
GPU-Based Ray Tracing of Splats

Rhushabh Goradia Sriram Kashyap Parag Chaudhuri Sharat Chandran

Vision, Graphics and Imaging Laboratory (ViGIL)
Indian Institute of Technology Bombay

www.cse.iitb.ac.in/∼{rhushabh,kashyap,paragc,sharat}

Abstract—When it comes to rendering models available as
points, rather than meshes, splats are a common intermediate
internal representation. In this paper we further the state of
the art by ray tracing splats to produce expected effects such
as reflections, refraction, and shadows. We render complex
models at interactive frame rates allowing real time viewpoint,
lighting, and material changes. Our system relies on efficient
techniques of storing and traversing point models on Graphics
Processing Units (GPUs).

Keywords-Ray Tracing; Point Models; Graphics Processing
Units; Interactive.

I. INTRODUCTION

Modern 3D digital photography and 3D scanning sys-
tems such as [1] and [2] acquire both geometry and
appearance of complex, real-world objects in terms of multi-
million point models. For example, [2] reports 250 million
points for a model of the Piazza San Marco. Given the
complexity of this data, a mesh based representation for
such models is daunting. Creating and maintaining the
connectivity information in such meshes would result in high
memory foot print and book-keeping operations. Adding and
dropping edges for managing the appropriate level of detail
is cumbersome. On the other hand, the inherent simplicity
of point models suggest a representation to consider.

We would like to demonstrate that rendering such point
models is practical without relying on traditional polygonal-
based rendering. As soon as triangles get smaller than indi-
vidual pixels, the rationale behind using traditional polyg-
onal rendering can be questioned. Perhaps more important
is the considerable freedom modelers enjoy with points —
point models enable geometry manipulation without having
to worry about preserving topology or connectivity [3].

We are used to visualizing polygonal models with a
high degree of realism with complex run time lighting and
viewpoint changes. The problem we consider in this paper is
“Can we, with reasonable frame rates, bring the same sort
of realism for direct point-based rendering?” This question
is particularly challenging because the lack of connectivity
actually complicates the rendering process. For example, if
we were to consider ray tracing, it is clear that singular
primitives such as rays cannot intersect points.

Ray tracing has been shown to the method of choice in
traditional rendering; it provides the advantage (over simple

z-buffer rendering) of high quality display of reflective and
transmitive surfaces. Being an image space algorithm, it
scales well with increase in model size. Therefore, despite
the challenges in point based rendering, ray tracing is our
method of choice. Rendering point models has been shown
[1], [3]–[5] by rasterizing splats (circular disks representing
a local surface around points) on screen, or ray tracing splats
[6], or using alternate intermediate representations [7]–[9].
Prior work provide varying speed and quality of results. For
example, [8] demonstrate shadows as view point changes in
an interactive manner, but no inter-reflections are provided.
In contrast, [6] demonstrate refractions, but the method is
far from interactive.

A. Contributions

We present a framework for ray tracing complex point-
based models (PBMs) on GPUs that achieves interactive
performance, with shadows, reflection, and refraction. We
further allow for real time viewpoint, material and lighting
changes in the point model scenes while making no compro-
mise with respect to the frame rates. The specific technical
contributions of this work are as follows:

• As before, we use a splat-based approach but formu-
late new techniques for handling known problematic
situations such as sharp corners (Sec. IV-C).

• We design a GPU-friendly, memory efficient, variable
height octree. This enables us to perform fast ray traver-
sal on large input data. We design an efficient mecha-
nism to trace rays in parallel on the GPU (Sec. III).

Note that creation of an octree efficiently [10] on the GPU
is not an end in itself in our work. In fact, we consider it
as a pre-processing step (performed on the CPU) before ray
tracing. Furthermore, our goal with points is to bring the
same sort of realism as polygonal models. Therefore, for
fair comparison, we demonstrate the rendering capability on
existing polygonal models after converting them to point
models, rather than on other obscure models that are not
available in polygonal form.

