
Fast, Parallel, GPU-based Construction of Space Filling Curves and Octrees

Abstract

Space Filling Curves (SFC) are particularly useful in linearization
of data living in two and three dimensional spaces and have been
used in a number of applications in scientific computing, and vi-
sualization. Interestingly, octrees, another versatile data structure
in computer graphics, can be viewed as multiple SFCs at varying
resolutions, albeit with parent-child relationship.

In this paper we provide a parallel implementation of SFCs and
octrees on GPUs that rely on algorithms designed to minimize or
eliminate communications.

INTRODUCTION: Construction and traversal of the ubiquitous oc-
tree on a single processor CPU is well understood; the natural top
down hierarchical structure provides a partitioning of space, elimi-
nating the need to deal with unnecessary portions of large volumes
of data. Recently, with rapid improvements in the performance and
programmability, Graphic Processing Units (GPUs) containing par-
allel computational units have fostered considerable interest.

PRIOR WORK: A straightforward implementation of the top-down
octree for the GPUs appears in [Lefebvre et al. 2005]. Here point-
ers simply become indices within a texture, and are encoded as
RGB values. The content of the leaves is directly stored as an RGB
value within the parent node’s array of pointers (see accompanying
poster). The alpha channel is used to distinguish between a pointer
to a child and the content of a leaf.

DRAWBACKS: When computations are required in parallel, the top
down structure creates a bottleneck at the root, and at higher levels
especially since the data resides at the leaves. There is no commu-
nication free knowledge of where a particular data node is going to
land in the texture.

CONTRIBUTIONS: Maximizing performance on a GPU requires an
algorithm that is relatively communication free. The large number
of threads available on current GPUs should be used efficiently to
work at the leaf level of the octree, and ‘somehow’ encode the oc-
tree structure in a data parallel manner. In this paper, we use SFCs
as a data representation of octrees and show how to support typical
queries. Specifically

1. Multiple GPU threads compute the SFC code of the domain
at the highest resolution in parallel. This is repeated across
multiple scales to produce (in parallel) all nodes of the octree.

2. Once a multilevel structure is in place, we support parallel
queries. For example, a seemingly sequential operation, the
post order traversal of the octree is obtained in parallel. Other
parallel queries supported include nearest neighbor queries,
and the least common ancestor of two nodes. See accompa-
nying poster for details.

PROBLEM SETTING: For brevity we assume that the data of inter-
est is available as points in a domain. For example, these could be
the intersection of the surface of the Stanford bunny with cells that
are obtained by bisecting the bounding cube recursively along each
dimension k ≥ 1 times (this will normally eventually result in an
octree with height k, and a grid with 8k cells). We make no as-
sumption on the number of points in the model. However, memory
limitations of the GPU will possibly result in multiple points within
a cell, when an octree of height h < k is constructed.

SFC CONSTRUCTION: Consider a d dimensional particle space of
side length D and let its bottom left corner be at the origin. Threads
in parallel compute the relation of points to cells at resolution k.
(Integer coordinates of a cell having a point at (Px, Py, Pz) will

be (⌊2kPx/D⌋, ⌊2kPy/D⌋, ⌊2kPz/D⌋)). The SFC value is then
computed by representing the integer coordinates of the cell using
k bits for each dimension and interleaving these bits. (For example,
the SFC index of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110)

OCTREE CONSTRUCTION: We first observe that if the computed
SFC values (say at resolution k) are sorted, then we have the cor-
rect order to consider nodes in a bottom up traversal of an octree.
This leads us to the intuition that an octree can be viewed as (sorted)
SFC values at varying resolution. Further, discarding the least sig-
nificant d bits from an SFC value of a cell gives us the SFC value
of the parent cell. It is therefore possible, in a communication free
manner, for parallel threads to consider the data values of eight SFC
cells to make a decision about a parent cell. For example, if all eight
cells are empty, the leaf is promoted to a higher level in a bottom
up manner.

QUERIES: Given a node (and thus the SFC value), it is straightfor-
ward to compute its parent. A more complicated query is to find
the least common ancestor of two nodes c1 and c2. This can be
done in parallel, and in a communication free manner for multiple
pairs, by finding the longest common prefix of the SFC values of
each pair that is a multiple of d. The postorder traversal is another
query. For all nodes in the octree, we first find the post order num-
ber (PONA) in a notional (non-existing) complete octree. During
the bottom up octree construction algorithm, we also store, for each
node, the number of empty nodes (NE) in its subtree. These are
nodes that should have existed, but do not exist, because the octree
is adaptive, and leaves are at various levels. The position of the
given node in the final postorder traversal is then simply the differ-
ence PONA-ΣNE of nodes appearing before the current node.

RESULTS: The octree of height 11 for 5 million points can be
done in 0.605ms (the comparable number for a CPU is 5244 ms).
Other results (for example, for varying octree heights) appear in
the accompanying poster. Our implementation uses [CUDA ] on an
nVidia GeForce 8800. The source code is available on the web.

References

CUDA. Nvidia CUDA Programming Guide. http://

developer.nvidia.com/cuda. Last visited November
2007.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. GPU
Gems 2. Addison Wesley, ch. Octree Textures on the GPU, 595–
614.

1


