portant, however, is the considerable freedom points enjoy. The
independence of connectivity and topology enable filtering opera-
tions, for instance, without having to worry about preserving topol-
ogy or connectivity [Zwicker et al. 2001]. Simultaneously, mod-
ern 3D digital photography and 3D scanning systems [Levoy et al.
2000] acquire both geometry and appearance of complex, real-
world objects in terms of (humongous) points. Points are a natural
representation for such data acquired by range scanners, and di-
rectly rendering them without the need for cleanup and tessellation
makes for a huge advantage.

1.1 Inter-Visibility for Points

We wish to see the effects of Global Illumination (GI) – the simu-
lation of the physical process of light transport that captures inter-
reflections – on point clouds. For example, these three-dimensional
point models may be scans of cultural heritage structures (see Fig-
ure 2) and we may wish to view them in a virtual museum under
various lighting conditions. Note that the point clouds of interest
are not solitary models, but may consist of hard to segment entities
thereby inhibiting a surface reconstruction algorithm that produces
meshes.

Interesting methods like statistical photon tracing, directional radi-
ance maps, and wavelets based hierarchical radiosity [Wald 2005;
Gortler et al. 1993] have been invented for the purpose of global il-
lumination. Traditionally all these methods assume a surface repre-
sentation for the propagation of indirect lighting. Surfaces are either
explicitly given as triangles, or implicitly computable.The absence
of connectivity between points inherent in point based models now
hurts computation, especially in hard to segment models.

CHALLENGES: An important aspect of capturing this radiance
(be it a finite-element based strategy or otherwise) is an ob-
ject space view-independent knowledge of visibility between point
pairs. A view-independent visibility solution cannot (in general) use
the popular hardware-based z-buffering technique. Further, since
points are zero-dimensional with no connectivity information, we
do not have knowledge of any intervening surfaces occluding a pair
of points. Thus, only approximate invisibility between points can
be inferred.



Figure 2: Grottoes form a treasure for mankind. When such data are available as point samples, it’s hard to segment individual objects, and
hence build an accurate surface representation that might be needed for pairwise visibility.

1.2 Contributions

1. We propose a novel, atomic point-pair visibility algorithm.
Further, using the atomic algorithm, we define and build a
hierarchical visibility map data structure, termed V-map.

The visibility problem, in general, has a worst-case Θ(n2)
time complexity for n primitives. Given the fact that point
models are complex, dense, and consists of millions of points,
visibility algorithms are highly time consuming. In real
scenes, we might have partitions that are completely unoc-
cluded, or hopelessly obscured. Hierarchical visibility is often
used to discover unoccluding portions, and prune uninterest-
ing parts of the mutual-visibility problem. With the V-map,
visibility queries are answered quickly whether we have lots
of unoccluded space (such as the Cornell room without any
boxes) or densely occupied space (the same room packed with
boxes).

2. Our main use of the V-map is for GI. Here given a node in
a hierarchy, and a list of interacting nodes (possibly pruned
from the universe based on a form factor principle), we need
to further prune based on visibility. The V-map works as an
efficient pre-processing step for any hierarchical global illu-
mination method.

3. We theoretically prove the optimality of our method in terms
of memory & computational requirements. We follow with
quantitative & qualitative results by incorporating it in our GI
solution.

1.3 Related Work

Many global visibility (both view-dependent and view-
independent) solutions like discontinuity meshing[Drettakis
and Sillion 1996; Stewart and Karkanis 1998], visibility skeleton
and complex [Durand et al. 1997; Durand et al. 1996] and many
others [Teller and Hanrahan 1993; Landa et al. 2006] have previ-
ously been designed for polygonal models. [Bittner 2002] provides
a visibility map for an input scene given in terms of polygons.
However, the V-Map structure presented in our paper is different
from the visibility map of [Bittner 2002], which specifies the
Potential Visible Set from a given view (unlike view-independent
in our case) and uses it specifically for occlusion culling.

Points were used as display primitives for the first time in [Levoy
and Whitted 1985]. [Kobbelt L. 2004] contains an overview of us-
ing point-based representation in acquisition and modeling. The
methods described in [Kobbelt L. 2004] consider only view-
dependent visibility and do not consider the problem we tackle.