In summary, by capitalizing on the ability to do parallel
processing available in GPUs, we present a ray tracing
framework that, to the best of our knowledge, outperforms
(please see Sec. V) all previous ray tracers for PBMs. With
respect to rendering with reflective and refractive effects,

we considerably outperform the speed reported earlier in
[6], and the quality of rendering can be ascertained from
Sec. V. We allow real time viewpoint, lighting and material
changes. If we further reduce the realism demands, allow
shadow rays, but no secondary rays, then our method also
outperforms [8] in speed, maintaining similar quality. We
do not compare our technique with z-buffer style rendering
methods [4], [5], [11].

B. Related Work

We observe that both rays and points are “singular”
primitives, and therefore one, or both have to be “fattened”
to perform intersection. Three approaches to ray tracing
PBMs have emerged. In [7], rays become cylinders, and
intersection is based on the local density. Although the
reported results are interesting, the method, as noted in
[8] and [6], is expensive. [9] introduced a similar concept
of tracing ray-cones into a multi-resolution hierarchy. In
both approaches, interactive performance was not the goal
as tracing ray-cylinders or cones requires one to traverse
large portions of the acceleration structure, increasing the
computation times.

The second approach, as proposed in [12], is to ray
trace implicitly constructed point-set surfaces. It resulted in
a computationally expensive algorithm (with rendering times
in hours), where the points on the ray had to be iteratively
projected onto the surface until convergence. This approach
was substantially improved in [8]. They introduced an
interactive, multi-core CPU-based parallel algorithm, which
can render about 1 million points in an image of size
512 × 512 at about 7 fps (frames per second) but with
only ray traced shadows (thus, no refraction is reported for
example). [13] perform ray tracing of point set surfaces
at interactive rates with reflections. However, their point set
size is limited to 0.1 million due to the lack of efficient GPU
data structures.

The third approach is to ray trace splat models. This is an
explicit surface representation, where each point is replaced
by a splat. A splat is an oriented disk with a position, a
normal and a radius. Splat-based surface representations,
while conceptually simpler, are not C0 continuous. Thus,
blending these splats during ray splat intersection, requires
special consideration. [6] adopted this approach and reported
a rendering time of around 100 seconds for a 1200× 1200
image. We also use the splat based approach, but report
interactive frame rates for similar scenes.

With respect to the underlying data structure used for
accelerated renderings, [8] uses kd-trees on multi-core CPU
to organize points and assist in fast ray traversal. [6], on
the other hand, use octrees. Octrees as an data structure
are convenient for compressed storage and acceleration
required in ray tracing, due to their simplistic hierarchy and
uniformity in octree nodes with no overlaps. Further, the
uniformity in octree sub-divisions aid in easy traversals on

the GPU. Hence, we use octrees as our acceleration data
structure.

From the perspective of GPU-based solutions, there
has been considerable interest in ray tracers in recent
years([14]–[19]). However, all of these techniques are
developed with polygonal models in mind. More recently,
a real time GPU-based raycaster has been described in
[20] for out-of-core rendering of massive volume datasets
at around 30 fps with shadows. However, reflections &
refractions are not shown. A preliminary version of the work
presented here is sketched in [21].

II. OVERVIEW

Our rendering method consists of the following:
• Assuming that the input consists of point positions, nor-

mals, and material properties, we pre-process them to
create splats. The center of each splat is the respective
point position, while its radius is set according to the
point’s local neighborhood density. We make sure that
there is minimal overlap amongst neighboring splats.
Splats are then inserted in an octree which is later sent
to the GPU for ray tracing. Details of the GPU-friendly
representation are in Sec. III.

• In order to do ray tracing at interactive rates, we
traverse the previously created octree efficiently on
the GPU (see Sec. IV-B). Ray tracing further requires
us to compute intersection of rays with splats and
also requires the generation of correct normals at the
intersection points (see Sec. IV-C). We also handle
shadows and secondary rays during ray tracing.

III. REPRESENTATION

Noting that parallelism on GPUs is best achieved with
simpler representations [22], we use a splat-based repre-
sentation for PBMs. We create splats by using a density
estimation technique (details skipped) on the input PBM to
find the radius of the splats.

When tracing a large number of rays for image synthesis,
it obviously is not efficient to intersect each ray with all the
splats in the given scene, in order to find the closest point
of intersection for each ray. It is thus necessary to construct
an additional data structure that allows one to exclude most
of the splats from the actual intersection testing. We use an
adaptive octree for storing splats, using the splat centers as
the keys. This octree is constructed on the CPU and later
sent to the GPU for ray tracing.

