
Fast, GPU-based Diffuse Global Illumination for Point Models

Fourth Progress Report

Submitted in partial fulfillment of the requirements
for the degree of

Ph.D.

by

Rhushabh Goradia
Roll No: 04405002

under the guidance of

Prof. Sharat Chandran

a
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay
Mumbai

August 26, 2008

Acknowledgments

I would like to thank Prof. Sharat Chandran for devoting his time and efforts to provide me with vital directions

to investigate and study the problem.

I would also like to specially thank Prekshu Ajmera who supported me all through my work. I would also like

to thank Prof. Srinivas Aluru, Iowa State University for his useful suggestions on the construction of octrees on

the GPU.

This work was funded by an Infosys Ph.D. fellowship grant. I would also like to thank NVIDIA Pune

for providing the graphics hardware and support whenever required. Also, I would like to thank the Stanford

3D Scanning Repository as well as Cyberware for freely providing geometric point models to the research

community.

Last but not the least, I would like to thank all the friends and members of ViGiL for their valuable support

during the work.

Rhushabh Goradia

i

Abstract

Advances in scanning technologies and rapidly growing complexity of geometric objects motivated the use of

point-based geometry as an alternative surface representation, both for efficient rendering and for flexible ge-

ometry processing of highly complex 3D-models. Based on their fundamental simplicity, points have motivated

a variety of research on topics such as shape modeling, object capturing, simplification, rendering and hybrid

point-polygon methods.

Global Illumination for point models is an upcoming and an interesting problem to solve. We use the Fast

Multipole Method (FMM), a robust technique for the evaluation of the combined effect of pairwise interactions

of n data sources, as the light transport kernel for inter-reflections, in point models, to compute a description

– illumination maps – of the diffuse illumination. FMM, by itself, exhibits high amount of parallelism to be

exploited for achieving multi-fold speed-ups.

Graphics Processing Units (GPUs), traditionally designed for performing graphics specific computations,

now have fostered considerable interest in doing computations that go beyond computer graphics; general pur-

pose computation on GPUs, or “GPGPU”. GPUs may be viewed as data parallel compute co-processors that

can provide significant improvements in computational performance especially for algorithms which exhibit

sufficiently high amount of parallelism. One such algorithm is the Fast Multipole Method (FMM). This report

describes in detail the strategies for parallelization of all phases of the FMM and discusses several techniques

to optimize its computational performance on GPUs.

The heart of FMM lies in its clever use of its underlying data structure, the Octree. We present two novel

algorithms for constructing octrees in parallel on GPUs and discuss their performance based on memory

efficiency and running time. These algorithms can eventually be combined with the GPU-based parallel FMM

framework.

Correct global illumination results for point models require knowledge of mutual point-pair visibility. Vis-

ibility Maps (V-maps) have been designed for the same. Parallel implementation of V-map on GPU offer

considerable performance improvements and has been detailed in this report.

A complete global illumination solution for point models should cover both diffuse and specular (reflections,

refractions, and caustics) effects. Diffuse global illumination is handled by generating illumination maps. For

specular effects, we use the Splat-based Ray Tracing technique for handling reflections and refractions in

the scene and generate Caustic Maps using optimized Photon generation and tracing algorithms. We further

discuss a time-efficient kNN query solver required for fast retrieval of caustics photons while ray-traced

rendering.

Contents

1 Introduction 1

1.1 Point Based Modelling and Rendering . 2

1.2 Global Illumination . 3

1.2.1 Diffuse and Specular Inter-reflections . 5

1.3 Fast computation with Fast Multipole Method . 7

1.4 Parallel computations using the GPU . 8

1.5 Octrees and FMM . 10

1.5.1 Octrees . 10

1.5.2 Spatial Locality Based Domain Decomposition . 11

1.5.3 Visibility between Point Pairs . 12

1.6 Problem Definition and Contributions . 13

1.7 Overview of the Report . 13

2 General Purpose Computations on GPU (GPGPU) 15

2.1 Programming a GPU for General Purpose Computations . 15

2.2 NVIDIA CUDA Programming Model . 16

2.3 GPU Program Optimization Techniques . 18

3 Parallel FMM on the GPU 21

3.1 Fast computation with Fast Multipole Method . 21

3.2 Prior Work . 23

i

3.2.1 Direct N-Body Simulations on the GPU . 23

3.3 Parallel FMM computations on GPU . 25

3.4 Implementation Details . 25

3.4.1 Upward Pass . 26

3.4.2 Downward Pass . 29

3.4.3 Quality Comparisons . 32

3.4.4 Timing Comparisons . 33

4 Space Filling Curves 35

5 Octrees 39

5.1 Octrees: Introduction . 39

5.1.1 Non-Adaptive and Adaptive Octrees . 39

5.2 Prior Work: Octree Construction on the GPU . 40

5.2.1 Problems . 43

5.3 Octree on the GPU . 43

5.3.1 Implementation 1: Non-Adaptive Octree using Direct Indexing [AGCA08] 43

5.3.2 Implementation 2:

Parallel Memory Efficient Bottom-Up Adaptive Octree 48

5.3.3 Implementation details . 52

5.3.4 Implementation 3:

Parallel Memory Efficient Top-Down Adaptive Octree 61

5.3.5 Comparison between Implementation 1 and Implementations 2/3 65

5.3.6 GPU Optimizations . 65

5.4 Results . 66

6 View Independent Visibility using V-map on GPU 67

6.1 Prior Work: CPU-based V-map Construction [Gor07] . 67

6.1.1 Visibility Maps . 68

6.1.2 Point–Pair Visibility Algorithm . 69

6.1.3 Octree Depth Considerations . 70

6.1.4 Construction of Visibility Maps . 71

6.2 GPU-based V-map Construction . 73

6.3 The Visibility Map . 74

ii

6.4 V-map Computations on GPU . 76

6.4.1 Multiple Threads Per Node Strategy . 76

6.4.2 One Thread per Node Strategy . 77

6.4.3 Multiple Threads per Node-Pair . 77

6.5 Leaf-Pair Visibility . 78

6.5.1 Prior Algorithm . 79

6.5.2 Computing Potential Occluders . 79

6.6 GPU Optimizations . 80

6.7 Results . 81

6.7.1 Visibility Validation . 81

6.7.2 Quantitative Results . 82

7 Discussion: Specular Inter-reflections and Caustics in Point based Models 85

7.1 Introduction . 85

7.2 Photon Mapping . 86

7.2.1 Photon Tracing (First Pass) . 86

7.2.2 Preparing the Photon Map for Rendering . 88

7.2.3 Rendering (Second Pass) . 89

7.2.4 Radiance Estimate . 91

7.2.5 Limitations of Photon Mapping . 91

7.3 Our Approach . 92

7.3.1 Splat-Based Ray Tracing . 93

7.3.2 Ray Tracing . 96

7.3.3 Optimizing Photon Generation and Sampling . 98

7.3.4 Optimized Photon Traversal and Intersection tests . 99

7.3.5 Fast Photon Retrieval using Optimized kNN Query Algorithm 99

8 Conclusion and Future Work 103

iii

List of Figures

1.1 Impact of photorealistic computer graphics on filmed and interactive entertainment. Left: A still

from the animated motion picture ‘Final Fantasy : The Spirits Within’. Right: A screenshot

from the award-winning first person shooter game ‘Doom III’ 1

1.2 Point Model Representation. Explicit structure of points for bunny is visible. Figure on extreme

right shows the same bunny with continuous surface constructed 2

1.3 Example of Point Models . 3

1.4 Global Illumination. Top Left[KC03]: The ‘Cornell Box’ scene. This image shows local il-

lumination. All surfaces are illuminated solely by the square light source on the ceiling. The

ceiling itself does not receive any illumination. Top Right[KC03]: The Cornell Box scene un-

der a full global illumination solution. Notice that the ceiling is now lit and the white walls

have color bleeding on to them. 4

1.5 Grottoes, such as the ones from China and India form a treasure for mankind. If data from the

ceiling and the statues are available as point samples, can we capture the interreflections? . . . 4

1.6 Complex point models with global illumination [WS05] [DYN04] effects like soft shadows,

color bleeding, and reflections. Bottom Right: “a major goal of realistic image synthesis is to

create an image that is perceptually indistinguishable from an actual scene”. 5

1.7 Specular (Regular) and Diffuse Reflections . 6

1.8 Left: Colors transfer (or ”bleed”) from one surface to another, an effect of diffuse inter-

reflection. Also notable is the caustic projected on the red wall as light passes through the

glass sphere. Right: Reflections and refractions due to the specular objects are clearly evident . 6

1.9 GPUs are fast and getting faster [OLG+07] . 9

1.10 A quadtree built on a set of 10 points in 2-D. 10

iv

1.11 Example showing importance of visibility calculations between points [GKCD07] 12

2.1 Hardware model of Nvidia’s G80/G92 GPU . 16

2.2 Each kernel is executed as a batch of threads organized as a grid of thread blocks 17

3.1 A grid of thread blocks that calculates all N2 forces. Here there are four thread blocks with

four threads each [NHP07]. 24

3.2 Top Left: A Cornell Room with the Ganesha’s point model on CPU. Top Right: Corresponding

GPU result. Bottom Left: A Cornell Room with the Bunny’s point model on CPU. Bottom

Right: Corresponding GPU result. Both the results assume 50 points per leaf. 32

3.3 Point models rendered with diffuse global illumination effects of color bleeding and soft shad-

ows. Pair-wise visibility information is essential in such cases. Note that the Cornell room as

well as the models in it are input as point models. 33

3.4 FMM Upward Pass : Bunny with 124531 points . 33

3.5 FMM Upward Pass : Ganpati with 165646 points . 34

3.6 Downward Pass (a) Bunny with 124531 points (b) Ganpati with 165646 points 34

4.1 Left: The 2-D z-SFC curve for k = 3, Right: 10 points in a 2-D space. The points are sequen-

tially labeled in the z-SFC order. 35

4.2 Octree can be viewed as multiple SFCs at various resolutions 37

4.3 Bit interleaving scheme for a hierarchy of cells . 37

5.1 A quadtree built on a set of 10 points in 2-D. 40

5.2 Storage in texture memory. The data pool encodes the tree. Data grids are drawn with different

colors. The grey cells contain data. 41

5.3 Lookup for point M in the octree . 41

5.4 At each step the value stored within the current node’s data grid is retrieved. If this value

encodes an index, the lookup continues to the next depth. Otherwise, the value is returned. . . 42

5.5 Hierarchy of cells in two dimensions. Gray cells indicate data. 44

5.6 One pass of the algorithm. Threads are at level 1 and nodes at level 2 44

5.7 The constructed octree . 45

5.8 Table defining total number of nodes for trees of different height 47

5.9 Calculation of Postorder number of a node . 47

5.10 Parallel Bottom Up Adaptive Octree Implementation . 48

5.11 A 2D particle domain and corresponding quadtree and compressed quadtree 50

v

5.12 Two cases of the compressed octree construction . 52

5.13 Computing Parent and Child . 57

5.14 Compressed Octree to Octree . 59

5.15 Spatial Clustering of Points . 61

5.16 Spatial Clustering of Points . 62

5.17 Partition Array of a Node . 64

5.18 Top-Down Octree Construction (Bunny 124531 points) (sec. 5.3.4) 66

5.19 Top-Down Octree Construction (Ganpati 165646 points) (sec. 5.3.4) 66

6.1 Views of the visibility map (with respect to the hatched node in red) is shown. Every point in

the hatched node at the first level is completely visible from every point in only one node (the

extreme one). At level 2, there are two such nodes. The Figure on the left shows that at the

lowest level, there are three visible leaves for the (extreme) hatched node; on the other hand

the Figure on the right shows that there are only two such visible leaves, for the second son

(hatched node). The Figure also shows invisible nodes that are connected with dotted lines. For

example, at level 1, there is one (green) node G such that no point in G is visible to any point

in the hatched node. Finally the dashed lines shows “partially visible” nodes which need to be

expanded. Partial and invisible nodes are not explicitly stored in the visibility map since they

can be deduced. 68

6.2 Leaf nodes (or cells, or voxels) are at level three. 69

6.3 Only x2 and x3 will be considered as occluders. We reject x1 as the intersection point of the

tangent plane lies outside segment pq, x4 because it is more than a distance R away from pq,

and x5 as its tangent plane is parallel to pq. 70

6.4 Point-Point visibility is obtained by performing a number of tests. Now its extended to Leaf-

Leaf visibility . 71

6.5 Dragon viewed from the floor (cyan dot). The quality is unacceptable for octrees of heights of

7 (left) or less. The figure on the right is for an octree of height 9. 74

6.6 Visibility links for Node N . 75

6.7 The visibility map is constructed recursively by a variation of depth first search. In general, it

is advantageous to have links at high level in the tree so that we can reason efficiently using

coherency about the visibility of a group of points. 75

6.8 Parallelism at a node level . 76

6.9 Parallelism across nodes at the same level . 77

vi

6.10 The visibility map on the GPU uses thousands of threads concurrently by working at the large

number of leaves (a) and stores the result in a table. The links at other levels are set based on a

lookup computation. 78

6.11 Visibility between points p and q . 78

6.12 (a) Constructing parent sphere from child, (b) Line Segment-Sphere Intersection test 80

6.13 Visibility tests where purple color indicates portions visible to the candidate eye (in cyan) . . . 82

6.14 V-map construction times (CPU & GPU) for models with differing octree heights 83

6.15 Dragon viewed from the floor (cyan dot). The quality is unacceptable for octrees of heights of

7 (left) or less. The figure on the right is for an octree of height 9. 83

6.16 Point models rendered with diffuse global illumination effects of color bleeding and soft shad-

ows. Pair-wise visibility information is essential in such cases. Note that the Cornell room as

well as the models in it are input as point models. 84

7.1 Photon paths in a scene (a Cornell box with a chrome sphere on left and a glass sphere on

right): (a) two diffuse reflections followed by absorption, (b) a specular reflection followed by

two diffuse reflections, (c) two specular transmissions followed by absorption. 88

7.2 Building (a) the caustics photon map and (b) the global photon map. 89

7.3 Example output of Photon Mapping Algorithm [Jen96] showing reflection, refractions and

caustics . 92

7.4 (a) Generation of splat Sj starts with point pi and grows the splat with radius rj by iteratively

including neighbors ql of pi until the approximation error δε for the covered points exceeds

a predefined error bound. (b) Splat density criterion: Points whose distance from the splats

center cj when projected onto splat Sj is smaller than a portion perc of the splats radius rj

are not considered as starting points for splat generation. (c) Generation of linear normal field

(green) over splat Sj from normals at points covered by the splat. Normal field is generated

using local parameters (u, v) ∈ [1, 1]X[1, 1] over the splats plane spanned by vectors uj and

vj orthogonal to normal nj = ni. The normal of the normal field at center point cj may differ

from ni. 94

7.5 (a) Octree generation: In the first phase, the octree is generated while inserting splats Sj into

the cells containing their centers cj (red cell). In the second phase, splat Sj is inserted into all

additional cells it intersects (yellow cells). (b)(c) The second test checks whether the edges of

the bounding square of splat Sj intersect the planes E that bound the octree leaf cell. (b) Sj is

inserted into the cell. (c) Sj is not inserted into the cell. This second test is only performed if

the first test (bounding box test) was positive. 97

vii

7.6 Merging the results from multiple hash tables. (a) the query point retrieves different candidates

sets from different hash tables, (b) the union set of candidates after merging, and (c) the two

closest neighbors selected. 101

viii

Chapter 1

Introduction

The pixel indeed has assumed mystical proportions in a world where computer assisted graphical techniques

have made it nearly impossible to distinguish between the real and the synthetic. Digital imagery now underlies

almost every form of computer based entertainment besides serving as an indispensable tool for fields as diverse

as scientific visualization, architectural design, and as one of its initial killer applications, combat training.

The most striking effects of the progress in computer graphics can be found in the filmed and interactive

entertainment industries (Figure 1.1).

Figure 1.1: Impact of photorealistic computer graphics on filmed and interactive entertainment. Left: A still
from the animated motion picture ‘Final Fantasy : The Spirits Within’. Right: A screenshot from the award-
winning first person shooter game ‘Doom III’

The process of visualizing a virtual three dimensional world is usually broken down into three stages:

• Modeling. A geometrical specification of the scene to be visualized must be provided. The surfaces in

the scene are usually approximated by sets of simple surface primitives such as triangles, cones, spheres,

cylinders, NURBS surfaces, points etc.

1

• Lighting. This stage involves ascribing light scattering properties to the surfaces/surface-samples com-

posing the scene (e.g. the surface may be purely reflective like a mirror or glossy like steel). Finally, a

description of the light sources of the scene must be provided - those surfaces that spontaneously emit

light.

• Rendering. The crux of the 3D modeling pipeline, the rendering stage accepts the three dimensional

scene specification from above and renders a two dimensional image of the same as seen through a

camera. The algorithm that handles the simulation of the light transport process on the available data is

called the rendering algorithm. The rendering algorithm depends on the type of primitive to be rendered.

For rendering points various rendering algorithms like QSplat, Surfel Renderer etc are available.