An early reference to visibility for point clouds is in [Grossman J.
1998] where visibility cones are constructed locally on a per-need
basis. The mutual visibility problem for points was first considered

(to our knowledge) in a technical report [Dutre et al. 2000] where
the focus was on constructing the approximate visibility value be-
tween two points using point cloud representation of the surfaces in
the scene. Although our atomic algorithm is inspired from [Dutre
et al. 2000], there are several performance enhancements due to the
explicit use of hierarchy in our method.

Visibility has also been considered by [Dobashi et al. 2004; Wald
and Seidel 2005; Wald 2005] for radiosity on point models, but their
primary focus was on computing radiance than visibility. We, on
the other hand, focus on computing mutual visibility in the context
of point clouds. Some other notable differences with [Dobashi et al.
2004] are the way the hierarchy is constructed and also the fact that
we pre-compute the visibility information and store it in a form of
V-map. It is not clear how visibility is handled at the coarser levels
(near to root) of the hierarchy in [Dobashi et al. 2004].

1.4 Roadmap

The rest of the paper is organized as follows. We start with the in-
troduction of the V-map in Section 2. Section 3 provides details
of an “atomic” point–pair visibility algorithm which is independent
of the V-map. We then extend this basic point–pair visibility algo-
rithm in a hierarchical setting to construct the desired V-map in Sec-
tion 4. Quantitative and qualitative results appear in Section 5. We
also provide a brief overview of the Fast Multipole Method (FMM)
used for solving the radiosity kernel in close to O(N) time for the
purpose of computing diffuse global illumination on point models
in Section 5. We used FMM as a test bed for asserting the correct-
ness of our generated V-map in the context of global illumination.
We follow it up with some concluding remarks and work to be done
in future in Section 6.

2 The Visibility Map

The construction of the V-map starts assuming a hierarchy is given.
For the purpose of illustration of our method, we use the standard
octree-based subdivision of space. Figure 4 shows a two dimen-
sional version to illustrate the terminology.

The V-map for a tree is a collection of visibility links for every node
in the tree. The visibility link for any node p is a list L of nodes;
every point in any node in L is guaranteed to be visible from every
point in p. Figure 3 provides different views of the V-map. (The
illustration shows directed links for clarity; in fact, the links are
bidirectional.)

The V-map entertain efficient answers to the following queries.

1. Is point x visible to point y? The answer may well be, “Yes,
and, by the way, there are a whole bunch of other points near
y that are also visible.” This leads to the next query.



)

LEVEL 0

(ROOT

LEVEL 1

LEVEL 2

LEVEL 3

(LEAF)

With respect to at any level,

−− COMPLETELY INVISIBLE

−− COMPLETELY VISIBLE

−− PARTIALLY VISIBLE

Figure 3: Views of the V-map (with respect to the hatched node in red) is shown. Every point in the hatched node at the first level is visible
from every point in only one node (the extreme one). At level 2, there are two such nodes. The figure on the left shows that at the lowest level,
there are three visible leaves for the (extreme) hatched node; on the other hand the figure on the right shows that there are only two such
visible leaves, for the second son (hatched node). The figure also shows invisible nodes that are connected with dotted lines. For example,
at level 1, there is one (green) node G such that no point in G is visible to any point in the hatched node. Finally the dashed lines shows
“partially visible” nodes which need to be expanded. Partial and invisible nodes are not explicitly stored in the V-map since they can be
deduced.

2. What is the visibility status of u points around x with re-
spect to v points around y? An immediate way of answer
this question is to repeat a “primitive” point-point visibility
query uv times. With a V-map, based on the scene, the an-
swer is obtained more efficiently with O(1) point-point visi-
bility queries.

3. Given a point x and a ray R, determine the first object of

Level 1

Level 2

Level 3

Level 0

Figure 4: Leaf nodes (or cells, or voxels) are at level three.

intersection.

4. Is point x in the shadow (umbra) of a light source?

All the above queries are done with a simple traversal of the oc-
tree. For example for the third query, we traverse the root to leaf
O(log n) nodes on which x lies. For any such node p, we check if
R intersects any node pi in the visibility link of p. A success here
enables easy answer to the desired query.