A. GPU Octree Structure

To facilitate coherent access, we store a variable height
full octree where every internal node in the octree has exactly
8 children. The root represents the entire model space. The
model space is recursively divided into eight axis-aligned
octants. If a node is divided, it is an internal node. If a node
is not divided, and if it does not have any splat centers in

it, it is an empty leaf. Otherwise it is a filled leaf. Note that
the octree is not necessarily complete. Further, the children
of a node are ordered, as per the Z-order space filling curve
(Z-SFC) [23] pattern allowing for systematic access of the
memory in a GPU.

We ship this octree from the CPU to the texture memory
of the GPU, the primary reason being the fast texture cache
available on CUDA-compatible GPUs. Each texel of size
32 bits representing an internal node of the tree stores the
address of its first child, with the remaining 7 children stored
contiguously in memory after the first child. 2 bits are used
in distinguishing an internal node from a filled leaf, or an
empty leaf. We refer to this linear arrangement of octree
nodes as the node pool. A filled leaf will essentially refer
to the point data which is also stored as a 1-D texture on
GPU. The arrangement is shown in Fig. 1.

Point Texel – 128 bits

R G B A

32 bits 32 bits 32 bits 32 bits

R,G,B components contain the position
of the splat center. A (Alpha) contains
splat radius

Point Texel – 128 bits

R G B A

32 bits 32 bits 32 bits 32 bits

R,G,B components contain the splat
normal. A (Alpha) contains the material
ID for the splat

Point data texels in Data-Pool

Node Texel – 32 bits

R G B A

8 bits 8 bits 8 bits 8 bits

30 bits used for storing address of

the first child (if Internal Node) or

address to the point data in data

pool (if node is a leaf)
1 bit to check if the

current node is empty

1 bit to check if the

current node is a leaf

Figure 1. Point and Node structures in the Data pool and Node pool
respectively.

B. Multiple Splats per Leaf

So far we have simply assumed that a leaf contains
only one splat center (which corresponds to the input data
location) However, given limited memory, we desire a leaf
contain more than one point (splat center). We therefore
divide the octree in the fashion such that each leaf contains
a maximum of k points (k is approximately 10 in our
implementation). The number of points varies from one leaf
to another, but the data is still stored in a linear array.
Thus a node in the node pool needs to have two pieces of
information – the address in the data pool and the number
of items to associate with. This feature is implemented by
another one-dimensional array of size equal to the number of
filled leaves which act as a (Fig. 2) Begin-End texture.
By accessing two items in this texture, it is now possible to

LEAF L1

Octree Node Pool
in Texture memory

beginP for
Leaf L1

LEAF L2
endP for Leaf
L1 /beginP for

Leaf L2

beginP for
Leaf L1

endP for Leaf
L1 /beginP for

Leaf L2

Data Pool in
Texture memory

All Points Belonging to LEAF L1

Begin-End Texture Pool

All Points Belonging to LEAF L2

endP for Leaf L2

Figure 2. A leaf in the node pool points to some location in the
Begin-End texture. This location gives us the start of the contiguous
block of splats belonging to this leaf in the data pool. The next location
in the Begin-End texture gives us the end of the block of points for this
leaf. This location also signifies the beginning for some other leaf in the
node pool. Each texel location in the Begin-End texture is 32 bits.

find the bounds of the contiguous piece of memory in the
data pool that constitutes the points in a leaf.

C. Multiple Leaves per Splat

cj
rj

Sj

I
cj

Sj

LEAF L1 LEAF L2

rj

(a) (b)

Figure 3. (a) Splat Sj ’s center cj is located in one of the leaves, but it
intersects many leaves in the tree. (b) Ray R intersects splat Sj . If only
the center of Sj is consider in octree insertion, a ray tracer will result in
wrong output, or an output with artifacts. One solution is to insert Sj in
all leaves it intersects (yellow cells in (a)).

The assumption so far that each splat belongs to a single
leaf is not necessarily true. Whenever one uses a hierarchical
structure for storing primitives (be it splats or polygons), we
are bound to face a situation where a primitive intersects
multiple leaves in the tree. In our case, a splat may spread
over several leaves. In such a scenario, the correctness will
be compromised if the splat is not available in all leaves.
For example, as seen in the ray tracing procedure, Fig. 3 (b),
even though the ray intersects splat Sj , a NULL intersection
is reported as Sj is located in the neighboring leaf and not
the current one. These missed intersections result in holes.