Photorealistic computer graphics attempts to match as closely as possible the rendering of a virtual scene

with an actual photograph of the scene had it existed in the real world. Of the several techniques that are used

to achieve this goal, physically-based approaches (i.e. those that attempt to simulate the actual physical process

of illumination) provide the most striking results. The emphasis of this report is on a very specific form of the

problem known as global illumination which happens to be a photorealistic, physically-based approach central

to computer graphics. This report is about capturing interreflection effects in a scene when the input is available

as point samples of hard to segment entities. Computing a mutual visibility solution for point pairs is one major

and a necessary step for achieving good and correct global illumination effects. Graphics Processing Units

(GPUs) have been used for increased speed-ups.

Before moving further, let us be familiar with the terms point models and global illumination.

1.1 Point Based Modelling and Rendering

Figure 1.2: Point Model Representation. Explicit structure of points for bunny is visible. Figure on extreme
right shows the same bunny with continuous surface constructed

Point models are nothing but a discrete representation of a continous surface i.e. we model each point as a

surface sample representation (Fig 1.2). There is no connectivity information between points. Each point has

certain attributes, for example co-ordinates, normal, reflectance, emmisivity values.

2

Figure 1.3: Example of Point Models

In recent years, point-based methods have gained significant interest. In particular their simplicity and total

independence of topology and connectivity make them an immensely powerful and easy-to-use tool for both

modelling and rendering. For example, points are a natural representation for most data acquired via measur-

ing devices such as range scanners [LPC+00], and directly rendering them without the need for cleanup and

tessellation makes for a huge advantage.

Second, the independence of connectivity and topology allow for applying all kinds of operations to the

points without having to worry about preserving topology or connectivity [PKKG03, OBA+03, PZvBG00]. In

particular, filtering operations are much simpler to apply to point sets than to triangular models. This allows for

efficiently reducing aliasing through multi-resolution techniques [PZvBG00, RL00, WS03], which is particu-

larly useful for the currently observable trend towards more and more complex models: As soon as triangles

get smaller than individual pixels, the rationale behind using triangles vanishes, and points seem to be the more

useful primitives. Figure 3.3 shows some example point based models.

1.2 Global Illumination

Local illumination refers to the process of a light source illuminating a surface through direct interaction.

However, the illuminated surface now itself acts as a light source and propagates light to other surfaces in the

environment. Multiple bounces of light originating from light sources and subsequently reflected throughout

the scene lead to many visible effects such as soft shadows, glossy reflections, caustics and color bleeding. The

whole process of light propagating in an environment is called Global Illumination and to simulate this process

to create photorealistic images of virtual scenes has been one of the enduring goals of computer graphics. More

formally,

Global illumination algorithms are those which, when determining the light falling on a surface, take into

account not only the light which has taken a path directly from a light source (direct illumination), but also

3

Figure 1.4: Global Illumination. Top Left[KC03]: The ‘Cornell Box’ scene. This image shows local illumina-
tion. All surfaces are illuminated solely by the square light source on the ceiling. The ceiling itself does not
receive any illumination. Top Right[KC03]: The Cornell Box scene under a full global illumination solution.
Notice that the ceiling is now lit and the white walls have color bleeding on to them.

light which has undergone reflection from other surfaces in the world (indirect illumination).

Figures 1.4 and 1.6 gives you some examples images showing the effects of Global illumination. It is a

simulation of the physical process of light transport.

Figure 1.5: Grottoes, such as the ones from China and India form a treasure for mankind. If data from the
ceiling and the statues are available as point samples, can we capture the interreflections?

Three-dimensional scanned point models of cultural heritage structures (Figure 1.5) are useful for a variety

of reasons – be it preservation, renovation, or simply viewing in a museum under various lighting conditions.

We wish to see the effects of Global Illumination (GI) – the simulation of the physical process of light transport

that captures inter-reflections – on point clouds of not just solitary models, but an environment that consists of

4

such hard to segment entities.

Figure 1.6: Complex point models with global illumination [WS05] [DYN04] effects like soft shadows, color
bleeding, and reflections. Bottom Right: “a major goal of realistic image synthesis is to create an image that is
perceptually indistinguishable from an actual scene”.

Global Illumination effects are the results of two types of light reflections and refractions, namely Diffuse and

Specular.

1.2.1 Diffuse and Specular Inter-reflections

Diffuse reflection is the reflection of light from an uneven or granular surface such that an incident ray is seem-

ingly reflected at a number of angles. The reflected light will evenly spread over the hemisphere surrounding

the surface (2π steradians) i.e. they reflect light equally in all directions.

Specular reflection, on the other hand, is the perfect, mirror-like reflection of light from a surface, in which

light from a single incoming direction (a ray) is reflected into a single outgoing direction. Such behavior is

described by the law of reflection, which states that the direction of incoming light (the incident ray), and the

5

Figure 1.7: Specular (Regular) and Diffuse Reflections

direction of outgoing light reflected (the reflected ray) make the same angle with respect to the surface normal,

thus the angle of incidence equals the angle of reflection; this is commonly stated as θi = θr.

The most familiar example of the distinction between specular and diffuse reflection would be matte and

glossy paints as used in home painting. Matte paints have a higher proportion of diffuse reflection, while gloss

paints have a greater part of specular reflection.

Figure 1.8: Left: Colors transfer (or ”bleed”) from one surface to another, an effect of diffuse inter-reflection.
Also notable is the caustic projected on the red wall as light passes through the glass sphere. Right: Reflections
and refractions due to the specular objects are clearly evident

Due to various specular and diffuse inter-reflections in any scene, various types of global illumination

effects may be produced. Some of these effects are very interesting like color bleeding, soft shadows, specular

6

highlights and caustics. Color bleeding is the phenomenon in which objects or surfaces are colored by reflection

of colored light from nearby surfaces. It is an effect of diffuse inter-reflection. Specular highlight refers to the

glossy spot which is formed on specular surfaces due to specular reflections. A caustic is the envelope of

light rays reflected or refracted by a curved surface or object, or the projection of that envelope of rays on

another surface. Light coming from the light source, being specularly reflected one or more times before being

diffusely reflected in the direction of the eye, is the path traveled by light when creating caustics. Figure 1.8

shows color bleeding and specular inter-reflections including caustics. Radiosity and Ray-Tracing are two basic

global illumination algorithms used for diffuse and specular effects generation (respectively).

There have been two main approaches to solve the global illumination problem - Finite Element and Monte

Carlo. In the finite element approach to solve the Global Illumination problem the whole scene is decom-

posed into primitive elements such as triangles and light transport is simulated between these elements. The

Monte Carlo approach is equivalent to tracing light rays emanating from the source and their subsequent reflec-

tions/refractions before they reach the eye. Subset of the global illumination problem in which all surfaces are

diffuse assumes great importance in applications such as architectural walkthroughs since the illumination has

to be computed exactly once for any view.

Interesting methods like statistical photon tracing [Jen96], directional radiance maps [Wal05], and wavelets

based hierarchical radiosity [GSCH93] have been invented for computing a global illumination solution. A

good global illumination algorithm should cover both diffuse and specular inter-reflections and refractions,

Photon Mapping being one such algorithm. Traditionally, all these methods assume a surface representation for

the propagation of indirect lighting. Surfaces are either explicitly given as triangles, or implicitly computable.

The lack of any sort of connectivity information in point-based modeling (PBM) systems now hurts photo-

realistic rendering. This becomes especially true when it is not possible to correctly segment points obtained

from an aggregation of objects (see Figure 1.5) to stitch together a surface.

There have been efforts trying to solve this problem [WS05], [Ama84, SJ00], [AA03, OBA+03] , [RL00].

Our view is that these methods would work even better if fast pre-computation of diffuse illumination could be

performed. Fast Multipole Method (FMM) provides an answer. We [GKCD07] provided an efficient solution

to the above mentioned problem on the CPU. We used a FMM-based radiosity kernel to provide a global

illumination solution to any input scene given in terms of points.

1.3 Fast computation with Fast Multipole Method

Computational science and engineering is replete with problems which require the evaluation of pairwise in-

teractions in a large collection of particles. Direct evaluation of such interactions results in O(N2) complexity

which places practical limits on the size of problems which can be considered. Techniques that attempt to

7

overcome this limitation are labeled N-body methods. The N-body method is at the core of many computa-

tional problems, but simulations of celestial mechanics and coulombic interactions have motivated much of

the research into these. Numerous efforts have aimed at reducing the computational complexity of the N-

body method, particle-in-cell, particle-particle/particle-mesh being notable among these. The first numerically-

defensible algorithm [DS00] that succeeded in reducing the N-body complexity to O(N) was the Greengard-

Rokhlin Fast Multipole Method (FMM) [GR87].

The algorithm derives its name from its original application. Initially developed for the fast evaluation of

potential fields generated by a large number of sources (e.g. the gravitational and electrostatic potential fields

governed by the Laplace equation), this method has been generalized for application to systems described by

the Helmholtz and Maxwell equations, and to name a few, currently finds acceptance in chemistry[BCL+92],

fluid dynamics[GKM96], image processing[EDD03], and fast summation of radial-basis functions [CBC+01].

For its wide applicability and impact on scientific computing, the FMM has been listed as one of the top ten

numerical algorithms invented in the 20th century[DS00]. The FMM, in a broad sense, enables the product of

restricted dense matrices with a vector to be evaluated inO(N) orO(N logN) operations, to a fixed prescribed

accuracy ε when direct multiplication requires O(N2) operations. Global illumination problem requires the

computation of pairwise interactions among each of the surface elements (points or triangles) in the given data

(usually of order > 106) and thus naturally fits in the FMM framework.

Besides being very efficient (O(N) algorithm) and applicable to a wide range of problem domains, the

FMM is also highly parallel in structure. Thus implementing it on a parallel, high performance multi-processor

cluster will further speedup the computation of diffuse illumination for our input point sampled scene. Our

interest lies in a design of a parallel FMM algorithm that uses static decomposition, does not require any explicit

dynamic load balancing and is rigorously analyzable. The algorithm must be capable of being efficiently

implemented on any model of parallel computation. We exploit the inherent parallelism of this method to

implement it on the data parallel architecture of the GPU to achieve multifold speedups. Further, the same

parallel implementation on the GPU, designed for point models, can also be used for triangular models.

1.4 Parallel computations using the GPU

The graphics processor (GPU) on today’s video cards has evolved into an extremely powerful and flexible

processor. The latest GPUs have undergone a major transition, from supporting a few fixed algorithms to being

fully programmable. High level languages have emerged for graphics hardware, making this computational

power accessible. NVIDIA’s CUDA [CUDa] programming environment offers the familiar C-like syntax which

makes programs simpler and easier to build and debug. CUDA’s programming model allows its users to take

full advantage of the GPU’s powerful hardware but also permits an increasingly high-level programming model

8

that enables productive authoring of complex applications. The result is a processor with enormous arithmetic

capability [a single NVIDIA GeForce 8800 GTX can sustain over 330 giga-floating-point operations per second

(Gflops)] and streaming memory bandwidth (80+ GB/s), both substantially greater than a high-end CPU.Owens, Luebke, Govindaraju, Harris, Krüger, Lefohn, and Purcell / A Survey of General-Purpose Computation on Graphics Hardware

0

100

200

300

G
F
L
O

P
S

G
F
L
O

P
S

2002 2004 2006
YearYear

NVIDIA

ATI

Intel

dual-core

Figure 1: The programmable floating-point performance of
GPUs (measured on the multiply-add instruction, counting 2
floating-point operations per MAD) has increased dramati-
cally over the last four years when compared to CPUs.

fundamental architectural differences: CPUs are optimized
for high performance on sequential code, with many transis-
tors dedicated to extracting instruction-level parallelism with
techniques such as branch prediction and out-of-order exe-
cution. On the other hand, the highly data-parallel nature of
graphics computations enables GPUs to use additional tran-
sistors more directly for computation, achieving higher arith-
metic intensity with the same transistor count. We discuss
the architectural issues of GPU design further in Section 2.

1.2. Flexible and Programmable

Modern graphics architectures have become flexible as
well as powerful. Early GPUs were fixed-function pipelines
whose output was limited to 8-bit-per-channel color val-
ues, whereas modern GPUs now include fully programmable
processing units that support vectorized floating-point oper-
ations on values stored at full IEEE single precision (but note
that the arithmetic operations themselves are not yet per-
fectly IEEE-compliant). High level languages have emerged
to support the new programmability of the vertex and pixel
pipelines [BFH∗04b,MGAK03,MDP∗04]. Additional levels
of programmability are emerging with every major genera-
tion of GPU (roughly every 18 months). For example, cur-
rent generation GPUs introduced vertex texture access, full
branching support in the vertex pipeline, and limited branch-
ing capability in the fragment pipeline. The next generation
will expand on these changes and add “geometry shaders”,
or programmable primitive assembly, bringing flexibility to
an entirely new stage in the pipeline [Bly06]. The raw speed,
increasing precision, and rapidly expanding programmabil-
ity of GPUs make them an attractive platform for general-
purpose computation.

1.3. Limitations and Difficulties

The GPU is hardly a computational panacea. Its arithmetic
power results from a highly specialized architecture, evolved
and tuned over years to extract maximum performance on
the highly parallel tasks of traditional computer graphics.
The increasing flexibility of GPUs, coupled with some in-
genious uses of that flexibility by GPGPU developers, has
enabled many applications outside the original narrow tasks
for which GPUs were originally designed, but many appli-
cations still exist for which GPUs are not (and likely never
will be) well suited. Word processing, for example, is a clas-
sic example of a “pointer chasing” application, dominated
by memory communication and difficult to parallelize.

Today’s GPUs also lack some fundamental comput-
ing constructs, such as efficient “scatter” memory opera-
tions (i.e., indexed-write array operations) and integer data
operands. The lack of integers and associated operations
such as bit-shifts and bitwise logical operations (AND, OR,
XOR, NOT) makes GPUs ill-suited for many computation-
ally intense tasks such as cryptography (though upcoming
Direct3D 10-class hardware will add integer support and
more generalized instructions [Bly06]). Finally, while the re-
cent increase in precision to 32-bit floating point has enabled
a host of GPGPU applications, 64-bit double precision arith-
metic remains a promise on the horizon. The lack of double
precision hampers or prevents GPUs from being applicable
to many very large-scale computational science problems.

Furthermore, graphics hardware remains difficult to ap-
ply to non-graphics tasks. The GPU uses an unusual pro-
gramming model (Section 2.3), so effective GPGPU pro-
gramming is not simply a matter of learning a new language.
Instead, the computation must be recast into graphics terms
by a programmer familiar with the design, limitations, and
evolution of the underlying hardware. Today, harnessing the
power of a GPU for scientific or general-purpose compu-
tation often requires a concerted effort by experts in both
computer graphics and in the particular computational do-
main. But despite the programming challenges, the poten-
tial benefits—a leap forward in computing capability, and
a growth curve much faster than traditional CPUs—are too
large to ignore.

1.4. GPGPU Today

A vibrant community of developers has emerged around
GPGPU (http://GPGPU.org/), and much promising
early work has appeared in the literature. We survey GPGPU
applications, which range from numeric computing oper-
ations, to non-traditional computer graphics processes, to
physical simulations and “game physics”, to data mining.
We cover these and more applications in Section 5.

c© The Eurographics Association and Blackwell Publishing 2007.

Figure 1.9: GPUs are fast and getting faster [OLG+07]

Architecturally, GPUs are highly parallel streaming processors optimized for vector operations. The pro-

grammable units of the GPU follow a single instruction multiple-data (SIMD) programming model. For effi-

ciency, the GPU processes many elements in parallel using the same program (kernel). Each element is inde-

pendent from the other elements, and in the base programming model, elements cannot communicate with each

other. All GPU programs must be structured in this way: many parallel elements, each processed in parallel by

a single program. Each element can operate on 32-bit integer or floating-point data with a reasonably complete

general-purpose instruction set. Elements can read data from a shared global memory (a “gather” operation)

and, with the newest GPUs, also write back to arbitrary locations in shared global memory (“scatter”).

With the rapid improvements in the performance and programmability of GPUs, the idea of harnessing

the power of GPUs for general-purpose computing has emerged. Problems, requiring heavy computations can

be transformed and mapped onto a GPU to get fast and efficient solutions. This field of research, termed as

General Purpose GPU (GPGPU) Computing has found its way into fields as diverse as databases and data

mining, scientific image processing, signal processing, finance etc.

The GPU is designed for a particular class of applications which give more importance to throughput than

latency and have large computational requirements and offer substantial parallelism. Many specific algorithms

like bitonic sorting, parallel prefix, matrix multiplication and transpose, parallel Mersenne Twister (random

number generation) etc. have been efficiently implemented using the GPGPU framework.

9

One such algorithm which can harness the compute capabilities of the GPUs is parallel Fast Multipole

Method. FMM, if divided at a high level, consists of five sequential passes:

1. Octree Construction

2. Interaction List Construction

3. Upward pass on the Octree

4. Downward pass on the Octree

5. Final Summation of Energy

Upward Pass, Downward pass and Final Summation stages are the ones which take more than 97% of the

run time. Hence we implemented these 3 stages on the GPU while the Octree Construction and Interaction List

Construction stages were performed on the CPU. These will eventually be implemented on GPU as well. We

have used the latest Nvidia’s G80/G92 architechture GPUs with CUDA as the programming environment.

1.5 Octrees and FMM

The FMM, in a broad sense, enables the product of restricted dense matrices with a vector to be evaluated in

O(N) or O(N logN) operations, to a fixed prescribed accuracy ε when direct multiplication requires O(N2)

operations. This is mainly possible because of the underlying hierarchical data structure, the octree.