3 Point–Pair Visibility Algorithm

Since our input data set is a point model with no connectivity in-
formation, we don’t have knowledge of any intervening surfaces
occluding a pair of points. Theoretically, it is therefore impossible
to determine exact visibility; but only approximate visibility. For
practical purposes we, however, restrict ourself to Boolean visibil-
ity based on the results of the following approximate visibility tests.

Consider two points p and q with given normals np & nq as in
Figure 5. Given any such point, a natural tangent plane is defined
as the one passing through that point and orthogonal to its normal.
We now run the following tests to efficiently produce O(1) possible
occluders.

1. Cull backfacing surfaces not satisfying the constraint np·pq >
0 and nq · qp > 0

2. Determine the possible occluder set X of points close to pq



n

x2

n

n
n

n

2

3

np

q

x5

4

5

p

q

x3

x4

x1n1

greater than 

Figure 5: Visibility between points p and q is to be determined.
Only points (x1, x2, x3, x4, x5) (out of the whole point model) are
considered as potential occluders. Further, only points x2 and x3

will be considered as actual occluders.

which can possibly affect their visibility. As an example, in
Figure 5, points (x1, x2, x3, x4, x5) ∈ X . An efficient way to
obtain X is to apply a 3D Bresenham’s line segment algorithm
between p and q. This will output a set Y of points which are
collinear with and between p and q. Using the hierarchical
structure, we add to X all points from the leaves containing
any point from Y . The resolution or the step-length is based
on the sampling resolution of the original point dataset.

3. We now prune the set X further by applying a variety of tan-
gent plane intersection tests (Figure 5). We consider the dis-
tance of the occluder from the line segment, along the tangent
plane of the occluding point. The intuition is that the tangent
plane gives a local approximation of a surface, and a possible
occluder, at that point. Hence, we reject point x1 as the in-
tersection point of the tangent plane lies outside segment pq,
point x4 because it is more than a distance ∆ away from pq,
and point x5 as its tangent plane is parallel to pq.

Any point from X which fails any of the tangent tests is considered
an occluder to pq. If we find K such occluders, q is considered
invisible to p. Parameters ∆ and K are user defined; in our work
(see below) we do not need these per se.

4 Constructing V-Map for Point Clouds

We now extend our point–pair visibility algorithm to the hierarchi-
cal structure (Octrees) constructed on the input point model.

4.1 Octree Depth Considerations

In a hierarchical setting, and for sake of efficiency, we may termi-
nate the hierarchy with each leaf containing several points. The
point–pair visibility algorithm of the previous section is now ap-
plicable to a leaf–pair where we compute visibility between the
centroids (c1 and c2, Figure 6) of the points in those leaves. Note
that the centroid is not the same as the geometrical center of the
leaf. Considering centroids (and not center) essentially allows us
to take into account the distribution of points in the leaf. The line
segment c1c2 now intersect a set of leaves and the set X (Section 3)
comprises of the centroids of the points in these intersecting leaves.
Our occlusion criteria is modified as follows:

• If an intersecting leaf contains no point, the centroid of the
points in that leaf is dropped from set X (Figure 6(a)).

• Define a normal at the centroid by averaging the normals of
the points belonging to that leaf. A tangent plane is then suit-
ably defined as before. If this tangent plane is parallel to c1c2

c1

c2

cZ

(a) A potential occluding set of leaves are

generated given centroids c1 and c2. The dot-

ted leaf contains no point and is dropped.

cZ3

c1

c2

c1

c2

cZ4

(b) cZ3 is rejected because the tangent plane

is parallel to c1c2. Similarly, we reject cZ4

as the intersection point of the tangent plane

lies outside the line segment.

c1

c2

c1

c2

cZ1
cZ2 R

(c) cZ2 is rejected because the line seg-

ment c1c2 doesn’t intersect the tangent plane

within a circle of radius determined by the

farthest point from the centroid. Only cZ1 is

considered as a potential occluder.

Figure 6: Leaf-pair visibility is obtained by performing a number
of tests.

or intersects outside (Figure 6(b)), we drop the centroid in that
leaf.

• A final pruning happens based on the data dependent distance
R (loosely similar to ∆ in Section 3) of the centroid in the
intersecting leaf to the farthest point in the leaf. (Figure 6(c)).