We follow the idea in [6] where multiple leaves can be
associated with a splat. However, adding a splat to all the
leaves it overlaps increases the memory footprint drastically.
We differ from [6] in adding a splat to all the leaves that
they span. Originally, each leaf contains only those splats
whose centers lie inside it. Next, we tentatively add all other

splats that intersect this leaf. We now send “probe” rays 1

through every leaf of the octree in various directions. If a
probe ray does not intersect any of the original splats in a
leaf, we check against the tentatively inserted splats. Finally,
we retain only those additional splats which have intersected
at least one probe ray. This optimization technique reduces
the overall footprint increase from 90% (as in [6]) to around
20%.

IV. RAY TRACER GPU KERNEL

Note that all the computations mentioned in the previous
section happens during the pre-computation stage of octree
construction on the CPU. The preprocessed, texture-mapped
GPU octree is now used by the ray tracer kernel, on the
GPU, for accelerated renderings. The kernel spawns multiple
parallel threads, each corresponding to individual screen
pixels. Our rendering is based on marching along the view
rays and finding the first intersecting object splat. Based on
the material properties of the splat, secondary reflective and
refractive rays are sent until a pre-defined maximum bounce
limit is reached.

A. Ray Coherence

Ray coherence is typically exploited to speed up ray
tracing. Multiple rays that follow very similar paths through
the acceleration structure are said to be coherent with respect
each other. CPU ray tracers generally exploit coherence
through the use of SIMD units, where ray bundles or ray
packets are traced at a time by packing multiple rays inside
SIMD registers. Same operations are performed on all the
rays in a packet, but essentially reducing processing time
by a factor proportional to the SIMD width (usually 4 on
current CPUs).

We employ a similar method on the GPUs. CUDA-
enabled GPUs process threads in batches of 32, called
“warps”. All threads in a warp are bound by the instruction
scheduler to take the same path. It thus makes sense to assign
coherent rays to threads in a warp. Threads are assigned to
warps based on their thread-ids. CUDA threads are provided
with a unique thread-id which they can use to identify
which part of the data they are working on. The first 32
thread-ids are assigned to the first warp, the next 32 to the
second and so on. We exploit coherence of rays by mapping
linear thread-ids to rays, in a spatially coherent manner. We
once again use the concept of Space Filling Curves (Z-SFC)
except that now we map a given linear ordering of thread ids
into the corresponding screen space Z-order spatial location.
The relevant formula here is

(x,y) = (Odd-Bits(Thread-ID),Even-Bits(Thread-ID))

1Considering a leaf as a cube, probe rays originate from a random
location on one face of the cube and exit another face. Probe rays are
not necessarily axis-aligned.

These (x, y) pairs of primary rays can be obtained in
constant time from a given thread-id. These pairs denote
the location on the screen through which the ray originates.

B. Octree Traversal

For primary rays starting from the camera position (or eye
point) possibly outside the octree, the intersection of the ray
with the bounding box of the octree is computed, i.e., with
the cell represented by the octree root. The leaf cell to which
the intersection point belongs is determined. From here on,
primary and secondary rays can be treated identically.

If the rays hits a filled leaf of the octree, we recursively
test the intersection of the ray with all splats stored within
that leaf. If the ray does not intersect any of the splats stored
in that cell, or if the cell is an empty leaf, the algorithm
proceeds with the adjacent cell in the direction of the ray.
If it ends up leaving the bounding box of the octree, a
background color is reported. On the other hand, whenever
the ray hits a splat, appropriate shading calculations are
applied. The details of what happens when a ray hits a splat
in a filled leaf are provided in Sec. IV-C, whereas now we
provide details of tracing the path of the ray.

When implemented on the GPU, there are two key issues
in finding the data associated with the “next” leaf along the
ray. We first need to know the next leaf, and then we need to
find the data associated with this leaf (if it is filled). Note that
the adjacent leaf in the direction of the ray may be of larger
or smaller in size as compared with the current leaf. This
problem is interesting, and we experimented with several
algorithms reported in the literature. For example, the O(1)
algorithm [24] gives us information about the adjacent leaf
in a relative manner, but does not provide a simple way of
accessing the data associated with this leaf.

