
Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is a first
step in many particle based
methods. In graphics, a triangular
element can be represented by its
centroid. In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is (, ,)

3. Allocate 8k threads . In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution)
are sorted, then we have
the correct order to
consider nodes in a
bottom up traversal
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up
octree construction is therefore
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell can be
computed independently
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child)

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core
CPU & nVidia 8800 GTS using CUDA [3]. GPU timings in charts
does not include data copy time from CPU to GPU.

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work

References

1. Sagan H. Space Filling Curves. Springer-Verilag, ‘94

2. Lefebvre S., Hornus S., and Neyret F. GPU Gems 2, chapter
Octree Textures on GPU, pages 595-614. Addison Wesley, ‘05

3. nVidia CUDA Programming Guide,developer.nvidia.com/cuda

4. Goradia R., Kanakanti A., Chandran S., and Datta A. Visibility
Map for Global Illumination in Point Clouds. In Procs. of
ACM SIGGRAPH GRAPHITE, pages 39-46. ‘07

2 /k

xP D

All are NULL nodes Node c1 has some data

p1

c1 c8

p8

c1 c8

pi

c1 c8

Leaf

Internal node

Empty node

Depth k

p1 p8

c1 c8

pi

c1 c8

R

Leaf

Internal node

Empty node

c2

Lookup number of
empty nodes before
c2 in this region

PONA = post order
number of c2 in notional
non-adaptive octree

Root

01 11

1000

0101 0111 1101 1111

0100 0110 1000 1110

0000 0010 1000 1010

0001 0011 1001 1011

0 1

0

1

00 01 10 11

00

01

10

11

y

x

1
3

2
4

9

5

8
7

6

10

{prekshu,rhushabh,sharat}@cse.iitb.ac.in
aluru@iastate.edu

Height: 5 6 7 8 9

GPU (ms) 0.27 0.31 0.316 0.321 0.354

CPU (ms) 0.152 0.891 9.59 80.05 467.4

0
100
200
300
400
500

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(2 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.068 0.087 1.181 2.106 3.123

CPU (ms) 0.353 2.687 22.622 192.063 1510.12

0

500

1000

1500

2000

T
im

e
 (

m
s
)

SFC CONSTRUCTION (2 Million Points)

Height: 7 8 9 10 11

GPU (ms) 0.319 0.331 0.369 0.481 0.605

CPU (ms) 10.01 83.1 489.42 1560.9 5244.17

0

2000

4000

6000

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(5 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.223 0.273 1.339 2.17 3.921

CPU (ms) 1.27 4.57 30.23 220.13 1613.9

0
500

1000
1500
2000

T
im

e
 (

m
s
)

POST ORDER OCTREE TRAVERSAL
(2 Million Points)

2 /k

yP D

Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

0 1

1

0 1

1

PONA NE

2 /k

zP D

Level=2

Level=1

Level=0