Any intersecting leaf which fails any of the above tests is deemed
to be an occluder for the centroid-pair c1c2. We consider c1c2 as
invisible, if there exists at least one occluding leaf (corresponds to
K=1 from Section 3). Finding the first occluder enables us to exit
immediately thereby avoiding unnecessary computations.

Although this algorithm involves approximation, the high density
of point models results in no significant artifacts. (See Section 5.1).
Further, note that the value of R is dependent on the distribution of
points in a leaf and not on the actual size of the leaf (a large leaf can
have a very small R). Also, every leaf might (and most likely will)
have a different value of R. Finally, the approximation is made only
at the leaf level, and never at any internal node of the octree.

4.2 Point Model Visibility Maps

We now extend the leaf–pair algorithm (subsection 4.1) to deter-
mine visibility between internal nodes in the hierarchy.

We start with the given hierarchy and, optionally for each node, a
list of interacting nodes termed o-IL (a mnemonic for Old Interac-
tion List). If the o-IL is not given, we initialize the o-IL of every
node to be its seven siblings. This default o-IL list ensures that
every point is presumed to interact with every other point. Note



Algorithm 1 Construct Visibility Map

procedure OctreeVisibility(Node A)

1: for each node B in old interaction list (o-IL) of A do
2: if NodetoNodeVisibility(A,B) == VISIBLE then
3: add B in new interaction list (n-IL) of A
4: add A in new interaction list (n-IL) of B
5: end if
6: remove A from old interaction list (o-IL) of B
7: end for
8: for each C in children(A) do
9: OctreeVisibility(C)

10: end for

that there is no node common between an o-IL of some node, say
A, and any of the descendants of A (Referring Fig 3, the lightly
shaded nodes – cyan colored – at level 2 belong to the o-IL of the
hatched node in red at the same level. Similarly the cyan nodes at
level 3 belong to the o-IL of hatched node at level 3).

The V-Map is then constructed by calling
OctreeVisibility() initially for the root node
(present at level 0), which sets up the relevant visibility
links in New Interaction List(n-IL). This algorithm invokes
NodetoNodeVisibility(A,B) which constructs the vis-
ibility links for all descendants of A w.r.t all descendants of
B (and vice-versa) at the best (i.e. highest, near to the root)
possible level. This ensures an optimal structure for hierarchical
radiosity. The links in n-IL of a node, signifying the nodes
visible to the current node, are then used while performing
hierarchical radiosity calculations. The recursive procedure of
NodetoNodeVisibility(A,B) essentially performs point-
pair visibility calculations only at the leaf level, between all leaves
of A and B, using the algorithm of Section 4.1. Depending on the
results between these leaf pairs, we go up the tree and decide on the
visibility links of the nodes at upper levels via a simple look-up.
Note that the point-pair visibility calculations using average normal
and centroids only happens at the leaf level and not at any other
intermediate level of the tree. Further, the visibility between the
same node pair or a leaf pair is calculated exactly once.

Computational Complexity: The visibility problem may well call
for the answer to N = Θ(n2) pair-wise queries. Any algorithm
must therefore spend atleast Ω(N) time. As a result, we measure
the efficiency with respect to the parameter N especially since the
V-map purports to answer any of these N queries. We shall see later
that NodetoNodeVisibility() is linear with respect to N .
OctreeVisibility() then has the recurrence relation T (h) =
8T (h− 1)+N (where A is at height h) which results in an overall
linear time algorithm (w.r.t. N ) which is the best possible for any
algorithm that builds the V-map.

We now turn to NodetoNodeVisibility(A,B), a recursive
procedure that sets up the n-IL list of all its proper descendants pro-
vided the relationship between A and B is neither visible nor invisi-
ble. The computational complexity of this procedure is determined
by the call to the leaf–pair visibility algorithm (subsection 4.1). As-
suming that this is O(1), we have the recurrence for this procedure
as T (h) = 64T (h − 1) + O(1) (where A is at height h). The
resulting equation is linear in N (defined earlier).