We use an iterative, pointerless descent from the root
similar to the algorithm in [25] and effectively exploit
the texture cache for fast access to the node and point
data. It is particularly efficient because we benefit from
the proper octree structure (Recall that the proper octree
always maintains 8 children). Say the ray has traversed
a distance t from the ray origin to point p. We compute
the normalized coordinate of point p in the root which is
deemed to correspond to [0, 1]3. Now, if c is the address of
the first child of the root in the linearized octree array, the
formula for locating the relevant child of the root is simply
n = c + SFC(int(Np)) where N = 2 for a 23 tree. The
function SFC returns the linearized location of the relevant
child in the proper octree. If the relevant child is not a leaf,
the appropriate formula to update p is p = Np − int(Np).
See Fig. 4 for an example. We thus, iteratively descend the
octree until we get the desired leaf.

C. Ray Splat Intersection

The algorithm in the previous section reports leaf after
leaf along the path of the ray. Once we hit a leaf node, we

Child node
(0,0)

Child node
(0,1)

Child node
(1,1)

Child node
(1,0)

c

p = (0.6,0.4)

n = c + int((0.6*2, 0.4*2))
= c + int((1.2,0.8))

= c + (1,0)

Pointer to I1 ‘s First Child

EI1

All 4 children of I1 grouped
together in tree

E – Empty Node L – Leaf Node I – Internal Node

Octree Node Pool
in Texture memory

c

EL L

c + (1,0) = c + (y*2 + x*1)
= c + (1*2 + 0*1)
= c + 2

= Third Child

jump of 2

Figure 4. Fast node traversals (see text for details).

need to check which of the splats in this node intersects the
incoming ray and report the color accordingly. If the ray
hits an opaque splat, we shade using a local illumination
model based on the material properties of the splat. If
the ray hits multiple splats within a leaf (Sec. IV-C2),
the algorithm computes the multiple intersection points and
blends the information. Finally, if the intersected splat also
has reflective and refractive capabilities, secondary rays are
issued.

Figure 5. Ray-splat intersection. Splats are a local approximation to the
surface. Therefore a single splat cannot be representative of the actual
surface. One must reason with the multiple splats intersecting a single ray.
Also see Fig. 6.

At a high level, ray-splat intersections are handled as
ray-disk intersections. The key difference is that in splat-
based models, rays can hit multiple splats on the surface,
and it now becomes necessary to interpolate the parameters
at these points. We choose to record the position of each
hit, and the surface normal at that point (see §IV-C1). For
rendering purposes, we perform a weighted average of the
splat parameters, using Gaussian weights based on distance
of the intersection point from the respective splat center.

1) Blending Normals: Working with normals is particu-
larly tricky when specular objects are present. Consider the
situation shown in Fig. 6. Splats S1 and S3 are associated
with Leaf A. However, since the octree is a regular space
partitioning technique, it fails to record the presence of
S2 being related to Leaf A. These intersections are quite
important for normal blending, as can be seen in Fig. 7.

To circumvent this problem, [6] generates a complete
normal field over the surface of each and every splat. Storing
this normal field with every splat implies a large memory
footprint, thus making it infeasible for use on the GPU.

Leaf A

A 2D side view of the splats is shown in Fig(a). Ray R1 hits splat S1 and S3. S3 has been added
to leaf A due to multiple leaves per splat technique demonstrated in Section (). We blend the
normals and materials of splats S1 and S3. However, the extended ray (dotted line) shows ray
R1 also hits splat S2. But since splat S2 is not part of leaf A (as they do not overlap), the
blending function does not consider S2 giving rise to inconsistent, non-smooth normal
interpolation. Fig(b) shows the 2D top view (Leaf B below Leaf A) of the same scene with the
ray hit points marked in ‘x’. The top view here corresponds to what the ray sees. We note
that ray R1 intersects all the 3 splats and hence all three should be considered for blending.