1.5.1 Octrees
Octrees

1

2
3

4

5
6

7

8

10
9

7

1

3 2 9

4 8

5 6

10

Figure 1.10: A quadtree built on a set of 10 points in 2-D.

10

Octrees are hierarchical tree data structures that organize multidimensional data using a recursive decom-

position of the space containing them. Such a tree is called a quadtree in two dimensions, octree in three

dimensions and hyperoctree in higher dimensions. Octrees can be differentiated on the basis of the type of data

they are used to represent, the principle guiding the decomposition and the resolution which can be fixed or

variable. In practice, the recursive subdivision is stopped when a predetermined resolution level is reached, or

when the number of points in a subregion falls below a pre-established constant. This results in the formation of

an adaptive octree. An example is shown in figure 1.10. In this report we present two novel algorithms for con-

structing octrees in parallel on GPUs, one based on using parallel Space Filling Curve (SFC) for a bottom-up

octree construction and other on spatial clustering of points for a top down construction (ch. 5).

These parallel octree construction algorithms could potentially be combined with the parallel FMM imple-

mentation on the GPU.

1.5.2 Spatial Locality Based Domain Decomposition

In the context of parallel scientific computing, the term domain decomposition is used to refer to the process of

partitioning the underlying domain of the problem across processors in a manner that attempts to balance the

work performed by each processor while minimizing the number and sizes of communications between them.

Octrees can be thought of as one of the domain decomposition methods.

Domain decomposition is the first step in many scientific computing applications. Computations within any

subregion often require information from other, mostly adjacent, subregions of the domain. Whenever informa-

tion from neighboring elements is not locally available, processors need to communicate to access information.

As communication is significantly slower than computation, domain decomposition methods attempt to min-

imize inter-processor communications and, in fact, try to overlap computation and communication for even

better performance.

Another important goal is to achieve load balance. The load on a processor refers to the amount of com-

putation that it is responsible for. Achieving load balance while simultaneously minimizing communication is

often non-trivial. This stems from the fact that the input data need not necessarily be uniformly distributed in

the underlying domain of the problem. Moreover, the type of data accesses required may also vary from ap-

plication to application. Thus, designing a domain decomposition method that simultaneously optimizes these

can be challenging.

Spatial locality based domain decomposition methods make particular sense for particle-based methods.

In these methods, particles interact with other particles, often based on spatial locality, providing a direct

justication for parallel domain decomposition methods. The Fast Multipole Method is one such example. Such

description of interactions using geometric constraints particularly suits spatial locality based parallel domain

11

decomposition methods.

As far as the runtime of the domain decomposition algorithm is concerned, spatial locality based domain

decomposition methods have a particular advantage because of the simplicity of the underlying model of par-

titioning multidimensional point data. It is also easy to parallelize the decomposition algorithm itself (eg.

octrees), which is useful in reducing the run-time overhead along with the remaining application (eg. FMM for

global illumination) run-time, when scaling to larger and larger systems. Thus, an intellegent, parallel octree

construction algorithm, satisfying above constraints, and its application to parallel FMM on GPUs is interesting.

1.5.3 Visibility between Point Pairs

Figure 1.11: Example showing importance of visibility calculations between points [GKCD07]

Even a good and efficient global illumination algorithm would not give us correct results if we do not

have information about mutual visibility between points. For example, in Fig. 1.11, shadows wouldn’t have

been possible if there wasn’t any visibility information. An important aspect of capturing the radiance (be

it a finite-element based strategy or otherwise) is an object space view-independent knowledge of visibility

between point pairs.Visibility calculation between point pairs is essential as a point receives energy from other

point only if it is visible to that point. But its easier said than done. Its complicated in our case as our input

data set is a point based model with no connectivity information. Thus, we do not have knowledge of any

intervening surfaces occluding a pair of points. Theoretically, it is therefore impossible to determine exact

visibility between a pair of points. We, thus, restrict ourselves to approximate visibility. We provided a view-

12

independent visibility solution for global illumination for point models in [GKCD07][Gor07] using Visibility

Map (V-map). However, this CPU-based sequential implementation of V-map takes considerable amount of

time and hence not very useful for practical applications. We exploit the inherent parallelism in the V-map

construction algorithm and attempt to make it work faster with multi-fold speed-ups. Parallel implementation

of V-map on GPU [GAC08] offer considerable performance improvements (in terms of speed) and has been

detailed in this report.

1.6 Problem Definition and Contributions

After getting a brief overview of the topics, let us now define the problem we pose and what all we have con-

tributed till now.

Problem Definition: Capturing interreflection effects in a scene when the input is available as point sam-

ples of hard to segment entities.

• Computing a mutual visibility solution for point pairs is one major and a necessary step for achieving

good and correct global illumination effects (Done).

• Inter-reflection effects include both diffuse (Done) and specular effects like reflections, refractions, and

caustics. Capturing specular reflections is a part of work to be done in the coming year, which essentially,

when combined with the diffuse inter-reflection implementation, will give a complete global illumination

package for point models.

• We compute diffuse inter-reflections using the Fast Multipole Method(FMM) (Done).

• Parallel implementation of visibility and FMM algorithms on Graphics Processing Units(GPUs) so as to

achieve speedups for generating the global illumination solution (Done).

• Have a parallel octree construction algorithm which could be potentially combined with a parallel FMM

algorithm on future GPUs (Done).

1.7 Overview of the Report

Having got a brief overview of the keyterms, let us review the approach in detail in the subsequent chapters.

The rest of the report is organized as follows. Chapter 2 gives an overview of modern day GPUs and presents

several techniques to optimize the performance of the computations that run on the GPU. Chapter 3 presents

an introduction to the FMM algorithm for Radiosity Kernel and our parallel implementation of the same on the

13

GPU. We provide a step by step overview of different kernel functions for each phase of the FMM algorithm

along with efficient speed results. In chapter 4 we then focus on a spatial locality based parallel domain

decomposition method: Space Filling Curves and their usefulness for constructing parallel octrees. We also

discuss how SFC linearization across multiple levels of an octree can give us its postorder traversal. We then

move on to different parallel octree implementations on GPU in chapter 5. These implementations can be

combined with the parallel, GPU-based FMM algorithm. Chapter 6 discusses our GPU-based, parallel V-map

construction algorithm and reports multi-fold speed-ups. Chapter 7 discusses efficient algorithms required for

computing specular effects (reflections, refractions, caustics) for point models, so as to give a complete and fast

global illumination package for point models. Finally, chapter 8 summarizes the work done in the course of

this year and outlines possible avenues for future research along these lines.

14

Chapter 2

General Purpose Computations on GPU
(GPGPU)

We begin by describing the way modern GPU applications are written for general purpose computations. Af-

ter this we give a brief overview of the NVIDIA’s Compute Unified Device Architecture or CUDA [CUDa]

programming model which we use in our GPU-based implementations. At the end we discuss various pro-

gramming techniques to optimize the computational performance on GPU and get a better run time.

2.1 Programming a GPU for General Purpose Computations

One of the historical difficulties in programming GPGPU applications has been that despite their general-

purpose tasks having nothing to do with graphics, the applications still had to be programmed using graphics

APIs. In addition, the program had to be structured in terms of the graphics pipeline, with the programmable

units only accessible as an intermediate step in that pipeline, when the programmer would almost certainly

prefer to access the programmable units directly. This difficulty is overcome with the evolution of programming

environments like NVIDIAs CUDA [CUDa], which provide a more natural, direct, nongraphics interface to the

hardware and, specifically, the programmable units. Today, GPU computing applications are structured in the

following way.

1. The programmer directly defines the computation domain of interest as a structured grid of threads.

2. Each thread runs a SIMD general-purpose program and computes the value.

3. The value for each thread is computed by a combination of math operations and both read accesses from

and write accesses to global memory. The same buffer can be used for both reading and writing, allowing

more flexible algorithms (for example, in-place algorithms that use less memory).

4. The resulting buffer in global memory can then be used as an input in future computation.

15

This programming model is a powerful one for several reasons. First, it allows the hardware to fully exploit

the applications data parallelism by explicitly specifying that parallelism in the program. Next, it strikes a care-

ful balance between generality (a fully programmable routine at each element) and restrictions to ensure good

performance (the SIMD model, the restrictions on branching for efficiency, restrictions on data communication

between elements and between kernels/passes, and so on). Finally, its direct access to the programmable units

eliminates much of the complexity faced by previous GPGPU programmers in coopting the graphics interface

for general-purpose programming. NVIDIA’s CUDA [CUDa] programming environment offers the familiar

C-like syntax which makes programs simpler and easier to build and debug. CUDA’s programming model al-

lows its users to take full advantage of the GPUs powerful hardware but also permits an increasingly high-level

programming model that enables productive authoring of complex applications.

2.2 NVIDIA CUDA Programming Model

Constant Cache

Texture Cache

Shared Memory

Processor M

In
st

ru
ct

io
n

U
ni

tProcessor 2Processor 1

Registers Registers Registers

Multiprocessor 1

Multiprocessor 2

Multiprocessor N

Device

Device Memory

Figure 2.1: Hardware model of Nvidia’s G80/G92 GPU

The NVIDIA G80 GPU, is the current generation of NVIDIA GPU, and has also been released as the Tesla

compute coprocessor. It consists of a set of multiprocessors (16 on our GeForce 8800GT), each composed

of 8 processors. All multiprocessors talk to a global device memory, which in the case of our GPU is 512

MB, but can be as large as 1.5 GB for more recently released GPUs/coprocessors. The 8 processors in each

multiprocessor share 16 kB local read-write “shared” memory, a local set of 8192 registers, and a constant

memory of 64 kB over all multiprocessors, of which 8 kB can be cached locally at one multiprocessor.

16

CUDA
Programming
Model

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

K
er

n
el

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Figure 2.2: Each kernel is executed as a batch of threads organized as a grid of thread blocks

A programming model (CUDA) and a C compiler (with language extensions) that compiles code to run

on the GPU are provided by NVIDIA. This model is supposed to be extended over the next few generations

of processors, making investment of effort on programming it worthwhile. Under CUDA the GPU is a com-

pute device that is a highly multithreaded coprocessor. Thus, in an application any computation that is done

independently on different data many times, can be isolated into a function called kernel that is executed on

the GPU as many different threads. The batch of threads that executes a kernel is organized as a grid of thread

blocks (see Figure 2.2). Each thread block is itself a grid of threads that executes on a multiprocessor that have

access to its local memory. They can cooperate together by efficiently sharing data through some fast shared

memory and synchronizing their execution to coordinate memory accesses. They perform their computations

and become idle when they reach a synchronization point, waiting for other threads in the block to reach the

synchronization point. Each thread is identified by its thread ID (one, two or three indices). The choice of 1,2

or 3D index layout is used to map the different pieces of data to the thread. The programmer writes data parallel

code, which executes the same instructions on different data, though some customization of each thread is pos-

sible based on different behaviors depending on the value of the thread indices. A GPU may run all the blocks

of a grid sequentially if it has very few parallel capabilities, or in parallel if it has a lot of parallel capabilities.

To achieve efficiency on the GPU, algorithm designers must account for the substantially higher cost (two

17

orders of magnitude higher) to access fresh data from the GPU main memory. This penalty is paid for the

first data access, though additional contiguous data in the main memory can be accessed cheaply after this first

penalty is paid. An application that achieves such efficient reads and writes to contiguous memory is said to

be coalesced. Thus programming on the nonuniform memory architecture of the GPU requires that each of

the operations be defined in a way that ensures that main memory access (reads and writes) are minimized,

and coalesced as far as possible when they occur. For further reference look at NVIDIA CUDA Programming

Guide [CUDa].

2.3 GPU Program Optimization Techniques

In this section we look at several techniques to optimize the performance of a program running on the GPU.

Though all of them may not be easy to apply in a particular problem, they are all worth experimenting with.

It is always beneficial to first understand them properly and then design a GPU program to the problem under

consideration.

1. Expose As Much Parallelism As Possible (GPU Thread Parallelism): Structure the algorithm to max-

imize independent parallelism. If threads of same block need to communicate, use shared memory and

synchronize the threads using syncthreads() function of CUDA. If threads of different blocks need to

communicate, use global memory and split computation into multiple kernels. Note that there is no

synchronization mechanism between blocks. High parallelism is especially important to hide memory

latency by overlapping memory accesses. Once the parallelism of the algorithm has been exposed it

needs to be mapped to the hardware as efficiently by carefully choosing the execution configuration of

each kernel invocation (refer to the NVIDIA CUDA Programming Guide [CUDa] for more details).

2. Expose As Much Parallelism As Possible (CPU/GPU Parallelism): Take advantage of asynchronous

kernel launches by overlapping CPU computations with kernel execution. One can also take advantage

of the asynchronous CPU-GPU memory transfers that overlap with kernel execution.

3. Optimize Memory Usage For Maximum Bandwidth: Processing data is cheaper than moving it

around, especially for GPUs as they devote many more transistors to ALUs than memory. Thus, the

less memory bound a kernel is, the better it will scale with future GPUs. Therefore, we should try to

maximize the use of low-latency, high-bandwidth memory. We should optimize memory access patterns

to maximize bandwidth. Leverage parallelism to hide memory latency by overlapping memory accesses

with computation as much as possible. This means that the kernels should posses high arithmetic inten-

sity (ratio of math to memory transactions). Sometimes, recomputing data can prove to be better than

simply caching it.

18

4. Minimize CPU-GPU Data Transfers: CPU-GPU memory bandwidth is much lower than GPU memory

bandwidth. Use page-locked host memory for maximum CPU-GPU bandwidth (3.2 GB/s common on

PCI-e x16, 4 GB/s measured on nForce 680i motherboards, 8GB/s for PCI-e 2.0). However, one has

to be cautious since allocating too much page-locked memory can reduce overall system performance.

Minimize CPU-GPU data transfers by moving more code from CPU to GPU even if that means running

kernels with low parallelism computations. Intermediate data structures can be allocated in device mem-

ory, operated on, and deallocated without ever copying them to CPU memory. Transfering data in group

is also useful. Because of the overhead associated with each transfer, one large transfer is much better

than many small ones.

5. Optimize Memory Access Patterns: Effective bandwidth can vary by an order of magnitude depending

on the type of access pattern. Optimize access patterns to get coalesced global memory accesses, shared

memory accesses with no or few bank conflicts, cache-efficient texture memory accesses and same-

address constant memory accesses.

Global memory is not cached on NVIDIA G80 cards. Therefore, when accessing global memory, there

are, in addition, 400 to 600 clock cycles of memory latency which is highest for any type of memory

accesses. Moreover, the device memory (global memory) has much lower bandwidth than on-chip mem-

ory. Thus, it is likely to be a performance bottleneck. Global memory bandwidth is used most efficiently

when the simultaneous memory accesses by threads in a half-warp can be coalesced into a single mem-

ory transaction of 64 bytes, or 128 bytes. Using float4 (instead of float3) data allows coalesced memory

access to the arrays of data in device memory, resulting in efficient memory requests and transfers. If

register space is an issue, then store the three-dimensional vectors as float3 variables.

The constant memory is cached so a read from constant memory costs one memory read from device

memory only on a cache miss, otherwise it just costs one read from the constant cache. For all threads

of a warp, reading from the constant cache is as fast as reading from a register as long as all threads read

the same address. The cost scales linearly with the number of different addresses read by all threads.

The shared memory is hundreds of times faster than the local and global memory since it is present on

the chip itself. Thus, the use of shared memory within kernels should be maximized. In fact, for all

threads of a warp, accessing the shared memory is as fast as accessing a register as long as there are

no bank conflicts between the threads. Shared memory is divided into equally sized n banks. Thus, an

effective bandwidth of n times the bandwidth of a single bank can be achieved if any memory read or

write request made of n addresses fall in n distinct memory banks. In case of bank conflict the access

has to be serialized. The G80 GPU architecture also supports concurrent reads from multiple threads to

19

a single shared memory address, so that there are no shared-memory bank conflicts.

A common way of scheduling some computation on the device is to block it up to take advantage of

shared memory. First partition the data set into data subsets that fit into shared memory and then handle

each data subset with one thread block. Load the subset from global memory to shared memory and

synchronize the threads so that each thread can safely read shared memory locations that were written by

different threads. Now, perform the computation on the subset from shared memory because each thread

can efficiently multi-pass over any data element. Again synchronize the threads if required to make sure

that shared memory has been updated with the results and copy the results back to the global memory.

The texture memory is also cached so a texture fetch costs one memory read from device memory only

on a cache miss, otherwise it just costs one read from the texture cache. The texture cache is optimized

for 2D spatial locality, so threads of the same warp that read texture addresses that are close together will

achieve best performance.

6. Optimize Instruction Usage: The use of arithmetic instructions with low throughput should be mini-

mized to optimize instruction usage. This includes trading precision for speed when it does not affect

the end result, such as using intrinsic (for e.g. sinx()) instead of regular functions (for e.g. sinx()) or

single-precision instead of double-precision. Particular attention must be paid to control flow instructions

due to the SIMD nature of the GPU. Any flow control instruction (if, switch, do, for, while) can signifi-

cantly impact the effective instruction throughput by causing threads of the same warp to diverge, that is,

to follow different execution paths. If this happens, the different executions paths have to be serialized,

increasing the total number of instructions executed for the warp.

7. More Optimizations Through Loop Unrolling: Significant performance improvements can be achieved

through a simple technique like loop unrolling. The branch that happens in a for loop is a waste of time.