In addition, the algorithm presented is the most efficient and op-
timized algorithm for constructing the V-Map for the given point
model since no extra computations are repeated between the same
node or leaf pairs at any level of the octree, whenever there is a case
of partial visibility between them. The overall algorithm consumes
a small amount of memory (for storing the temporary matrix M as

Algorithm 2 Node to Node Visibility Algorithm

procedureNodetoNodeVisibility(Node A, Node B)

1: if A and B are leaf then
2: return the status of leaf–pair visibility algorithm for A & B

(subsection 4.1)
3: end if
4: Declare s1=children(A).size
5: Declare s2=children(B).size
6: Declare a temporary Boolean matrix M of size(s1 ∗ s2)
7: Declare count=0
8: for each a ∈ children(A) do
9: for each b ∈ children(B) do

10: state=NodetoNodeVisibility(a,b)
11: if equals(state,visible) then
12: Store true at corresponding location in M
13: count = count + 1
14: end if
15: end for
16: end for
17: if count == s1 ∗ s2 then
18: free M and return VISIBLE
19: else if count == 0 then
20: free M and return INVISIBLE
21: else
22: for each a ∈ children(A) do
23: for each b ∈ children(B) do
24: Update n-IL of a w.r.t every visible child b (simple look

up in M ) & vice-versa, free M
25: end for
26: end for
27: return PARTIAL
28: end if

in Algorithm 4.2) during runtime. The constructed V-Map is also
a memory efficient data structure as (apart from the basic octree
structure) it requires to store only the link structure for every node.
For quantitative details, refer Table 1.

Visibility Map + GI algorithms:

1. Given a V-Map, ray shooting queries are reduced to search-
ing for primitives in the visibility set of the primitive under
consideration, thereby providing a view-independent prepro-
cessed visibility solution.

2. Both diffuse and specular passes on GI for point models can
use V-Maps and provide an algorithm (similar to photon map-
ping), which covers both the illumination effects.

5 Experimental Results

In this section, we discuss the validity and application of the pro-
posed method to various point models. All examples shown are
calculated using a Pentium4 2.6 GHz. Note that all input such as
the models, the light source, and the walls of the Cornell room are
given as points.

5.1 Visibility Validation

We validate our proposed method here using an adaptive octree
structure (similar results are available even if the octree is not adap-
tive). Figure 7(a) shows a point model of an empty Cornell room.
Note the default colors of the walls. We now introduce a pink Stan-
ford bunny. In Figure 7(b), the eye (w.r.t. which visibility is being
computed) is on the red wall (on the left), marked with a cyan col-



ored dot. The violet (purple) colour indicates those portions of the
room that are visible to this eye. Notice the “shadow” of the bunny
on the green wall and on the floor. The same idea is repeated with
the eye placed at different locations for the Buddha (Figure 7(c) and
Figure 7(d)) in the Cornell room.

Figure 8(a) shows a point model of a different (empty) Cornell
room. Note the default colors of the walls. We repeat similar tests
with point models of the Indian god Ganesha (Figure 8(b)), the In-
dian goddess Satyavati (Figure 8(c)) and a blue Bunny (Figure 8(d))
placed in a Cornell room. The quality of results indicate that the
approximations made in Section 4.1 do not impact the correctness.
We remark that the user divides the octree adaptively depending on
the input scene density and complexity and the particular computer
used. Increasing or decreasing the levels of subdivision for a given
scene is essentially a trade-off between quality of the visibility (user
driven), and the computational time. We found that an octree of
depth 8 gave us accurate visibility results as shown in Figure 7 and
Figure 8.

5.2 Quantitative Results

Having established that the visibility is correctly computed, we
turn to a quantitative estimate of the efficacy of the V-map. Ta-
ble 1 has been given for this purpose. In this table, we show that
the actual number of visibility links (column 5) is a small frac-
tion of the quadratic possibilities. For example, the decrease in
the number of visibility links in the empty Cornell room is the
fraction (1.4 − 0.27)/1.4 (roughly 80%), when the hierarchy is
expanded adaptively to level 8. It is interesting to note that this
situation persists whether the scene is sparse, or dense. The V-
Map computation roughly takes approximately 20 − 25 secs for
about a million points (refer Table 1). Once constructed, they al-
low for an interactive walkthrough of the point model scene (Refer
supplementary videos at: http://www.cse.iitb.ac.in/
∼rhushabh/graphite07/videos/).