S3

S2

S1

Leaf B

Leaf C

(a)

S1 S3

S2

x

x

Leaf CLeaf A

(b)

Figure 6. A 2D side view of selected splats is shown in (a). Only splat S3

(and not splat S2) has been added to Leaf A using the technique described
in Sec. III-B. As seen, ray R1 hits splat S1, S3 and S2. However, only the
intersections with splats S1 and S3 are considered since S2 lies in Leaf
B due to the spatial quantization of the octree. The ground truth (top view
(b)) indicates that even S2 represents the same surface and hence should
also be considered for blending. This results in difference in the blended
normals with a neighboring ray R2 leading to undesirable artifacts.

Figure 7. (a) Incorrect normal blending, (b) Correct normal blending, (c)
Difference image.

Figure 8. Splat S1 is considered as a reference splat. We then record all
intersections of the ray R1 within a small interval around the reference splat
intersection point (highlighted by a rectangle). Splat S2 is thus considered
for blending.

Our solution to this problem is a two pass approach
illustrated in Fig. 8. In the first pass, we iterate over all the
splats in the current leaf (Leaf A in the current example)
and determine a reference splat. This is the splat whose
intersection point with a candidate ray R is closest to its
center (in the example, the ray is R1 and the reference
splat is S1). We now consider all intersecting splats along
the ray, within a small interval (based on input point data)
around the reference splat intersection point. This generally

involves accessing splats from only the next node along the
ray direction. This process roughly doubles the number of
computations involved, but significantly increases the quality
of results (Fig. 7).

2) Seamless Ray Tracing: When secondary rays and
shadow rays are involved, the ray-disk intersection test must
also be carefully considered for reasons other than normal
blending.

Figure 9. Multiple reflections due to overlapping splats should be avoided.

Figure 10. Incorrect refractions due to overlapping splats should be
avoided.

As shown in Fig. 9, the reflected ray can have multiple
bounces on the same surface due to overlapping splats. This
can cause the ray tracer to slow down drastically and also
produce shading artifacts on reflective surfaces. The same
problem manifests itself in the case of refraction, as shown
in Fig. 10. Here a ray that gets refracted can hit another
splat (or potentially several other splats) on the same surface,
thereby producing incorrect results.

[6] tackles this problem by using a “minimum distance δ
between intersections”. This means that if a ray encounters
an intersection point that is within a distance δ of its source,
this intersection is ignored. However, this heuristic breaks
down in cases where there are sharp corners in the scene,
or when the point models are dense and complex, where
reflections occur within very short distances of each other, as
illustrated in Fig.11. This results in “seams” in the ray traced
output at regions where we would expect to see reflections
(like at the corners of a room). It may be noted that [6]

reports no results showing sharp objects, for e.g., the walls
of a point-based room.

Figure 11. Incorrect reflection due to the “minimum distance between
intersections” concept [6]. See text for our solution.

This problem can be solved by associating some “intelli-
gence” with each ray that is being traced in the scene. The
ray needs to know what type of intersection it is expecting,
namely a front face, or a back face. Front face intersections
occur most of the time on the outer surfaces of objects.
Thus, a ray, when it begins its life outside the object expects
to hit a front face. Back facing intersections occur during
refraction when the ray enters an object and hits its surface
from inside. We can represent these situations by associating
a Boolean flag with each ray as it marches through the scene
and flipping the flag upon refraction.

V. RESULTS

We have rendered all our images on a 2.66 Ghz Intel Core
2 Quad system with 8GB DDR3 main memory. The system
has an nVIDIA GeForce GTX 275 with 896 MB memory.
We first present results that only compare the performance of
our ray tracing technique with [8] in Table I. As in [8], these
timings do not include the pre-processing splat generation
and octree creation time (which takes a few seconds). A
2.4GHz dual-Opteron multi-core CPUs is used in [8]. Note
that the implementation in [8] may also be viewed as a paral-
lel implementation since multiple CPU cores are employed.
We can see that we perform better in terms of the frames
per second (FPS) metric for similar model complexity and
for similar quality rendering (here the rendered image is
generated only considering local illumination (i.e., primary
rays and shadows rays). It is impossible to compare the
timings for reflection and refraction as the earlier work does
not handle these phenomena.