So, the ratio of useful processing per branch increases with unrolling. However, note that unrolling will

not always improve performance. It could possibly result in a much larger register usage and adversely

decrease the occupancy as a result. To counteract the register pressure induced by the loop unrolling opti-

mizations, the GPU shared memory can be used for storage of intermediate results. As with everything in

CUDA, it is highly dependent on the exact algorithm and there is no substitute for experimentation. It has

been found that especially the loops with global memory accesses in them benefit a lot from unrolling.

In loops with only shared memory operations, the performance difference is not very large.

20

Chapter 3

Parallel FMM on the GPU

3.1 Fast computation with Fast Multipole Method

Computational science and engineering is replete with problems which require the evaluation of pairwise in-

teractions in a large collection of particles. Direct evaluation of such interactions results in O(N2) complexity

which places practical limits on the size of problems which can be considered. Techniques that attempt to

overcome this limitation are labeled N-body methods. The N-body method is at the core of many computa-

tional problems, but simulations of celestial mechanics and coulombic interactions have motivated much of

the research into these. Numerous efforts have aimed at reducing the computational complexity of the N-

body method, particle-in-cell, particle-particle/particle-mesh being notable among these. The first numerically-

defensible algorithm [DS00] that succeeded in reducing the N-body complexity to O(N) was the Greengard-

Rokhlin Fast Multipole Method (FMM) [GR87].

The FMM, in a broad sense, enables the product of restricted dense matrices with a vector to be evaluated in

O(N) or O(N logN) operations, when direct multiplication requires O(N2) operations. The Fast Multipole

Method [GR87] is concerned with evaluating the effect of a “set of sources” X, on a set of “evaluation points”

Y. More formally, given

X = {x1, x2, . . . , xN}, xi ∈ R3, i = 1, . . . , N, (3.1)

Y = {y1, y2, . . . , xM}, yj ∈ R3, j = 1, . . . ,M (3.2)

we wish to evaluate the sum

f(yj) =
N∑
i=1

φ(xi, yj), j = 1, . . . ,M (3.3)

The function φ which describes the interaction between two particles is called the “kernel” of the system (e.g.

for electrostatic potential, kernel φ(x, y) = |x − y|−1). The function f essentially sums up the contribution

from each of the sources xi.

Assuming that the evaluation of the kernel φ can be done in constant time, evaluation of f at each of the M

21

evaluation points requires N operations. The total complexity of this operation will therefore be O(NM). The

FMM attempts to reduce this seemingly irreducible complexity toO(N+M) or evenO(N logN+M). Three

main insights that make this possible are:

1. Factorization of the kernel into source and receiver terms

2. Most application domains do not require that the function f be calculated at very high accuracy.

3. FMM follows a hierarchical structure (Octrees)

Details on the theoretical foundations of FMM, requirements subject to which the FMM can be applied

to a particular domain and discussion on the actual algorithm and its complexity as well as the mathematical

apparatus required to apply the FMM to radiosity are available in [KC03] and [Gor06]. Five theorems with

respect to the core radiosity equation are also proved in this context. In our case, this highly efficient algorithm

is used for solving the radiosity kernel and getting a diffuse global illumination solution.

Besides being very efficient and applicable to a wide range of problem domains, the FMM is also highly par-

allel in structure. There are two versions of FMM: the uniform FMM works very well when the particles in

the domain are uniformly distributed, while the adaptive FMM is used when the distribution is non-uniform.

It is easy to parallelize the uniform FMM effectively: A simple, static domain decomposition works perfectly

well. However, typical applications of FMM are to highly non-uniform domains, which require the adaptive

algorithm. Obtaining effective parallel performance is considerably more complicated in this case, and no static

decomposition of the problem works well. Moreover, certain fundamental characteristics of the FMM translate

to difficult challenges for efficient parallelization. For eg. the FMM computation consists of a tree construction

phase followed by a force computation phase. The data decomposition required for efficient tree construction

may conflict with the data decomposition required for force computation. Most of the parallelizations em-

ploy the octree-based FMM computation, and thus inherit the distribution-dependent nature of the algorithm.

Considerable research efforts have thus been directed at developing parallel implementations of the adaptive

FMM.

With rapid improvements in performance and programmability, GPUs have fostered considerable interest

in doing computations that go beyond computer graphics and are being used for general purpose computations.

GPUs may be viewed as data parallel compute co-processors that can provide significant improvements in

computational performance especially for algorithms which exhibit sufficiently high amount of parallelism.

FMM is one such algorithm. Our interest lies in design of a parallel FMM algorithm suited to modern day

NVIDIA’s G80/G92 GPU architechture using CUDA. We discuss such an algorithm in this chapter. It uses

only a static data decomposition and does not require any explicit dynamic load balancing, either within an

iteration or across iterations.

22

3.2 Prior Work

Recently, several researchers have reported the use of GPUs, either in isolation or in a cluster to speed up the

N-Body problem using direct algorithms (not FMM), in which the interaction of every pair of particles is con-

sidered [NHP07]. While impressive speedups are reported, these algorithms require O(N2) memory to utilize

O(N2) available parallelism and is limited by memory bandwidth. We look at an interesting implementation

of the All Pairs N-Body simulation on the GPU [NHP07] in which some of the computations are serialized to

achieve the data reuse needed to reach peak performance of the arithmetic units of the GPU and to reduce the

required memory bandwidth.

3.2.1 Direct N-Body Simulations on the GPU

Given N bodies with an initial position xi and velocity vi (1 ≤ i ≤ N), the force vector fij on body i caused

by its gravitational attraction to body j is given by the equation:

fij = G
mimj

‖rij‖2
· rij
‖rij‖

, where mi and mj are the masses of bodies i and j, respectively; rij = xj − xi is the distance vector from

body i to body j; and G is the gravitational constant.

The total force Fi on body i, due to its interactions with the other N − 1 bodies, is obtained by summing

all interactions:

Fi =
∑

1≤j≤N
j 6=i

fij = Gmi ·
∑

1≤j≤N
j 6=i

mjrij
‖rij‖3

An N × N grid of all pair forces can be used to store each force fij . Thus, the total force Fi on body i

is obtained from the sum of all entries in row i. Each fij can be computed independently, so there is O(N2)

available parallelism. This approach requires O(N2) memory and is substantially limited by memory

bandwidth. However, if we serialize some of the computations we can achieve data reuse required to reach

peak performance of the arithmetic units and to reduce the memory bandwidth required.

Consider a tile (2D grid) of p × p forces. Computations for a tile are arranged so that the interactions in

each row (interaction of a body with p other bodies) are evaluated sequentially, updating the force vector, while

the rows are evaluated in parallel. The result of the tile calculation is p updated forces.

Now we define a block of p threads that executes some number of tiles in sequence. The number of rows

defines the degree of parallelism and more the number of columns the more is the amount of data reuse. Before

a tile is executed, each thread fetches one body into shared memory, after which the threads synchronize.

Consequently, each tile starts with p successive bodies in the shared memory. In a thread block, there are N/p

tiles, with p threads computing the forces on p bodies (one thread per body). Each thread computes all N

23

interactions for one body. To get the results for all the N bodies we also define a 1D grid of N/p thread blocks.

Evaluation of a full grid is shown in figure 3.1.

686

thread blocks with p threads each. The horizontal dimension shows the sequential pro-
cessing of N force calculations in each thread. A thread block reloads its shared memory
every p steps to share p positions of data.

31.4 Performance Results
By simply looking at the clocks and capacities of the GeForce 8800 GTX GPU, we ob-
serve that it is capable of 172.8 gigaflops (128 processors, 1.35 GHz each, one floating-
point operation completed per cycle per processor). Multiply-add instructions (MADs)
perform two floating-point operations every clock cycle, doubling the potential perform-
ance. Fortunately, the N-body code has several instances where MAD instructions are
generated by the compiler, raising the performance ceiling well over 172.8 gigaflops.

Conversely, complex instructions such as inverse square root require multiple clock
cycles. The CUDA Programming Guide (NVIDIA 2007) says to expect 16 clock cycles

Chapter 31 Fast N-Body Simulation with CUDA

N Bodies

p steps between

loads from global memory

N/p Blocks

p Threads

Figure 31-4. The Grid of Thread Blocks That Calculates All N 2 Forces
Here there are four thread blocks with four threads each.

531_gems3_ch31 7/4/2007 9:09 PM Page 686 FINAL

Figure 3.1: A grid of thread blocks that calculates all N2 forces. Here there are four thread blocks with four
threads each [NHP07].

The all-pairs approach just mentioned requires substantial time and memory bandwidth to compute. Thus,

it is not generally used on its own in the simulation of large systems. Instead, the all-pairs approach is typically

used as a kernel to determine the forces in close-range interactions. It is combined with a faster method based

on a far-field approximation of longer-range forces, which is valid only between parts of the system that are

well separated. Fast Multiple Method is a well known algorithm of this form. Recently, Gumerov Nail and

Duraiswami Ramani [GD07] demonstrated the possibility of implementing the FMM on GPUs. They imple-

mented the FMM on GPUs for only the Laplace kernel and obtained a performance acceleration in the range

30-50.

24

3.3 Parallel FMM computations on GPU

The FMM algorithm for Radiosity kernel [KC03] that we use is consistent with the single precision floating

point arithmetic on the GPU. While there are softwares to emulate double precision on the GPU, their use is

reported to show a decrease of the computational speed by up to 10 times (see the e.g., in [GST05]). And

while we will still see an acceleration relative to the CPU, this will not be as dramatic. GPU manufacturers

envision in the closest future the release of GPUs with double precision hardware (both ATI and NVIDIA have

announced that this feature will be released in mid 2008). In this case, single precision algorithms can be

modified accordingly and the fastest methods for high precision computations can be implemented and tested,

without writing artificial libraries.

Thus, with the currently existing GPUs, computations with 3, 4, or 5 digit accuracy are appropriate, which

cover a broad class of practical needs. FMM achieves the user-defined accuracy using a truncation number

p, which essentially signifies number of terms to be considered from the infinitely long series expansion of

the kernel function required for separating the source and receiver terms. Computations with a truncation

number p = 8 and higher using 4 byte floats can produce a heavy loss of accuracy, overflows/underflows (due to

summation of numbers of very different magnitude) and cannot be used for large scale problems. On the other

hand, computations with relatively small truncation numbers, like p = 3, 4, and 5 are stable, and can produce

the required 3, 4 or 5 digits of accuracy for problems with number of particles of the order≈ 106, and we focus

on this range of truncation numbers in our implementation.

The different parallelization strategies used in our implementation are quite similar to those used by [GD07].

One important thing to note here is that our FMM kernel for radiosity is far more complex which makes the

FMM implementation highly difficult. As such the number of terms p in the truncated series expansion of the

radiosity kernel is chosen to be 3. It produces results with sufficiently good amount of accuracy (error less that

10−4) acceptable for showing good Global Illumination effects.

3.4 Implementation Details

The Fast Multipole Method consists of the following five phases:

• Octree Construction

• Generating visible interaction lists

• Upward Pass

• Downward Pass

• Final Summation

25

Our parallel FMM algorithm specifically solves the last three phases (Upward pass, Downward pass and

Final summation stage) on the GPU. We assume, as a part of pre-processing step, that we have been given an

octree constructed for the input 3D model along with the interactions lists for each of the octree nodes (contain-

ing only visible nodes). The octree can be constructed on the CPU or on the GPU (using algorithms discussed

in chapter 5), while the visible interaction lists construction happens on the CPU. These 2 phases will eventu-

ally be implemented on GPU and combined with the rest of the algorithm.

INPUT: A 3D model with its defined octree and visible interaction lists.

OUTPUT: A Global Illumination solution for the given model.

Our input octree is a long one dimensional array with each level of octree stored one after the other(starting

from the root). The parent-child relationship is established using the array indices.

We also define four one dimensional arrays, each corresponding to one of the interaction list’s type (far,

near, multipole, local). The size of each of these arrays is the sum total of the number of nodes in the interaction

lists of every node (for e.g. size(far cell list) =
∑

i size(far cell list of each node i)). The relationship between

each node and each of its interaction lists is defined by storing in it the start and the end indices of each of its

interaction list in the four global interaction list arrays.

A 3D input point model is stored as a single point array with its necessary attributes (co-ordinates, normal,

diffuse surface color, emmissivity, gaussian weights). Incase of triangular models, they are converted to points

using gaussian quadrature weights theory [KC03].

In the next section we present the different kernel functions implemented for upward, downward and direct

summation passes of the FMM algorithm. Each kernel is executed, for different levels of the octree, in CUDA

on a one dimensional grid of one dimensional blocks of threads. By default each block contains 128 threads,

which was obtained via an empirical study of optimal thread-block size. This study also showed that for good

performance the thread block grid should contain not less than 64 blocks for a 16 multiprocessor configuration.

If the number of nodes at a level is not a divisor of the block size, only the remaining number of threads is

employed for computations of the last block.

3.4.1 Upward Pass

3.4.1.1 Step 1: Generating Multipole Expansion Co-efficients for the Leaves

We need to calculate, in parallel, for each leaf in the octree, the multipole, or S expansion of all particles

(sources) contained in the node about the center of the node. The expansions from all particles (sources) in

the node are consolidated in a single expansion by summing the coefficients corresponding to each particle

26

(source).

One solution for parallelization here is to assign each thread to handle one source expansion. A drawback

of this method is that after generation of expansions they need to be consolidated, which will necessitate data

transfer to GPU global memory, unless they form a block of threads handled by one processor. The block size

for execution of any subroutine in GPU can be defined by the user, but it is fixed during execution. In the FMM

each node may have different number of particels (sources). Thus if a node is handled by a block of threads then

threads could be idle, which, of course, reduces the utilization efficiency. GPU speedups compared to the serial

CPU code in this case are in range 2-5, which appear to be rather low when compared with the performance of

other steps.

The efficiency of this step of calculating multipole expansions substantially increases when we adopt a

different parallelization model of having one thread per node. In this case one thread performs expansion

for each of the sources in the leaf and consolidates these expansions. So one thread produces full multipole

expansion for the entire leaf. The advantage of this approach is that the work of each thread is completely

independent and so there is no need for shared memory. This perfectly fits the situation when each leaf may

have different number of sources, as the thread that finishes work for a given leaf simply takes care of another

leaf, without waiting or need for synchronization with other threads. The disadvantage of this approach is that

to realize the full GPU load the number of boxes should be sufficiently large. Indeed, if an optimal thread block

size is 128 and there are 16 multiprocessors (so we need at least 64 blocks of threads to realize an optimal GPU

load), then the number of nodes should be at least 8192 for a good performance. Note that at maximum leaf

level = 4 we have at most 84 = 4096 leaves, and for maximum level = 5 this number becomes 85 = 32768

leaves. So the method can work efficiently only for large enough problems which is the case with us.

1. For every level of octree, starting from the last level of octree, upto the root do

(a) Allocate threads equal to number of nodes at the current level

(b) For every thread, in parallel, Do

(c) If current node is a leaf Then

i. Calculate the multipole expansion of all particles (sources) contained in the current leaf about

the center of that leaf.

ii. Consolidate each of these expansions in a single expansion at the current leaf’s center.

The time spent for this step usually does not exceed a couple of percent of the overall FMM run time and

also the FMM on the GPU is efficient only for relatively large problems.

27

3.4.1.2 Step 2: Generating Multipole Expansion Coefficients for the Internal Nodes

We need to calculate, in parallel, for each level l = lmax − 1, ...2, for each node b at that level, the multipole,

or S expansion coefficients M(b) due to all particles in that node by translating and aggregating the multipole

expansion coefficients of all its children.

We have not yet come upon an optimal strategy for this subroutine. The current version is based on the

fact that the resulting multipole, or S expansions for the parent nodes can be generated independently. So,

each thread can be assigned one parent node. However, the work load of the GPU in this case becomes very

small for low lmax and more or less reasonable speedups can be achieved only if several threads are allocated

to process a parent node. Since each parent node in the octree has at most 8 children and for each child the

multipole-to-multipole, or S|S translation can be performed independently, we used a two dimensional 64× 8

blocks of threads and one dimensional grid of blocks. In this setting each parent node was served by 8 threads,

with the thread id in y varying from 0 to 7 for identification of the child nodes.

1. For every level of octree, starting from the second last level, upto the root do

(a) Allocate a 2D grid of threads equal to number of nodes at the current level times 8 (idx is parent

and idy = 0− 7 are children nodes. For empty children threads remain idle)

(b) For every thread, in parallel, Do

i. If current node is a non-leaf node Then

ii. Translate one S coefficient corresponding to the child idy to the center of current node and

write to the shared memory based on idx, idy

(c) Synchronize the threads

(d) For every thread with idy = 0, in parallel, Do

i. Sum up all the coefficients with the same idx and store in variable sum

ii. Write the result back to the global memory corresponding to the current (parent) node.

We do not expect to achieve much speedup in this step. The complexity of depends only on the number of

children for each parent node. For non-adaptive structure this number is equal to 8l for level l. When lmax = 3

which has only 512 children and 64 parent nodes at most, the efficiency of translation/per thread parallelization

is low. We have already mentioned earlier that for the current GPU architecture sizes involving 8192 parallel

processes or more can be run at full efficiency. Even for lmax = 4, the full load is not achieved. Thus, for

lmax > 5 we expect GPU to gain speedups over the CPU code, which includes computations not only for lmax,

but for all levels from lmax to 3.