5.3 Visibility Map in Global Illumination

Having established the correctness of the V-map, and the reduction
of the scene complexity (in terms of the number of visible links), we
now use the V-map in a global illumination(GI) algorithm, where
the Fast Multipole Method [Greengard and Rokhlin 1987] is used
to solve the radiosity kernel. The inherent notion of points in the
FMM blends very well with hierarchical point models as input. We
therefore use the FMM as a test bed for the proof of our concept of
V-maps when applied for GI. For every node in an octree, FMM de-
fines an “interaction” list consisting of all possible nodes which can
contribute energy to this node. The V-map data structure is there-
fore needed to assert the visibility between these nodes belonging
to the interaction lists.

Note that the the purpose of this paper is to highlight the usage
and capabilities of a V-map. Hence we do not emphasize on the
details of the global illumination algorithm used. Also note that
the usage of the V-map is not restricted to FMM based GI but can
also be incorporated in existing hierarchical GI algorithms for point
models.

Figure 1 and Figure 9 shows results where the subdivision of hi-
erarchy is performed till 50 points per leaf (maximum depth of 8).
Figure 9 shows the front view, the back view and the close up of
the point models placed in the Cornell room. The color bleeding
effects and the soft shadows are clearly visible. The shadows can
be made more smoother by increasing the level of subdivision but
one compromises on the computation time. The user decides the
trade-off. Also worth noting is that the back of Ganesha (Fig 9) is

illuminated even though the back is not directly visible to the light
source.

Finally, the V-map works well even in the case of aggregated mod-
els given as input (for example, point models of both Ganesha and
Satyavati placed in a point model of a Cornell room in Figure 9).
Recall that the input is a single, large, mixed point data set con-
sisting of Ganesha, Satyavati, and the Cornell room. These models
were not taken input as separate entities nor were they segmented
into different objects during the whole process.

6 Conclusion and Future Work

Point-to-point Visibility is arguably one of the most difficult prob-
lems in rendering since the interaction between two primitives de-
pends on the rest of the scene. One way to reduce the difficulty
is to consider clustering of regions such that their mutual visibility
is resolved at a group level. Most scenes admit clustering, and the
visibility map data structure we propose enables efficient answer to
common rendering queries. In this paper, we have given a novel,
provably efficient, hierarchical, visibility determination scheme for
point based models. By viewing this visibility map as a ‘prepro-
cessing’ step, photo-realistic global illumination rendering of com-
plex point-based models have been shown.

As future work we note that the V-Map algorithm can be paral-
lelized. Hence, a good idea would be to extend our algorithm to
GPUs.

Acknowledgements

We would like to thank the Stanford 3D Scanning Repository as
well as Cyberware for freely providing geometric point models to
the research community. We would also like to thank Biswarup
Choudhury and all other members of Vision, Imaging and Graphics
laboratory (ViGIL) at Indian Institute of Technology, Bombay for
their invaluable support and feedback.

References

BITTNER, J. 2002. Hierarchical Techniques for Visibility Compu-
tations. PhD thesis, Czech Technical University.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2004. Radiosity
for point-sampled geometry. In Proc. Pacific Graphics 2004,
152–159.

DRETTAKIS, G., AND SILLION, F. 1996. Accurate visibility
and meshing calculation for hierarchical radiosity. In Render-
ing Techniques, 7th EG Workshop on Rendering, 269–278.

DURAND, F., DRETTAKIS, G., AND PUECH, C. 1996. The 3d
visibility complex: A new approach to the problems of accurate
visibility. In Eurographics Rendering Workshop, 245–256.

DURAND, F., DRETTAKIS, G., AND PUECH, C. 1997. The vis-
ibility skeleton: a powerful and efficient multi-purpose global
visibility tool. Computer Graphics 31, 89–100.

DUTRE, P., TOLE, P., AND GREENBERG, D. P. 2000. Approxi-
mate visibility for illumination computation using point clouds.
Tech. rep., Cornell University.

GORTLER, S. J., SCHRÖDER, P., COHEN, M. F., AND HANRA-
HAN, P. 1993. Wavelet radiosity. In Proc. of SIGGRAPH-93:
Computer Graphics, 221–230.



(a) An empty Cornell room. (b) Visibility test on pink Bunny with

eye on the red wall.