Model Size FPS
Shading Shadows

Our results David 1 19.5 13.8
Dragon 1.3 16.7 12.5

Wald & Siedel David 1 10.6 4.1
[8] Dragon 1.3 7.5 5.7

Table I
FPS COMPARISON. IMAGES RENDERED AT 512× 512. MODEL SIZES

ARE IN MILLIONS OF POINTS. ‘SHADING’ REFERS TO PHONG SHADING
WITH ONLY LOCAL ILLUMINATION. ‘SHADOWS’ REFERS TO ONE

SHADOW RAY PER PIXEL IN ADDITION TO PHONG SHADING.

Figure 12. 512x512, 16x super-sampled, renders of (a) David and (b)
Dragon.

Scene Size Render
Time
(sec)

Refractive Dragon 0.44 1.57
Buddha 0.54 0.36
Teapot Scene 1.33 1.98
Room Scene 1.05 0.46

Table II
TIME TAKEN TO RENDER VARIOUS SCENES(SIZE IS IN MILLIONS OF

POINTS). IMAGES RENDERED AT 512× 512 WITH 16×
SUPER-SAMPLING (WITH 1×, FPS ≈ 10− 20).

Figure 13. The Refractive Dragon

With regard to the system presented in [6] we note that
it does not operate in real time (i.e., it reports rendering
times of the order of 100 seconds for a 1200 × 1200
image). We consistently outperform [6] for similar quality
rendering effects. Our renders can be seen in Fig. 12 and
the accompanying video (http://www.cse.iitb.ac.in/graphics/
doku.php?id=vigil:research:ongoing projects).

We present the time taken to render various scenes in
Table II. They are rendered at 512 × 512 with 16× super-
sampling. It should be noted that all our scene components,
i.e., the models of the objects and the rooms are made
up of points. There is one light source in every scene. It
is interesting to note that we obtain a 30% performance
boost by assigning the rays to threads using the Z-order
(Sec. IV-A), as opposed to assigning rays using linear

sweeps across the screen.
The Refractive Dragon scene shows a glass dragon model

(Fig. 13) that shows multiple refractions and environment
mapping. The Buddha scene shows a reflective Buddha
(Fig. 14(a)) with environment mapping. Fig. 14(b) shows
a room scene consisting of diffuse and specular objects
rendered with direct illumination and ray tracing.

Note that we allow for real time viewpoint, material and
lighting changes in the point model scenes at no compromise
with respect to the frame rates.

Figure 14. (a) Buddha (b) Room with ray tracing (room and spheres are
PBMs). Shadows, reflections and refractions are demonstrated.

VI. CONCLUSION

Points as primitives are likely to be present as alternative
input representations to triangles. While in some cases it
might be possible to first convert the points into triangles,
and then run a ray tracer, the focus in this paper has been
to ask for a direct rendering paradigm for point model
despite the obvious complications involved in computing
ray-point intersections. In this paper we have provided
a comprehensive ray tracing solution for rendering point
models using splats.

Our solution, even for large input models, runs at inter-
active speed due to careful design and algorithmic choices
made in using a GPU. At the same time, our GPU-based
algorithms are essentially simple; for example, we do not
attempt to implement recursion using our own stack even
though ray tracing is recursive at its core.

In terms of future work, we recognize that our imple-
mentation is a proof of concept, and does not include global
illumination effects [26], [27]. Producing real time rendering
of deformable models is also another challenge. Deforming
models would require real time change in the underlying
hierarchical structure. Recent work [10], [28], [29] on real
time kd-tree and octree construction on GPUs can be used
to extend our method and further improve the efficiency.

ACKNOWLEDGMENT

We would like to thank the Stanford 3D Scanning Repos-
itory for freely providing point models to the research

community. We thank the anonymous reviewers for several
excellent suggestions which required substantial rewrites.

REFERENCES

[1] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk, “The Digital Michelangelo project: 3D
scanning of large statues,” in SIGGRAPH, 2000, pp. 131–144.

[2] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “To-
wards internet-scale multi-view stereo,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2010.

[3] M. Zwicker, H. Pfister, J. v. Baar, and M. Gross, “Surface
splatting,” in SIGGRAPH, 2001, pp. 371–378.

[4] H. Pfister, M. Zwicker, J. v. Baar, and M. Gross, “Surfels:
Surface elements as rendering primitives,” in SIGGRAPH,
2000, pp. 335–342.

[5] S. Rusinkiewicz and M. Levoy, “QSplat: A multiresolution
point rendering system for large meshes,” in SIGGRAPH,
2000, pp. 343–352.