28

Note that the upward pass is a very cheap step of the FMM and normally takes not more than 1% of the

total time. This also diminishes the value of putting substantial resources and effort in achieving high speedups

for this step.

3.4.2 Downward Pass

We repeat the following steps for each level of the octree, starting from level 2 to the maximum level lmax.

Downward pass and the final summation phases are combined into a single phase.

3.4.2.1 Step 1: Multipole to Local Translations

For each node, in parallel, translate and aggregate the multipole, or S expansion coefficients of every node in

the far cell interaction list of the current node into local, or R expansion coefficients about the current node’s

center.

1. Allocate threads equal to number of nodes at the current level

2. For every thread, in parallel, Do

(a) For each node A in the far cell list of current node Do

i. Translate the multipole expansion coefficients of A into local, or R expansion coefficients

about the center of current node.

ii. Aggregate each of these expansions in a single expansion at the current node’s center.

3.4.2.2 Step 2: Local List Translations

For every node, in parallel, in addition to converting the multipole expansion coefficients of all nodes in the

interaction list into local expansion coefficients at the node’s center, the local expansion coefficients obtained

from the individual particles contained in the local interaction list are also aggregated.

1. Allocate threads equal to number of nodes at the current level

2. For every thread, in parallel, Do

(a) For each node n in the local list of current node Do

i. Obtain the local expansion coefficients obtained from the individual particles contained in n

about the center of current node.

ii. Aggregate each of these expansions in a single expansion at the current node’s center and add

up to its existing local expansion coefficients.

29

3.4.2.3 Step 3: Local to Local Translations

In addition to multipole-to-local and local-list translations, we further need to calculate, in parallel, for each

node b at current level, the local, or R expansion coefficients about its center by translating and aggregating the

local expansion coefficients from its parent.

1. Allocate threads equal to number of nodes at the current level

2. For every thread, in parallel, Do

(a) Obtain the local expansion coefficients from its parent node about the center of current node.

(b) Add up to the existing local expansion coefficients about current node’s center.

This step is very similar to the step 2 of upward pass. For parallelization of this step, the one thread per

node strategy is used.

3.4.2.4 Step 4: Evaluate Local Expansion at Points

Evaluate, in parallel, the local expansions at individual points in each of the leaves, from the corresponding

leaf’s center.

1. Allocate threads equal to number of nodes at the current level

2. For every thread, in parallel, Do

(a) If current node is a leaf Then

i. Obtain the radiosity values at individual points in the current leaf, from the local expansion

coefficients at current leaf’s center.

This step is very similar to the multipole expansion generator discussed above in step 1 of the upward

pass. For parallelization of this step, the one thread per node strategy is used. The performance of this step is

approximately the same as of the multipole expansion generator.

3.4.2.5 Step 5: Near Cell List Translations

For every node in parallel, evaluate the near neighbor interactions (if current node is a leaf) between the points

in the current node and every point in each of the nodes in its near cell interaction list. This, and the remaining

steps, are a part of the final summation phase.

1. Allocate threads equal to number of nodes at the current level

30

2. For every thread, in parallel, Do

(a) If current node is a leaf Then

i. For each node n in the near cell list of current node Do

A. For all points in current leaf

B. For all points in n

C. Evaluate the radiosity interaction directly

D. Add up the evaluated value to the exisiting radiosity values of the points

3.4.2.6 Step 6: Multipole List Translations

For every node, in parallel, in addition to evaluating the near neighbors and local expansion coefficients at each

particle, we also evaluate the multipole expansion coefficients of all nodes in the multipole interaction list.

1. Allocate threads equal to number of nodes at the current level

2. For every thread, in parallel, Do

(a) If current node is a leaf Then

i. For each node n in the multipole list of current node Do

A. Translate the multipole expansion coefficients of n from its center to

individual points of current leaf

B. Add up the evaluated value to the exisiting radiosity values of the points

This scheme for downward pass is efficient on CPU, but may not be the best for GPU, where the cost of one

random access to global memory is equal up to 150 float operations, and instead of reading precomputed data

GPU may rather compute them at higher rate. Moreover, for low lmax the GPU kernel may even run slower

than the serial CPU!. However, even in this case it is not recommended to switch between the CPU and GPU,

since such a switch involves the slowest memory copying process (CPU-GPU), and if possible all data should

stay on the GPU global memory. Performance improves a lot as the size of the problem and, respectively, the

maximum level of the octree increases and for lmax = 8 the time ratio reached 20 or so.

In the above steps we explained the kernel functions implemented for the upward, downward and final

summation passes of the FMM algorithm. Each point has 3 primary colors associated with it viz. Red, Green

and Blue. Hence, we run all the above steps thrice, corresponding to each color. Further, we converge to

the final Global Illumination solution by iterating all the above steps (for all colors) three times (Empirical

evidences prove that the solution converges to a good extent in 3 iterations).

31

3.4.3 Quality Comparisons

First we compare the results obtained on the GPU for quality with the corresponding implementation on the

CPU. To compare CPU and GPU implementations we use 3-d point models of bunny and Ganesha in a Cornell

room each having four light sources on the ceiling. As we can see in Fig. 3.2 the CPU-GPU results look

identical. Global illumination effects like color bleeding and soft shadows are also clearly visible. Note that

for FMM the visual quality of result does not depend on the kind of GPU used (NVIDIA 8800 GTS or Quadro

FX 3700). The GPU should just support CUDA and have enough memory (> 256Mbs).

Figure 3.2: Top Left: A Cornell Room with the Ganesha’s point model on CPU. Top Right: Corresponding GPU
result. Bottom Left: A Cornell Room with the Bunny’s point model on CPU. Bottom Right: Corresponding
GPU result. Both the results assume 50 points per leaf.

Note that we converge to the final Global Illumination solution shown in Fig. 3.2 by performing the FMM

algorithm (Upward and then Downward passes) for all colors (RGB) three times. We can see that the solution

converges to a good extent in 3 iterations.

32

Figure 3.3: Point models rendered with diffuse global illumination effects of color bleeding and soft shadows.
Pair-wise visibility information is essential in such cases. Note that the Cornell room as well as the models in
it are input as point models.

3.4.4 Timing Comparisons

The timing calculations are done on a machine having a dual core AMD Opteron 2210 processor with 2 Gbs of

RAM, NVIDIA GeForce 8800 GTS with 320 Mbs of memory and Fedora Core 7 (x86 64) installed on it. The

total time taken by the upward and downward passes of the FMM algorithm for all 3 iterations and all 3 colors

RGB is shown in the results below. The time taken by each iteration is approximately same.

3.4.4.1 Upward Pass (for all 3 iterations, 3 colors and p=3)

GPU

CPU0

50

100

150

200

200
150

100
50

25

GPU

CPU

Bunny (124531 points)

Number of
points per leaf GPU (sec) CPU (sec)

GPU
Speedup

200 38.3485 55.9931 1.46

150 41.5512 61.2873 1.47

100 45.6921 72.7653 1.59

50 91.4292 135.2349 1.47

25 117.5751 180.4829 1.53

Figure 3.4: FMM Upward Pass : Bunny with 124531 points

33

GPU

CPU0

50

100

150

200

200
150

100
50

25

GPU

CPU

Ganpati (165646 points)

Number of
points per leaf GPU (sec) CPU (sec)

GPU
Speedup

200 42.3485 58.9931 1.39

150 46.5512 67.2873 1.44

100 49.6921 79.7653 1.61

50 99.4292 145.2349 1.46

25 130.5751 189.4829 1.45

Figure 3.5: FMM Upward Pass : Ganpati with 165646 points

3.4.4.2 Downward Pass (for all 3 iterations, 3 colors and p=3)

GPU

CPU0

5

10

15

20

25

30

200
150

100
50

25

GPU

CPU

Bunny (124531 points)

Number of
points per leaf GPU (hr) CPU (hr)

GPU
speedup

200 1.01 15.96 15.8
150 1.09 19.18 17.6
100 1.16 21.11 18.2
50 1.21 23.81 19.5
25 1.30 25.87 19.9

(a)

GPU

CPU0

5

10

15

20

25

30

200
150

100
50

25

GPU

CPU

Ganpati (165646 points)

Number of
points per leaf GPU (hr) CPU (hr)

GPU
Speedup

200 1.11 14.54 13.1
150 1.16 16.58 14.3
100 1.21 20.81 17.2
50 1.28 23.15 18.1
25 1.41 26.37 18.7

(b)

Figure 3.6: Downward Pass (a) Bunny with 124531 points (b) Ganpati with 165646 points

Thus, we see that the GPU outperforms the CPU by factors of 13-20 in the downward pass of the FMM

algorithm. We also see that the upward pass of the FMM algorithm consumes less than 1% of the time taken

by the downward pass. Thus, the speedup achieved in the upward pass does not play an important role in the

overall FMM speedup. The overall speedup achieved is the speedup achieved in the downward pass.

34

Chapter 4

Space Filling Curves

While performing a domain decomposition one would like to be able to decompose the domain in a manner

that is not only easy to implement in practice, but also possesses a robust mathematical representation that

enables fast computation of data ownership. It should also be easy to parallelize the domain decomposition

algorithm itself, which is useful in reducing the runtime overhead. Moreover, it should provide good quality

load balancing. In this section we discuss a space filling curve based domain decomposition that meets the

above requirements. We will finally use it to implement parallel octree on the GPU.

Let us consider a 3 dimensional cube. On bisecting it recursively k (resolution of decomposition) times

along each dimension, we get a 3 dimensional matrix having 2k × 2k × 2k non-overlapping cells of equal size.

A Space Filling Curve (SFC) maps the 3 dimensional location of these cells to a 1 dimensional linear ordering

(see Figure 4.1 for SFC ordering in 2 dimensions). This process is often referred as linearization.

Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is a first
step in many particle based
methods. In graphics, a triangular
element can be represented by its
centroid. In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is (, ,)

3. Allocate 8k threads . In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution)
are sorted, then we have
the correct order to
consider nodes in a
bottom up traversal
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up
octree construction is therefore
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell can be
computed independently
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child)

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core
CPU & nVidia 8800 GTS using CUDA [3]. GPU timings in charts
does not include data copy time from CPU to GPU.

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work

References

1. Sagan H. Space Filling Curves. Springer-Verilag, ‘94

2. Lefebvre S., Hornus S., and Neyret F. GPU Gems 2, chapter
Octree Textures on GPU, pages 595-614. Addison Wesley, ‘05

3. nVidia CUDA Programming Guide,developer.nvidia.com/cuda

4. Goradia R., Kanakanti A., Chandran S., and Datta A. Visibility
Map for Global Illumination in Point Clouds. In Procs. of
ACM SIGGRAPH GRAPHITE, pages 39-46. ‘07

2 /k

xP D

All are NULL nodes Node c1 has some data

p1

c1 c8

p8

c1 c8

pi

c1 c8

Leaf

Internal node

Empty node

Depth k

p1 p8

c1 c8

pi

c1 c8

R

Leaf

Internal node

Empty node

c2

Lookup number of
empty nodes before
c2 in this region

PONA = post order
number of c2 in notional
non-adaptive octree

Root

01 11

1000

0101 0111 1101 1111

0100 0110 1000 1110

0000 0010 1000 1010

0001 0011 1001 1011

0 1

0

1

00 01 10 11

00

01

10

11

y

x

1
3

2
4

9

5

8
7

6

10

{prekshu,rhushabh,sharat}@cse.iitb.ac.in
aluru@iastate.edu

Height: 5 6 7 8 9

GPU (ms) 0.27 0.31 0.316 0.321 0.354

CPU (ms) 0.152 0.891 9.59 80.05 467.4

0
100
200
300
400
500

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(2 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.068 0.087 1.181 2.106 3.123

CPU (ms) 0.353 2.687 22.622 192.063 1510.12

0

500

1000

1500

2000

T
im

e
 (

m
s
)

SFC CONSTRUCTION (2 Million Points)

Height: 7 8 9 10 11

GPU (ms) 0.319 0.331 0.369 0.481 0.605

CPU (ms) 10.01 83.1 489.42 1560.9 5244.17

0

2000

4000

6000

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(5 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.223 0.273 1.339 2.17 3.921

CPU (ms) 1.27 4.57 30.23 220.13 1613.9

0
500

1000
1500
2000

T
im

e
 (

m
s
)

POST ORDER OCTREE TRAVERSAL
(2 Million Points)

2 /k

yP D

Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

0 1

1

0 1

1

PONA NE

2 /k

zP D

Level=2

Level=1

Level=0

Figure 4.1: Left: The 2-D z-SFC curve for k = 3, Right: 10 points in a 2-D space. The points are sequentially
labeled in the z-SFC order.

35

Partitioning the SFC ordering of the particles equally to processors ensures load balancing. If the compu-

tational load per particle is not identical but known, the SFC linearization can be partitioned such that the total

load per processor is about the same. If the load is not known, the first iteration can be run with an equally

partitioned SFC linearization, and load on each particle estimated. This can be used to readjust the load bal-

ance, by simply moving the boundaries of the processors on this one dimensional linear ordering. However, the

runtime to order 23k cells, Θ(23k), is expensive because typically n � 23k. Thus, a method to directly order

the cells containing the particles is required.

Let us consider a 2 dimensional particle space of side length D and let its bottom left corner be at the

origin. To begin with we first find the integer coordinates of the cells containing each of the input particles. For

resolution k, the integer coordinates of a cell having a particle P (Px, Py) will be(⌊
2kPx
D

⌋
,

⌊
2kPy
D

⌋)
The index of a cell in Z-SFC, also known as Morton Ordering is computed by representing the integer coor-

dinates of the cell using k bits and then interleaving the bits starting from the first dimension to form a 2k bit

integer. This interleaving scheme is the characteristic defining function of z-SFC. For example, the index of a

cell with coordinates (3, 1) = (11, 01) is given by 1011 = 11. Once the indices corresponding to all the points

are generated, SFC linearization is achieved by a parallel integer sort [Chr].

We can see that SFC decomposition is very similar, though not identical to an octree decomposition. It is

hardly surprising that they can be related. When drawing an octree, we can draw the children on a node in the

order in which z-SFC visits the subcells represented by the children. Thus, octrees can be viewed as multiple

SFCs at various resolutions (see figure 4.2).

Observe that removing the last 2 bits (3 in 3-D) from the index of a cell gives the index of its parent (see

figure 4.3). Thus, the process of assigning indices can be viewed hierarchically. However, ambiguity arises

when cells at different levels have the same indices (For e.g. 00 in level 1 is same as 0000 in level 2). A simple

way to overcome this ambiguity is to prepend the bit representation of an index with a ‘1’ bit. Thus, root cell

becomes 1 and the cells with Z-SFC indices 00 and 0000 are now 100 and 10000.

The advantage of such bit representation is that it allows primitive operations on cells using fast bit opera-

tions:

1. check if a cell C1 is contained in cell C2: If C2 is a prefix of C1, then C1 is contained in C2; otherwise,

not.

2. find the smallest cell containing C1 and C2: Find the longest common prefix of C1 and C2 that is a

multiple of dimension d.

36

Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is a first
step in many particle based
methods. In graphics, a triangular
element can be represented by its
centroid. In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is (, ,)

3. Allocate 8k threads . In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution)
are sorted, then we have
the correct order to
consider nodes in a
bottom up traversal
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up
octree construction is therefore
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell can be
computed independently
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child)

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core
CPU & nVidia 8800 GTS using CUDA [3]. GPU timings in charts
does not include data copy time from CPU to GPU.

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work

References

1. Sagan H. Space Filling Curves. Springer-Verilag, ‘94

2. Lefebvre S., Hornus S., and Neyret F. GPU Gems 2, chapter
Octree Textures on GPU, pages 595-614. Addison Wesley, ‘05

3. nVidia CUDA Programming Guide,developer.nvidia.com/cuda

4. Goradia R., Kanakanti A., Chandran S., and Datta A. Visibility
Map for Global Illumination in Point Clouds. In Procs. of
ACM SIGGRAPH GRAPHITE, pages 39-46. ‘07

2 /k

xP D

All are NULL nodes Node c1 has some data

p1

c1 c8

p8

c1 c8

pi

c1 c8

Leaf

Internal node

Empty node

Depth k

p1 p8

c1 c8

pi

c1 c8

R

Leaf

Internal node

Empty node

c2

Lookup number of
empty nodes before
c2 in this region

PONA = post order
number of c2 in notional
non-adaptive octree

Root

01 11

1000

0101 0111 1101 1111

0100 0110 1000 1110

0000 0010 1000 1010

0001 0011 1001 1011

0 1

0

1

00 01 10 11

00

01

10

11

y

x

1
3

2
4

9

5

8
7

6

10

{prekshu,rhushabh,sharat}@cse.iitb.ac.in
aluru@iastate.edu

Height: 5 6 7 8 9

GPU (ms) 0.27 0.31 0.316 0.321 0.354

CPU (ms) 0.152 0.891 9.59 80.05 467.4

0
100
200
300
400
500

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(2 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.068 0.087 1.181 2.106 3.123

CPU (ms) 0.353 2.687 22.622 192.063 1510.12

0

500

1000

1500

2000

T
im

e
 (

m
s
)

SFC CONSTRUCTION (2 Million Points)

Height: 7 8 9 10 11

GPU (ms) 0.319 0.331 0.369 0.481 0.605

CPU (ms) 10.01 83.1 489.42 1560.9 5244.17

0

2000

4000

6000

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(5 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.223 0.273 1.339 2.17 3.921

CPU (ms) 1.27 4.57 30.23 220.13 1613.9

0
500

1000
1500
2000

T
im

e
 (

m
s
)

POST ORDER OCTREE TRAVERSAL
(2 Million Points)

2 /k

yP D

Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

0 1

1

0 1

1

PONA NE

2 /k

zP D

Level=2

Level=1

Level=0

Figure 4.2: Octree can be viewed as multiple SFCs at various resolutions

3. find the immediate subcell of C1 that contains a given cell C2: For dimension d and level l, if dl + 1 is

the number of bits representing C1, the required immediate subcell is given by the first d(l + 1) + 1 bits

of C2.
Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is a first
step in many particle based
methods. In graphics, a triangular
element can be represented by its
centroid. In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is (, ,)

3. Allocate 8k threads . In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution)
are sorted, then we have
the correct order to
consider nodes in a
bottom up traversal
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up
octree construction is therefore
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell can be
computed independently
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child)

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core
CPU & nVidia 8800 GTS using CUDA [3]. GPU timings in charts
does not include data copy time from CPU to GPU.