(c) The pink Buddha (eye on the floor) (d) The blue Buddha (eye on the red

wall)

Figure 7: Various visibility tests where purple color indicates portions visible to the candidate eye (marked cyan/brown).

(a) An empty Cornell room. (b) Visibility test on a saffron Ganesha

with eye on the red floor.

(c) The blue Goddess (d) A blue Bunny (eye on the floor)

Figure 8: Various visibility tests where purple color indicates portions visible to the candidate eye (marked green/cyan).

Points N2 possible V-Map Links % Memory(MB) Memory(MB) Build V-MapModel
(millions) links (millions) (millions) Decrease N2 links V-Map links Time(secs)

ECR 0.1 1.4 0.27 79.5% 5.35 1.09 20.6

PCR 0.14 3.85 0.67 82.62% 15.43 2.68 23.8

BUN 0.15 1.53 0.38 74.64% 6.09 1.5 21.7

DRA 0.55 2.75 0.43 84.54% 11.0 1.7 23.5

BUD 0.67 1.58 0.39 74.75% 6.33 1.6 23.9

GAN 0.15 1.56 0.38 75.64% 6.2 1.55 22.0

GOD 0.17 1.62 0.4 75.31% 6.4 1.63 22.9

Table 1: V-Map details for sparse scenes such as the Empty Cornell Room(ECR), dense scenes such as the Cornell Room Packed(PCR)
to capacity with a large box, or ‘typical’ scenes such as the Bunny(BUN), the Dragon(DRA), the Buddha(BUD), one of the Indian God’s,
Ganesha(GAN), and an Indian Goddess(GOD), placed in Cornell room. N represents no. of leafcells. The reduced number of visibility links
essentially signify less computations for GI radiosity algorithm. We see the decrease is significant. Further, the maximum memory required
for V-Map was 2.68MB for PCR, but was still very less compared to storage for N2 links. Also, the V-Map roughly took only 20–25 seconds
for its construction even for such highly dense point models.

GREENGARD, L., AND ROKHLIN, V. 1987. A fast algorithm for
particle simulations. Journal of Computational Physics 73, 325–
348.

GROSSMAN J., D. W. 1998. Point sample rendering. In Rendering
Techniques, 181–192.

KOBBELT L., B. M. 2004. A survey of pointbased techniques in
computer graphics. In Computers & Graphics 28, vol. 6, 801–

814.

LANDA, Y., TSAI, R., AND CHENG, L. 2006. Visibility of point
clouds and mapping of unknown environments. In ACIVS06,
1014–1025.

LEVOY, M., AND WHITTED, T. 1985. The use of points as a
display primitive. Tech. rep., University of North Carolina at
Chapel Hill.



Figure 9: Use of V-Maps for GI effects. The hierarchy was constructed till we had less than 50 points per leaf (maximum depth of 8). The
images were rendered using a custom point-based renderer. Soft shadows, color bleeding and parts of models indirectly visible to the light
source being lit can be observed. Three different set of images, corresponding to different point models, are shown. Each set shows a front
view, a back view and a close up of the point model/s placed in the point based Cornell room.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000.
The digital michelangelo project: 3D scanning of large statues.
In Siggraph 2000, Computer Graphics Proceedings, ACM Press,
K. Akeley, Ed., 131–144.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. Surfels: Surface elements as rendering primitives. In Sig-
graph 2000, 335–342.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A multireso-
lution point rendering system for large meshes. K. Akeley, Ed.,
343–352.

STEWART, A. J., AND KARKANIS, T. 1998. Computing the ap-
proximate visibility map, with applications to form factors and
discontinuity meshing. Eurographics Workshop on Rendering
(June), 57–68.

TELLER, S., AND HANRAHAN, P. 1993. Global visibility algo-
rithms for illumination computations. In Proc. of SIGGRAPH-
93: Computer Graphics, 239–246.

WALD, I., AND SEIDEL, H.-P. 2005. Interactive Ray Tracing
of Point Based Models. In Proceedings of 2005 Symposium on
Point Based Graphics.

WALD, I. 2005. High-Quality Global Illumination Walkthroughs
using Discretized Incident Radiance Maps. Technical Report,
SCI Institute, University of Utah, No UUSCI-2005-010 (submit-
ted for publication).

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M.
2001. Surface splatting. In SIGGRAPH ’01, 371–378.