[6] L. Linsen, K. Mller, and P. Rosenthal, “Splat-based ray tracing
of point clouds,” in Journal of WSCG, 2007, pp. 51–58.

[7] G. Schaufler and H. W. H. Jensen, “Ray tracing point sampled
geometry,” in Eurographics Rendering Workshop, 2000, pp.
319–328.

[8] I. Wald and H.-P. Seidel, “Interactive Ray Tracing of Point
Based Models,” in Symposium on Point Based Graphics,
2005, pp. 9–16.

[9] M. Wand and W. Straer, “Multi-resolution point-sample ray-
tracing,” in Graphics Interface, 2003, pp. 139–148.

[10] K. Zhou, M. Gong, X. Huang, and B. Guo, “Data-parallel
octrees for surface reconstruction,” IEEE TVCG Preprint,
2010.

[11] J. Wu, Z. Zhang, and L. Kobbelt, “Progressive splatting,”
Eurographics/IEEE VGTC Symposium Point-Based Graphics,
pp. 25–32, 2005.

[12] A. Adamson and M. Alexa, “Ray tracing point set surfaces,”
in Shape Modeling International, 2003, p. 272.

[13] E. Tejada, J. P. Gois, L. G. Nonato, A. Castelo, and T. Ertl,
“Hardware-accelerated extraction and rendering of point set
surfaces,” in EuroVis, 2006, pp. 21–28.

[14] R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao, “An
efficient GPU-based approach for interactive global illumi-
nation,” in SIGGRAPH, 2009, pp. 1–8.

[15] X. Yu, R. Wang, and J. Yu, “Interactive glossy reflections
using GPU-based ray tracing with adaptive LOD,” Computer
Graphics Forum, no. 7, pp. 1987–96(10), 2008.

[16] N. Carr, J. Hall, and J. Hart, “The ray engine,” in SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, 2002, pp. 37–46.

[17] N. Carr, J. Hoberock, K. Crane, and J. Hart, “Fast GPU
ray tracing of dynamic meshes using geometry images,” in
Graphics Interface, 2006, pp. 203–209.

[18] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan,
“Interactive k-d tree GPU raytracing,” in I3D, 2007, pp. 167–
174.

[19] K. Garanzha and C. Loop, “Fast ray sorting and breadth-first
packet traversal for GPU ray tracing,” Computer Graphics
Forum, no. 2, 2010.

[20] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gi-
gavoxels : Ray-guided streaming for efficient and detailed
voxel rendering,” in I3D, 2009, pp. 15–22.

[21] S. Kashyap, R. Goradia, S. Chandran, and P. Chaudhuri,
“Realtime ray tracing of point based models,” in I3D 2010
Posters, 2010.

[22] CUDA, “Nvidia Compute Unified Device Architechture
(CUDA) Programming Guide,” http://developer.nvidia.com/
cuda.

[23] R. Gordia, P. Ajmera, S. Chandran, and S. Aluru, “Fast,
parallel, GPU-based construction of space filling curves and
octrees,” in I3D Posters, 2008.

[24] K. Aizawa and S. Tanaka, “A constant time algorithm for
finding neighbours in quadtrees,” IEEE Transactions on Pat-
tern Recognition and Machine Intelligence, pp. 1178–1183,
2009.

[25] S. Lefebvre, S. Hornus, and F. Neyret, GPU Gems 2 - Pro-
gramming Techniques for High-Performance Graphics and
General-Purpose Computation. Addison Wesley, 2005, ch.
Octree Textures on the GPU, pp. 595–613.

[26] C. P. H., “Point-based approximate color bleeding,” Pixar
Technical Memo, Tech. Rep. 08–01, 2008.

[27] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz,
and C. Dachsbacher, “Micro-rendering for scalable, parallel
final gathering,” ACM Transactions on Graphics, no. 5, pp.
1–8, 2009.

[28] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree
construction on graphics hardware,” ACM Transactions on
Graphics, no. 5, pp. 1–11, 2008.

[29] Q. Hou, X. Sun, K. Zhou, C. Lauterbach, and D. Manocha,
“Memory-scalable GPU spatial hierarchy construction,” IEEE
TVCG Preprint, 2010.