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work

References

1. Sagan H. Space Filling Curves. Springer-Verilag, ‘94

2. Lefebvre S., Hornus S., and Neyret F. GPU Gems 2, chapter
Octree Textures on GPU, pages 595-614. Addison Wesley, ‘05

3. nVidia CUDA Programming Guide,developer.nvidia.com/cuda

4. Goradia R., Kanakanti A., Chandran S., and Datta A. Visibility
Map for Global Illumination in Point Clouds. In Procs. of
ACM SIGGRAPH GRAPHITE, pages 39-46. ‘07

2 /k

xP D

All are NULL nodes Node c1 has some data

p1

c1 c8

p8

c1 c8

pi

c1 c8

Leaf

Internal node

Empty node

Depth k

p1 p8

c1 c8

pi

c1 c8

R

Leaf

Internal node

Empty node

c2

Lookup number of
empty nodes before
c2 in this region

PONA = post order
number of c2 in notional
non-adaptive octree

Root

01 11

1000

0101 0111 1101 1111

0100 0110 1000 1110

0000 0010 1000 1010

0001 0011 1001 1011

0 1

0

1

00 01 10 11

00

01

10

11

y

x

1
3

2
4

9

5

8
7

6

10

{prekshu,rhushabh,sharat}@cse.iitb.ac.in
aluru@iastate.edu

Height: 5 6 7 8 9

GPU (ms) 0.27 0.31 0.316 0.321 0.354

CPU (ms) 0.152 0.891 9.59 80.05 467.4

0
100
200
300
400
500

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(2 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.068 0.087 1.181 2.106 3.123

CPU (ms) 0.353 2.687 22.622 192.063 1510.12

0

500

1000

1500

2000

T
im

e
 (

m
s
)

SFC CONSTRUCTION (2 Million Points)

Height: 7 8 9 10 11

GPU (ms) 0.319 0.331 0.369 0.481 0.605

CPU (ms) 10.01 83.1 489.42 1560.9 5244.17

0

2000

4000

6000

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(5 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.223 0.273 1.339 2.17 3.921

CPU (ms) 1.27 4.57 30.23 220.13 1613.9

0
500

1000
1500
2000

T
im

e
 (

m
s
)

POST ORDER OCTREE TRAVERSAL
(2 Million Points)

2 /k

yP D

Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

0 1

1

0 1

1

PONA NE

2 /k

zP D

Level=2

Level=1

Level=0

Figure 4.3: Bit interleaving scheme for a hierarchy of cells

In this way we can obtain a unique index for each cell of the octree. It is easy to see that index of each cell

can be computed independently in parallel either by using multiple passes, calculating the indices in the parent

37

level using the child level or just by direct calculation based on the level of the cell and its 2-D id in that level.

However, linearization of cells that cuts across multiple levels of the octree can also be beneficial. Given

any two cells, they are either disjoint or have a subcell-supercell relationship. Thus, to establish a total order on

the cells of an octree, if one is contained in the other, the subcell is taken to precede the supercell; if they are

disjoint, they are ordered according to the order of the immediate subcells of the smallest supercell enclosing

them. A nice property that follows is the resulting linearization of all cells in an octree (or compressed octree

[chapter 5.3.2.1]) is identical to its postorder traversal.

38

Chapter 5

Octrees

Octree is one of the numerous hierarchical data structures, based on recursive domain decomposition, that are

used for representing spatial data. Its development has been motivated to a large extent by a desire to save

storage by aggregating data having identical or similar values. However, the savings in execution time that

arise from this aggregation are often of equal or greater importance. Using octree as the base hierarchical

structure for FMM implementation is one of the important reasons for its success with respect to pulling down

the run-time complexity of the algorithm.

We discuss, in this chapter, three different parallel octree implementations on the GPU which can eventually

be combined to parallel FMM implementations on GPU. The first constructs a Non-adaptive octree using Direct

Indexing. The other two construct an adaptive octree; one is a bottom-up construction approach using Space

Filling Curves (SFC) (as discussed in chap. 4) and Compressed octrees (discussed in Sec. 5.3.2.1), while other

implementation is a top-down approach using spatial clustering of points. Note that the octree construction

phase does not consume more than 1% of the overall FMM run-time and hence it is insignificant if the octree

is implemented on the CPU or the GPU.

5.1 Octrees: Introduction

Octrees can be differentiated on the basis of the type of data they are used to represent, the principle guiding

the decomposition and the resolution which can be xed or variable.

5.1.1 Non-Adaptive and Adaptive Octrees

Let us look at a top-down method to construct octrees.

Consider a hypercube enclosing n multidimensional points. The domain enclosing all the points forms

the root of the octree. This is subdivided into 2d subregions of equal size by bisecting along each dimension.

Each of these regions that contain at least one point is represented as a child of the root node. The same

39

procedure is recursively applied to each child of the root node terminating when a subregion contains at most

one point. The resulting tree is called a region octree to reflect the fact that each node of the tree corresponds

to a non-empty subdomain. An example is shown in Fig. 5.1. In practice, the recursive subdivision is stopped

when a predetermined resolution level is reached, or when the number of points in a subregion falls below a

pre-established constant. This forms an adaptive octree. A non-adaptive octree is formed when the maximum

resolution is fixed.

Octrees

1

2
3

4

5
6

7

8

10
9

7

1

3 2 9

4 8

5 6

10

Figure 5.1: A quadtree built on a set of 10 points in 2-D.

5.2 Prior Work: Octree Construction on the GPU

In this section we survey the already existing implementation of the Octree on the GPU [LHN05] which uses

indices stored within a texture node to link the tree nodes just like the way a CPU implementation of octree

uses pointers.

A simple way to implement an octree on a CPU is to use pointers to link the tree nodes together. Each

internal node contains an array of pointers to its children. A child can be another internal node or a leaf. A leaf

only contains a data field. To implement a hierarchical tree on a GPU we need to define how to store the structure

in texture memory and how to access the structure from a fragment program. In the GPU implementation

pointers simply become indices within a texture. They are encoded as RGB values. The content of the leaves is

directly stored as an RGB value within the parent node’s array of pointers. Alpha channel is used to distinguish

between a pointer to a child and the content of a leaf (alpha = 1 indicates data, alpha = 0.5 indicates index and

alpha = 0 indicates empty cell). For simplicity, quadtree which is a 2D equivalent of an octree is discussed.

Figure 5.2 shows the octree storage.

Let us first define the following terminology:

40

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

A quadtree Corresponding data pool

Sx=4

Sy=1

Figure 5.2: Storage in texture memory. The data pool encodes the tree. Data grids are drawn with different
colors. The grey cells contain data.

• Data pool: An 8-bit RGBA texture in which the tree is stored.

• Cell: Each ‘pixel’ of the data pool.

• Data grid: The data pool is subdivided into data grids. A data grid has 2d cells where d is the dimension.

Each node of the tree is represented by a data grid. It corresponds to the array of pointers of the CPU

implementation described above. A cell of a data grid can be empty or contain either (a) data if the

corresponding child in the tree is a leaf, or (b) the index of a data grid if the corresponding child is

another internal node.

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

The quadtree

The data poollookup point M

Figure 5.3: Lookup for point M in the octree

Now the tree is stored in the texture memory and we want to retrieve the value stored in the tree at a point

M ∈ [0, 1] × [0, 1] (see figure 5.3). Let ID = (IDx , IDy) be the index of the data grid of the node visited at

depth D. Let us also assign the root node I0 to be (0, 0). The tree lookup starts from the root and successively

visits the nodes containing the point M until a leaf is reached. To do so, at level D we need to read from the

data grid ID the value stored at the location corresponding to M which in turn requires the computation of the

41

Depth 0

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

+
M

Px =
I0x + frac(M.20)

Sx

Py =
I0y + frac(M.20)

Sy

Alpha=0.5, continue to next depth

I0 = (0,0) node A (root)

P

Depth 1

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0)
(2,0)

+
M

Px =
I1x + frac(M.21)

Sx

Py =
I1y + frac(M.21)

Sy

Alpha=0.5, continue to next depth

I1 = (1,0) node B

P

Depth 2

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

+ M
Px =

I2x + frac(M.22)

Sx

Py =
I2y + frac(M.22)

Sy

Alpha=1, RGB color is returned

I2 = (2,0) node C

P

Figure 5.4: At each step the value stored within the current node’s data grid is retrieved. If this value encodes
an index, the lookup continues to the next depth. Otherwise, the value is returned.

coordinates of M within the node.

At depth D a complete tree produces a regular grid of resolution 2D × 2D within the unit square (cube

in 3D). Each node of the tree at depth D corresponds to a cell of this grid. In particular M is within the cell

corresponding to the node visited at depthD. The coordinates ofM within this cell are given by frac(M · 2D).

These coordinates are used to read the value from the data grid ID. Thus, the lookup coordinates within the

data pool are thus computed as P = (Px, Py) where

Px =
IDx + frac(M · 2D)

Sx
, Py =

IDy + frac(M · 2D)
Sy

42

Here Sx and Sy denote the number of data grids along each row and column of the data pool respectively.

The RGBA value stored at P in the data pool is then retrieved. Depending on the alpha value, we will either

return the RGB color if the child is a leaf, or we will interpret the RGB values as the index of the child’s data

grid (ID+1) and continue to the next tree depth. Fig. 5.4 summarizes this entire process.

5.2.1 Problems

A potential problem with this implementation is that it is very difficult to create such a data representation in

parallel not only on the GPU but also on the CPU. For eg. if we look at Fig. 5.2 we see that the children of the

root node A are B and D. Now in the storage, B and D are not adjacent and C which is a child of B comes in

between. Thus, we do not know a priori the position where a particular node in the octree is going to land in

the texture.

Another important drawback is that same amount of memory is allocated for both leaves and internal nodes.

We know that in an octree all the data is stored only in the leaves. The internal nodes do not contain much

information. So allocating same memory space for a internal node and a leaf is not a clever idea.

5.3 Octree on the GPU

We looked at the currently existing implementation of the octrees on GPUs in previous section and we also

discussed some of the drawbacks of that implementation. In this section we present three possible parallel

octree implementations on the GPU which overcome those drawbacks. We also discuss the superiority of one

algorithm over the other while comparing them on the grounds of memory efficiency and running time.

5.3.1 Implementation 1: Non-Adaptive Octree using Direct Indexing [AGCA08]

INPUT: n points belonging to some 3-d domain, maximum resolution L of the octree to be constructed

OUTPUT: Octree represented using L arrays one for each level. The parent-child relationships are established

using direct indexing due to non-adaptive nature of memory allocated for each level.

Let the root in an octree denote level zero and let us consider quadtrees for understanding. The maximum

number of nodes at level k in an octree are 2kd where d is the dimension (d=2 for quadtree). Also assume that

we know the maximum level L upto which the particle space has been divided to generate the octree. Therefore,

we allocate L 2-dimensional arrays and each having size 2kd depending on its level to get the hierarchy for the

octree (see Figure 5.5). Thus, as far as the memory is concerned we allocate as much memory required for a

non-adaptive octree since we can’t do dynamic memory allocation on the GPU and we do not have any prior

knowledge of the number of nodes in a particular level. We’ll later see how to maintain the adaptive structure

43

information in the tree.

0 23-1

23-1

k=3

k=2

k=1

k=0

Figure 5.5: Hierarchy of cells in two dimensions. Gray cells indicate data.

The 2-D position of the parent of a node in the upper layer can directly be calculated from the 2-D position

of the child node. Along with the actual node data, within each node we also store the following fields:

nodeType {-1 for empty node, -2 for filled node i.e. node containing some data, -3 for filled internal node},

numEmptyNodes {number of empty nodes in the subtree of the node (including itself)} and dataLocation

{(level, 2-D position in that level)}.

T(0,1) T(1,1)

T(1,0)

T(0,0)

Figure 5.6: One pass of the algorithm. Threads are at level 1 and nodes at level 2

Please refer to the section 2.2 on CUDA to get an idea about the thread allocation on the GPU. We run

our algorithm in multiple passes considering two levels Li and Li−1; i = kmax, ..., 1 in each pass. In the first

44

pass we first allocate 2kd

4 threads on the GPU for the last level so that each thread can handle four nodes (see

Figure 5.6). These four nodes come one after the other in the SFC linerization of that level. Now each thread

checks the number of empty nodes among those four nodes.

• If all the nodes are empty then it sets the nodeType field of its parent to -1 and numEmptyNodes field to

the number of empty nodes in the subtree plus 1. The dataLocation field of the parent still remains null.

• If three nodes are empty, then it sets the nodeType of the non-empty node to -1 and in its parent it sets

numEmptyNodes to the number of empty nodes in the subtree plus 1, nodeType to the nodeType of

non-empty node and dataLocation to be the dataLocation in the non-empty node.

• In other cases, it just set the nodeType field of the parent to -3 and numEmptyNodes to the number of

empty nodes in the subtree.

The same procedure is repeated for the remaining levels to generate the complete octree. It is important to

note that the implementation is highly data parallel with zero communication between the GPU threads. The

pseudocode for this implementation is shown in algorithm 1.

Once the tree is constructed (see figure 5.7) we find the postorder traversal of the tree in parallel. Even

though our octree is adaptive but memory is allocated non-adaptively. This observation can be exploited to

directly calculate the postorder number of a node in O((2d − 1) log2d(2dk)) time for p threads, dimension d

and maximum level k. For a quadtree this turns out to be O(k).

Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is a first
step in many particle based
methods. In graphics, a triangular
element can be represented by its
centroid. In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is (, ,)

3. Allocate 8k threads . In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution)
are sorted, then we have
the correct order to
consider nodes in a
bottom up traversal
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up
octree construction is therefore
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell can be
computed independently
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child)

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core
CPU & nVidia 8800 GTS using CUDA [3]. GPU timings in charts
does not include data copy time from CPU to GPU.

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work

References

1. Sagan H. Space Filling Curves. Springer-Verilag, ‘94

2. Lefebvre S., Hornus S., and Neyret F. GPU Gems 2, chapter
Octree Textures on GPU, pages 595-614. Addison Wesley, ‘05

3. nVidia CUDA Programming Guide,developer.nvidia.com/cuda

4. Goradia R., Kanakanti A., Chandran S., and Datta A. Visibility
Map for Global Illumination in Point Clouds. In Procs. of
ACM SIGGRAPH GRAPHITE, pages 39-46. ‘07

2 /k

xP D

All are NULL nodes Node c1 has some data

p1

c1 c8

p8

c1 c8

pi

c1 c8

Leaf

Internal node

Empty node

Depth k

p1 p8

c1 c8

pi

c1 c8

R

Leaf

Internal node

Empty node

c2

Lookup number of
empty nodes before
c2 in this region

PONA = post order
number of c2 in notional
non-adaptive octree

Root

01 11

1000

0101 0111 1101 1111

0100 0110 1000 1110

0000 0010 1000 1010

0001 0011 1001 1011

0 1

0

1

00 01 10 11

00

01

10

11

y

x

1
3

2
4

9

5

8
7

6

10

{prekshu,rhushabh,sharat}@cse.iitb.ac.in
aluru@iastate.edu

Height: 5 6 7 8 9

GPU (ms) 0.27 0.31 0.316 0.321 0.354

CPU (ms) 0.152 0.891 9.59 80.05 467.4

0
100
200
300
400
500

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(2 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.068 0.087 1.181 2.106 3.123

CPU (ms) 0.353 2.687 22.622 192.063 1510.12

0

500

1000

1500

2000

T
im

e
 (

m
s
)

SFC CONSTRUCTION (2 Million Points)

Height: 7 8 9 10 11

GPU (ms) 0.319 0.331 0.369 0.481 0.605

CPU (ms) 10.01 83.1 489.42 1560.9 5244.17

0

2000

4000

6000

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(5 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.223 0.273 1.339 2.17 3.921

CPU (ms) 1.27 4.57 30.23 220.13 1613.9

0
500

1000
1500
2000

T
im

e
 (

m
s
)

POST ORDER OCTREE TRAVERSAL
(2 Million Points)

2 /k

yP D

Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

0 1

1

0 1

1

PONA NE

2 /k

zP D

Level=2

Level=1

Level=0

Figure 5.7: The constructed octree

To find out the postorder traversal, we first allocate threads on the GPU in such a way so that each node gets

exactly one thread. We define a kernel program which calculates the postorder number of a node in the adaptive

octree. Now each thread runs one kernel program on the node for which it is allocated. Lets say that we are

looking at a node N in level L and with 2-D id in that level converted to a 1-D id I . While calculating the

postorder number PONA (Post Order Non Adaptive) of a node in the non-adaptive tree, kernel also calculates

45

Algorithm 1 Bottom-up octree construction

1: d = 2 // for 2-D case
2: Initialize nodeType field of filled nodes in last level to -2 and -1 for empty nodes
3: Initialize numEmptyNodes field of filled nodes in last level to 0 and 1 for empty nodes
4: Initialize dataLocation field of filled nodes in last level to [2-D id, level] and NULL for empty nodes
5: for i = kmax to 1 do
6: Allocate a grid of 2(i−1)d threads
7: for all threads T (x, y) in parallel do
8: numEmpty = findNumEmpty(Li(2x, 2y), Li(2x+ 1, 2y), Li(2x, 2y + 1), Li(2x+ 1, 2y + 1))
9: if numEmpty == 4 then

10: Li−1(x,y).nodeType = −1
11: Li−1(x,y).numEmptyNodes = emptyNode1.numEmptyNodes + emptyNode2.numEmptyNodes +

emptyNode3.numEmptyNodes + emptyNode4.numEmptyNodes + 1;
12: else if numEmpty == 3 then
13: Li−1(x,y).nodeType = nonEmptyNode.nodeType
14: nonEmptyNode.nodeType = −1
15: nonEmptyNode.numEmptyNodes += 1
16: Li−1(x,y).numEmptyNodes = emptyNode1.numEmptyNodes + emptyNode2.numEmptyNodes +

emptyNode3.numEmptyNodes + nonEmptyNode.numEmptyNodes
17: Li−1(x,y).dataLocation = nonEmptyNode.dataLocation
18: else if numEmpty == 2 then
19: Li−1(x,y).nodeType = −3
20: Li−1(x,y).numEmptyNodes = emptyNode1.numEmptyNodes + emptyNode2.numEmptyNodes +

nonEmptyNode1.numEmptyNodes + nonEmptyNode2.numEmptyNodes
21: else
22: Li−1(x,y).nodeType = −3
23: Li−1(x,y).numEmptyNodes = emptyNode.numEmptyNodes + nonEmptyNode1.numEmptyNodes

+ nonEmptyNode2.numEmptyNodes + nonEmptyNode3.numEmptyNodes
24: end if
25: end for
26: end for

the number of empty nodes NE (Number of Empty) before the current node in the postorder numbering of

non-adaptive tree. Thus, the final postorder number of the node will be PONA−NE.

To calculate PONA we make use of a table structure (figures 5.8, 5.9) which for a node at level i in the

quadtree defines the number of elements in its subtree including itself. Use of such a table eliminates the

repeated calculatations of the number of elements in the subtree of a node, within each kernel. Now each thread

runs a loop that iterates from root to the level of the node in consideration. In the first iteration it determines

the number of children of root (and hence the number of nodes in their subtrees using table structure) before

the child in which current node is present. It also determines the number of empty nodes in the children of root

before the child in which current node is present. It then sets the child of root in which the node is present to

be the new root and repeats the same procedure. At the end of the loop it subtract NE from PONA to get the

final postorder number of the node. The pseudocode for postorder calculation is given in algorithm 2.

46

Maximum
level

Total number of
nodes in tree

0 1
1 5
2 21
3 85
4 341
5 1365
6 5461
… …

Figure 5.8: Table defining total number of nodes for trees of different height

Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is a first
step in many particle based
methods. In graphics, a triangular
element can be represented by its
centroid. In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is (, ,)

3. Allocate 8k threads . In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution)
are sorted, then we have
the correct order to
consider nodes in a
bottom up traversal
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up
octree construction is therefore
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell can be
computed independently
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child)

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core
CPU & nVidia 8800 GTS using CUDA [3]. GPU timings in charts
does not include data copy time from CPU to GPU.

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work

References

1. Sagan H. Space Filling Curves. Springer-Verilag, ‘94

2. Lefebvre S., Hornus S., and Neyret F. GPU Gems 2, chapter
Octree Textures on GPU, pages 595-614. Addison Wesley, ‘05

3. nVidia CUDA Programming Guide,developer.nvidia.com/cuda

4. Goradia R., Kanakanti A., Chandran S., and Datta A. Visibility
Map for Global Illumination in Point Clouds. In Procs. of
ACM SIGGRAPH GRAPHITE, pages 39-46. ‘07

2 /k

xP D

All are NULL nodes Node c1 has some data

p1

c1 c8

p8

c1 c8

pi

c1 c8

Leaf

Internal node

Empty node

Depth k

p1 p8

c1 c8

pi

c1 c8

R

Leaf

Internal node

Empty node

c2

Lookup number of
empty nodes before
c2 in this region

PONA = post order
number of c2 in notional
non-adaptive octree

Root

01 11

1000

0101 0111 1101 1111

0100 0110 1000 1110

0000 0010 1000 1010

0001 0011 1001 1011

0 1

0

1

00 01 10 11

00

01

10

11

y

x

1
3

2
4

9

5

8
7

6

10

{prekshu,rhushabh,sharat}@cse.iitb.ac.in
aluru@iastate.edu

Height: 5 6 7 8 9

GPU (ms) 0.27 0.31 0.316 0.321 0.354

CPU (ms) 0.152 0.891 9.59 80.05 467.4

0
100
200
300
400
500

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(2 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.068 0.087 1.181 2.106 3.123

CPU (ms) 0.353 2.687 22.622 192.063 1510.12

0

500

1000

1500

2000

T
im

e
 (

m
s
)

SFC CONSTRUCTION (2 Million Points)

Height: 7 8 9 10 11

GPU (ms) 0.319 0.331 0.369 0.481 0.605

CPU (ms) 10.01 83.1 489.42 1560.9 5244.17

0

2000

4000

6000

T
im

e
 (

m
s
)

OCTREE CONSTRUCTION
(5 Million Points)

Height: 5 6 7 8 9

GPU (ms) 0.223 0.273 1.339 2.17 3.921

CPU (ms) 1.27 4.57 30.23 220.13 1613.9

0
500

1000
1500
2000

T
im

e
 (

m
s
)

POST ORDER OCTREE TRAVERSAL
(2 Million Points)

2 /k

yP D

Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU

A

B

C

D

A(0,0) B(1,0) C(2,0) D(3,0)

(1,0)

(3,0) (2,0)

0 1

1

0 1

1

PONA NE

2 /k

zP D

Level=2

Level=1

Level=0

Figure 5.9: Calculation of Postorder number of a node

Algorithm 2 Postorder traversal
1: for all threads in parallel do
2: if node is not empty then
3: PONA = 0, k = Lmax

4: CL = 1, NE = 0, start = 0
5: while L > 0 do
6: NST = I/2d(L−1)

7: PONA += NST ∗ Table[k − 1]
8: for i = 0; i < NST ; i++ do
9: NE += Tree[CL][i+ start].numEmptyNodes

10: end for
11: I = I mod 2d(L−1)

12: L = L− 1, k = k − 1
13: CL = CL+ 1, start = (start+NST) ∗ 2d

14: end while
15: PONA += Table[k]− 1
16: NE += Tree[CL− 1][Iorig].numEmptyNodes
17: return PONA−NE
18: end if
19: end for

47

5.3.2 Implementation 2:
Parallel Memory Efficient Bottom-Up Adaptive Octree

1
100101
001100

2
100001
010100

3
100101
001101

4
SFC

Index

5
…

6
…

7
…

8
… Sort leaves on SFC

Remove Duplicates

1 3 4 6 8 7 2 5

1 3 4 6 8 7 2 5

n points Space for
n-1

internal
nodes

Array A (size = 2n-1)

……

Generate internal
nodes & sort

N1 N2 N3 N4 N5 N6 N7

Duplicates

1 3 4 6 8 7 2 5 N1 N2 N4 N5 N6 N7

N7

N4 N6

N1 4 N2 N5

1 3 6 8 7 52

• LCA copy generated from 1 and 3
• SFC index of 1 = 100101001100
• Location of 1 = 0
• Self SFC index = 100101001

Sort array B
based on SFC

1 3 4 6 8 7 2 5N1 N4 N2 N5 N6 N7

Establishing parent
child relationship

in array A

1 3 4 6 8 7 2 5N1 N2 N5 N6 N7CH2 CH1 N4

Final Octree in post-order

Sort on SFC to get post-ordered compressed octree

1 3 4 6 8 7 2 5N1 N4 N2 N5 N6 N7

(a)

(b)

(c)

(d)

(f)

(g)

(h)

(e)

(i) (j)

1 3 4 6 8 7 2 5N1 N4 N2 N5 N6 N7 N4 N2

Array B (size <= 4n-2)

N1 N1 N4 N7 N2 N6 N5

Original nodes from array A Copies of parent nodes
N5N5 N6 N7

1 3 4 6 8N1 N1 N4 N2 7 2 5 N6 N7N1 N2 N5 N5 N5 N5 N6 N6N4 N4 N2 N7 N7

N7

N4 N6

N1 CH1 N2 N5

1 3 6 8 7 52

4

CH2

(k)

Figure 5.10: Parallel Bottom Up Adaptive Octree Implementation

A major drawback in implementation one is that it works only for non adaptive octrees. This uniform

48

nature is responsible for the direct evaluation of the parent child relationship among nodes. Even if we store an

adaptive octree in this structure, we will end up wasting a large amount of memory corresponding to the empty

nodes. Note, that the GPU does not support dynamic memory allocation. So, the maximum number of nodes

(8l) at each level l > 0 are defined at compile time only.

Now we pay our attention to the four steps of the new parallel octree construction algorithm on the GPU.

We will first construct a compressed octree which will eventually be extended to octree. It performs data-

distribution independent clustering and is useful for N-body simulations.

5.3.2.1 Compressed Octrees

In an octree each node corresponds to a cell which encloses at least one particle. Now in the cell hierarchy it

may happen that a cell contains all its particles in a very small volume so that, its recursive subdivision may

result in just one cell containing the particles for a large number of steps. In terms of the octree, long chains

may form without any branching. Though the nodes along such a chain represent different volumes of the

underlying space, they do not contain any extra information. As such no information is lost if the chains are

compressed into a single node resulting in a compressed octree. Thus, a compressed octree is an octree without

chains.

However, the appeal of compressed octrees might appear largely theoritical since in practice chains in

octrees do not pose serious performance degradation in the run time or storage. But the properties of compressed

octrees enable design of elegant algorithms which can be extended to octrees, if necessary. Furthermore, since

the size of compressed octrees are distribution independent, they can be used to prove rigorous run-time bounds

which in turn can explain why octree based methods perform well in practice.

5.3.2.2 Constructing Compressed Octrees

To encapsulate the spatial information otherwise lost in the compression, two cells are stored in each node v

of a compressed octree, large cell L(v) of v and small cell S(v) of v. The large cell is defined as the largest

cell that encloses all and only the particles the node represents. Similarly, the small cell is the smallest cell that

encloses all and only the particles that the node represents. Note:

1. If a node (not leaf) is not a result of compression of a chain, then the large cell and the small cell of that

node are the same; otherwise, they are different. For a leaf, the small cell is the leaf itself and the large

cell may or may not be same as the small cell.

2. The large cell of a node is an immediate subcell of the small cell of its parent.

3. The small cell of a leaf containing a single particle is defined to be the hypothetical cell with zero length

containing the particle.

49

1 3

2
4

5

6
7

8

9
10

(a)

64 5

7 8 9

2 31

10

(b)

1 3

2
4

5

6
7

8

9
10

(c)

64 5

7 8

9

2 31

10

(d)

Figure 5.11: A 2D particle domain and corresponding quadtree and compressed quadtree

4. If the maximum resolution is specified, the small cell of a particle is defined to be the cell at the highest

resolution containing the particle.

Let us consider the octree division of space upto level k. We construct the compressed octree bottom-up

from leaves to the root. We first compute the root cell which is a cubical region (side length D) containing

all the particles. The origin of this region is at the bottom left corner such that all the particles have positive

coordinates in all the 3 dimensions. Thus,D is the maximum of all the coordinates in x, y and z directions taken

simultaneously, for all the particles. Next, for each particle, we compute the index of the leaf cell containing it,

50

which is the cell at resolution k containing the particle. Thus a particle P (Px, Py, Pz) will lie in the cell having

integer coordinates (b2kPx
D c, b

2kPy

D c, b
2kPz
D c) at level k. From the integer coordinates of the cell, the index can

be generated as mentioned in chapter 4.

Now we sort the leaf cells based in their indices using any optimal parallel sorting algorithm. This creates

the SFC-linearization of the leaf cells or the left to right order of leaves in the compressed octree. If multiple

particles fall in a leaf cell then duplication can be eliminated during parallel sort and the particles falling within

a leaf can be recorded. For convenience and without loss of generality, we assume that each point falls in a

different leaf cell, giving rise to a tree with n leaves. The tree is then incrementally constructed using this

sorted list of leaves starting from single node tree for the first leaf and the root cell. The pseudocode for tree

construction is given in algorithm 3.

Algorithm 3 Bottom-up compressed octree construction

1: Find the root cell and hence its side length D
2: For each particle, compute the index of the leaf cell containing it
3: Parallel sort the leaf indices to compute their SFC linearization
4: Create a single node tree rooted a v for the first leaf and root cell
5: while there are more leaves to insert do
6: q = next leaf
7: while q * L(v) do
8: v = parent(v)
9: end while

10: if q * S(v) then
11: Calculate the smallest subcell C of L(v) containing q and S(v)
12: Create a new node u between v and its parent
13: L(u) = L(v); S(u) = C
14: Set L(v) and L(q) to the corresponding immediate subcells of C
15: Make v and q children of u
16: else if q ⊆ S(v) and v not a leaf then
17: Set L(q) to the immediate subcell of S(v) containing q
18: Insert q as a child of v
19: end if
20: v = q
21: end while

During the insertion process, we keep track of the most recently inserted leaf. Let q be the next leaf to be

inserted. Starting from the most recently inserted leaf, traverse the path from leaf to the root until we find the

first node v such that q ⊆ L(v). Now two possibilities arise (see Figure 5.12):

1. q not in S(v): In this case q lies in the region L(v) − S(v), which was empty previously. Also, the

smallest cell containing q and S(v) is a subcell of L(v) and contains q and S(v) in different immediate

subcells. Thus, we create a new node u between v and its parent and insert a new child of u with q as

small cell.

51

2. q in S(v) and v not a leaf: Consider the current children of v. None of them has q in its large cell

because the node v is the first node on the path to the root which has q in its large cell. In other words, the

compressed octree presently does not contain a node that corresponds to the immediate subcell of S(v)

that contains q. Thus, we insert q as a child for v corresponding to this subcell.

5.3.3 Implementation details

During the compressed octree construction we need to calculate the smallest subcell C of L(v) containing q

and S(v) (line 11, algorithm 3). This is equivalent of finding the least common ancestor of two cells which may

or may not be at the same level in the octree. For the internal nodes of the compressed octree we store only the

small cell information, i.e. the coordinates of a corner and length of the cell. The large cell information can be

obtained by subdividing the small cell of the parent node.

L(v)

v

v1 v2 v3 v4

v

v1 v2 v3 v4

u

q

S(u)

L(v) L(q)
q

S(v)

(a)

S(v)

v

v1 v2

v

v1 v2 q

S(v)

L(v1) L(v2) L(v1) L(v2)

L(q)
q

(b)

Figure 5.12: Two cases of the compressed octree construction

Let us denote the small cell and large cell of a node or leaf by [A(x,y), CellWidth], where A is the corner

coordinate of the cell defined according to the axis scale at highest level k. The origin is at the bottom left

corner of the 2-D particle region in consideration. The pseudocode for finding the least common ancestor is

shown in algorithm 4. Note that the small cell of the leaf just added to the tree is the leaf itself.

The smallest subcell C of L(v) containing q and S(v) that we have found is actually the small cell S(u) of

52

Algorithm 4 Least common ancestor

Input: Two cells A and B at levels kA and kB and widths wA and wB
Pre condition: kA 6 kB
Output: Least common ancestor of A and B

1: while kA < kB do
2: wB = wB ∗ 2
3: B = [(Bx

2 ,
By

2), wB]
4: kB = kB − 1
5: end while
6: while A 6= B do
7: wA = wA ∗ 2
8: wB = wB ∗ 2
9: A = [(Ax

2 ,
Ay

2), wA]
10: B = [(Bx

2 ,
By

2), wB]
11: kB = kB − 1
12: end while
13: return [A,wA]

the newly created node u between v and its parent (line 13, algorithm 3). The large cells L(v) and L(q) are set

to the corresponding immediate subcells of C (line 14, algorithm 3).

A step-by-step construction of compressed octree from the octree shown in figure 5.11 is presented next.

Note that a cell is represented by its bottom left coordinate and its width. R denotes the root cell. Nodes are

inserted in the order 1, 2, 3, . . . , 9, 10.

6

7

8

5

1

3 4

2 9

10

0 2 4 6 8 10 12 14 16

16

14

12

10

8

6

4

2

INPUT: n points belonging to some 3-d domain

53

3 Є L(2), 3 Є L(u1), 3 Є S(u1)
Case 2

2 Є L(1), 2 Є S(1)
Case 1

1
L(1) = R
S(1) = (0,3), 1

1 2

u1

L(2) = (2,0), 2
S(2) = (3,1), 1

L(u1) = R
S(u1) = (0,0), 4

1 3

u1

L(3) = (2,2), 2
S(3) = (2,2), 1

L(u1) = R
S(u1) = (0,0), 4

2

1 3

u1 L(4) = (4,0), 4
S(4) = (7,2), 1

L(u2) = R
S(u2) = (0,0), 8

2

u2

4

1 3

u1 L(5) = (4,4), 4
S(5) = (6,5), 1

L(u2) = R
S(u2) = (0,0), 8

2

u2

54

(1) (2) (3)

(4) (5)

4 Є L(3), 4 Є L(u1), 4 Є S(u1)
Case 1

5 Є L(4), 5 Є L(u2), 5 Є S(u2)
Case 2

3 Є L(2), 3 Є L(u1), 3 Є S(u1)
Case 2

2 Є L(1), 2 Є S(1)
Case 1

1
L(1) = R
S(1) = (0,3), 1

1 2

u1

L(2) = (2,0), 2
S(2) = (3,1), 1

L(u1) = R
S(u1) = (0,0), 4

1 3

u1

L(3) = (2,2), 2
S(3) = (2,2), 1

L(u1) = R
S(u1) = (0,0), 4

2

1 3

u1 L(4) = (4,0), 4
S(4) = (7,2), 1

L(u2) = R
S(u2) = (0,0), 8

2

u2

4

1 3

u1 L(5) = (4,4), 4
S(5) = (6,5), 1

L(u2) = R
S(u2) = (0,0), 8

2

u2

54

(1) (2) (3)

(4) (5)

4 Є L(3), 4 Є L(u1), 4 Є S(u1)
Case 1

5 Є L(4), 5 Є L(u2), 5 Є S(u2)
Case 2

1 3

u1
L(6) = (0,8), 8
S(6) = (1,10), 1

L(u3) = R
S(u3) = R

2

u2

54

(6)

6

u3

1 3

u1

L(7) = (4,8), 4
S(7) = (4,9), 12

u2

54

(7)

u3

u4

6 7

L(u4) = R
S(u4) = R

1 3

u1

L(8) = (5,8), 1
S(8) = (5,8), 1

2

u2

54

(8)

u3

u4

6

L(u4) = (0,8), 8
S(u4) = (0,8), 8

7 8

u5

L(u5) = (4,8), 4
S(u5) = (4,8), 2

L(u3) = R
S(u3) = R

6 Є L(5), 6 Є L(u2), 6 Є S(u2)
Case 1

7 Є L(6), 7 Є S(6)
Case 1

8 Є L(7), 8 Є S(7)
Case 1

OUTPUT: Octree represented in post-order with parent-child relationships established.

PROBLEM SETTING: For brevity we assume that the data of interest is available as points in a domain. For

eg., these could be the points belonging to some 3-D point model of say, a Stanford bunny, or might represent

centroids of triangular patches of some 3-D mesh. We make no assumption on the number of points in the

54

1 3

u1
L(6) = (0,8), 8
S(6) = (1,10), 1

L(u3) = R
S(u3) = R

2

u2

54

(6)

6

u3

1 3

u1

L(7) = (4,8), 4
S(7) = (4,9), 12

u2

54

(7)

u3

u4

6 7

L(u4) = R
S(u4) = R

1 3

u1

L(8) = (5,8), 1
S(8) = (5,8), 1

2

u2

54

(8)

u3

u4

6

L(u4) = (0,8), 8
S(u4) = (0,8), 8

7 8

u5

L(u5) = (4,8), 4
S(u5) = (4,8), 2

L(u3) = R
S(u3) = R

6 Є L(5), 6 Є L(u2), 6 Є S(u2)
Case 1

7 Є L(6), 7 Є S(6)
Case 1

8 Є L(7), 8 Є S(7)
Case 1

1 3

u1

2

u2

54

(9)

u3

u4

6

7 8

u5

L(9) = (8,0), 8
S(9) = (14,1), 1

9

L(u3) = R
S(u3) = R

9 Є L(8), 9 Є L(u5), 9 Є L(u4), 9 Є L(u3), 9 Є S(u3)
Case 2

1 3

u1

2

u2

54

(10)

u3

u4

6

7 8

u5

10 Є L(9), 10 Є S(9)
Case 1

9

u6

10

model. However, memory limitations of the GPU might possibly result in multiple points within a cell.

55

Before heading on, here are some of the intuitions behind the algorithm design.

1. BOTTOM-UP TRAVERSAL: Since every internal node in an octree has leaves in its subtree, given the

leaves we can somehow decode this hierarchical inheritance information and generate the internal nodes.

2. PARALLEL STRATEGY: Each internal node can be considered as a Least Common Ancestor (LCA) of a

particular leaf pair (in a compressed octree). Thus, given the leaves, generation of internal nodes can be

parallelized since each of them can be generated independently from a leaf pair. Many leaf pairs might

have the same LCA node resulting in duplicates which can be easily detected and removed.

3. Parent-Child relationship can be established and octrees can be generated from a given compressed octree

using SFC indices across multiple levels.

The algorithm, with the help of Fig. 5.10, along with the implementation details is presented next.

1. CONSTRUCTING LEAVES

(a) Read n points in the first n locations of an array A of size 2n − 1. As shown in Fig. 5.10(a), we

have 8 input points in this example.

(b) Assuming a point per leaf, for every point, in parallel, do

i. Generate the 3D co-ordinate of leaf cell to which it belongs (see ch. 4).

ii. Generate SFC index (see ch. 4) for the leaf cell as shown in Fig. 5.10(a). For in-depth parallel

GPU based SFC construction algorithm, please refer [AGCA08].

(c) Sort [CUDb] the first n elements of arrayA, in parallel, based on SFC indices of leaves (Fig. 5.10(b)).

2. GENERATING INTERNAL NODES AND POST ORDER: In Parallel, for every adjacent leaves, find their

LCA using the common bits (multiple of 3) in their SFC indices. For eg. say adjacent leaves L1 and

L2 have their SFC indices as 100 101 1100 10 and 100 101 100 001 respectively, then the LCA is the

internal node having SFC index 100 101

(a) Allocate n− 1 GPU threads.

(b) For every two adjacent leaves (say at locations i and i + 1) in array A, in parallel, generate the

internal node and store it at location n+ i in array A (Fig. 5.10(c)).

(c) Sort [CUDb], in parallel, the internal nodes generated, across levels based on their SFC indices. To

do the same, we need to establish a total order on the cells across levels. If one is contained in the

56

C

A B

A B … C
PostOrder

C

A N

A B N
PostOrder

B

C

B

A

A B…..

PostOrder

… …

(a) (b) (c)

Figure 5.13: Computing Parent and Child

other, the subcell is taken to precede the supercell; if they are disjoint, they are ordered according

to the order of the immediate subcells of the smallest supercell enclosing them. Fig. 5.10(c) shows

sorted internal nodes with duplicates (N2 and N3) which might be generated.

(d) Allocate n− 2 threads for a maximum of n− 2 consecutive internal node pairs in the later half of

array A to remove the duplicates.

(e) For every two adjacent internal nodes not having same SFC indices, in parallel, traverse back in

the later half of array A starting from the current node to look for its duplicates and eliminate them

(Remove node N3 as shown in Fig. 5.10(d)).

(f) Sort array A, in parallel, based on SFC indices across levels to get the postorder traversal of a

compressed octree (see ch. 4) (Fig. 5.10(e)).

Here we note that there might be some empty elements at the end of array A after sorting (the gray

shaded area in Fig. 5.10(e)). We can not avoid this situation since CUDA does not support dynamic

memory allocation and deallocation. So, an array of maximum required size (2n− 1) has to be declared

at compile time only.

3. PARENT-CHILD RELATIONSHIP: The compresed octree represented by this post-ordered array A is

shown in Fig. 5.10(f). The tree is shown only for the purpose of illustration as the parent-child rela-

tionships are still not established. To generate the parent-child relationship in the compressed octree,

an intuition would be since the tree is in the post order fashion, a LCA of every two adjacent nodes

would definitely be the parent of the first node in the pair considered. Three possible cases are shown in

Fig. 5.13.

Fig. 5.13(a) shows a case where both nodes A and B are siblings. Hence the LCA is the parent of A i.e.

C. Fig. 5.13(b) is a case where B is the first node in the post-order fashion in the subtree of the node

57

N , adjacent to A. Again their LCA i.e. C is the parent of A. Third case shown in Fig. 5.13(c) is where,

given two adjacent nodes in post-order fashion, node B is the parent of A. Hence their LCA is B.

Thus, considering every two adjacent nodes in post-ordered compressed octree, and generating their LCA

gives us the SFC index of the parent of the first node in the pair, thereby establishing the parent-child

relationship. Here are the implementation steps (Refer Fig. 5.10(g)) performed on GPU.

(a) Allocate an arrayB twice the size of the number of leaves and internal nodes (atmost 4n−2). Copy

the first half of array B with the current post-ordered array A of leaves and nodes.

(b) Allocate threads one less than the (NumberOfLeaves+ InternalNodes).

(c) For every two adjacent nodes in the first half of array B, in parallel, do

i. Generate the LCA from the SFC indices.

ii. Copy the new node (copy of the parent of the first node in the pair considered) into the corre-

sponding location in second half of the array B. (Generated copies of the nodes are shown in

green in Fig. 5.10(g)).

iii. Write in this new node, the SFC index of the first node of the node-pair which generated it,

along with the location of that node in array A. This location information will eventually give

the index of the child this parent node-copy was generated from. Fig. 5.10(g) shows an example

of the same. We expand the copy-node N1 (in black) generated by leaves 1 and 3 (both shaded

in black) and show the information it stores (Information box shaded in orange).

(d) Sort array B, in parallel based on newly generated SFC indices. All the parents and their copies

will come together (Fig. 5.10(h)).

(e) For every two adjacent nodes both having same SFC indices and atleast one of them not being a

generated copy, in parallel, do

i. Establish the parent-child relationship. Here we see that one of the nodes is the original node

and another is its copy (generated in step 3(c)ii). The copy will give the location of the child in

arrayAwhile we get the location of the parent from the original (Fig. 5.10(g) and Fig. 5.10(h)).

ii. Scan ahead in array B and repeat step 3(e)i for all the copies of the original to establish the

relationship between the parent and all its children. Step 3(e)i will be repeated atmost 7 times

since in an octree, a parent can have atmost 8 children. Referring Fig. 5.10(h) and Fig. 5.10(i),

step 3(e)i will be repeated twice for N1 since we have two generated copies (and hence two

children) of it. Similarly step 3(e)i will be repeated twice for N4, N2, N6 and N7 while thrice

for N5 since it has 3 children.

58

B

A

100

100 110 010 011

B

A

100

100 110 010 011

N1

N2

100 110

100 110 010

Figure 5.14: Compressed Octree to Octree

4. GENERATING OCTREE FROM COMPRESSED OCTREE

We now move on to the final step of our algorithm where we need to generate octree from compressed oc-

tree. Consider two adjacent nodes, say A and B with A being the child of B, and calculate the difference

of octree depths between the two using their SFC indices, and finally add those many intermediate nodes

in the chain between A and B. For eg. if A and B have SFC indices as 100 110 010 011 and 100, then

the level difference is 3 (B is at depth 1 while A at depth 4, assuming root at depth 0).

This difference indicates a chain of nodes between A and B which are missing in the compressed octree,

as shown in Fig. 5.14. This chain can now easily be generated, thereby giving us the final octree. The

implementation steps are summarized next.

(a) Allocate threads equal to size of current array A i.e. (no. of leaves + no. of internal nodes). Array

is in post-order fashion.

(b) For every two adjacent nodes with first node in the pair being a child of the second, in parallel,

write the level difference (level of first - level of second - 1) in the first node. This level difference

gives us the count of memory needed between these two nodes.

(c) Do parallel prefix [CUDb] on level differences in A to get the total amount of memory needed to

insert the internal nodes so as to make an octree (due to no support for dynamic memory allocation).

While doing parallel prefix, keep track of number of nodes to be inserted before the current one, so

that the index or the array location for the new node to be inserted can directly be identified.

(d) Allocate required memory for new nodes.

(e) Allocate threads equal to the size of current array A minus 1.

(f) In parallel, check for every node having a level difference greater than 1 with its parent, and gener-

ate new nodes to be inserted after the current node. Write them in the array location decided in step

4(c) above. As shown in Fig. 5.10(j), we add two chain nodes CH1 and CH2 between N4 and 4 to

get a complete octree as shown in Fig. 5.10(k).

59

DISCUSSION: Maximum memory required for implementation is just 4n− 2 for storing array B. It is far less

than occupied by octree implementation in [AGCA08] (Implementation 1). This implementation is slightly

slower than one presented in [AGCA08] (Implementation 1). However, the advantage we gain due to high

memory saving out-peforms the timing comparisions between them. Further, we easily win against the same

algorithm implemented on the CPU. It is a nicely load-balanced algorithm as each thread does almost the same

amount of computations through out the algorithm. Here are some example queries our octree supports and

solution for the same.

• PARALLEL POST-ORDER TRAVERSAL: Since our output is in post-ordered form, this query is implicitly

answered.

• PARENT-CHILD RELATIONSHIP: For dimension d and level l, if dl is the number of bits in the SFC

index representing child C1, then the parent can be directly given by its first d(l − 1) bits.

• GIVEN A POINT (Px, Py, Pz), FIND WHICH NODE IT BELONGS TO: The co-ordinates of the desired

node are (b2kPx/Dc, b2kPy/Dc, b2kPz/Dc), where k is the number of times the space has been bi-

sected and D is the sidelength of space enclosing all points in the model.

• IS NODE C1 CONTAINED IN NODE C2? C1 is contained in C2 if and only if the SFC value of C2 is a

prefix of the SFC value of C1

• GIVEN C2 AS A DESCENDANT OF C1, RETURN CHILD OF C1 CONTAINING C2 For dimension d and

level l , dl is the number of bits representing C1.The required child is given by the first d(l + 1) bits of

C2.

• LEAST COMMON ANCESTOR OF NODES C1 AND C2: The longest common prefix of the SFC values of

C1 and C2 which is a multiple of dimension d gives us the least common ancestor.

Many other such basic queries (like Neighbor Finding, Leaves in a node’s sub-tree etc.) can be supported.

60

5.3.4 Implementation 3:
Parallel Memory Efficient Top-Down Adaptive Octree

We now look at a new and quite a different way to generate an octree in parallel. The problem setting is same

as that in § 5.3.2 but as opposed to algorithm of §5.3.2, this is a top-down parallel adaptive octree generation

algorithm. The intuition behind this algorithm is to iteratively cluster the points belonging to the same node

together, starting from the root till we construct the leaves. As each cluster generation is independent of the

other, on each iteration, the cluster generation process can be parallelized. An example to explain the same is

shown in Fig. 5.15.

In this section we present another octree construction algorithm on the GPU that we implemented us-

ing the latest NVIDIA GPUs featuring support for atomic operations like atomic add/substract, atomic incre-

ment/decrement, atomic max/min etc [CUDa]. An operation is atomic in the sense that it is guaranteed to be

performed without interference from other threads. These GPUs have G92 architecture as compared to the G80

architecture (no support for atomic operations) on which we have done other implementations. This algorithm

is easy to understand and implement.

PROBLEM SETTING: We now look at a new and quite a different way to generate an octree in parallel. The

problem setting is same as that in implementation 2 (see sec. 5.3.2) but as opposed to implementation 2, this is

a top-down parallel adaptive octree generation algorithm. The intuition behind this algorithm is to iteratively

cluster the points belonging to the same node together, starting from the root till we stop on constructing the

leaves. As each cluster is independent of the other, on each iteration, the cluster generation process can be

parallelized. An example to explain the same is shown in Fig. 5.15.

4 11

6
5

9

7

1

8

10

2

3

12

1 2 3 4 5 6 7 8 9 10 11 12

N

4 11

6
5

9

7

1

8

10

2

3

12

1 3 8 7 9 4 5 6 11 2 10 12

N1 N2 N3 N4

4 11

6
5

9

7

1

8

10

2

3

12

3 1 8 7 9 4 11 5 6 10 12 2

N13 N2 N33 N42N14 N34 N43 N44

(a) (b) (c)

N1

N3 N4

N2

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.15: Spatial Clustering of Points

61

Here in Fig. 5.15(a), we see an array of points enclosed in some space. We now try to cluster these points based

on their locations with respect to nodes of the octree. Assume the space enclosing the points to be the root of

the octree. We now divide the root into its children as shown in Fig. 5.15(b). Here we see that points 1, 3, 8

belong to child N1 of root, points 7, 9 belong to child N2 and so on. Hence we swap these points accordingly

in the array (Implementation fact: we swap the pointers, not the actual data) so that they cluster together as

shown in Fig. 5.15(b). We iteratively repeat this process till we have less than some pre-defined points (2 as

in Fig. 5.15) in a node and term it as a leaf. Fig. 5.15(c) shows this recursion and the final point array after all

the swaps. The octree nodes generated now just need to store the start and end bounds defining their cluster of

points in the point array. For eg., node N1, as shown in Fig. 5.15, stores its start bound as array location 0 and

end bound as 2, while node N4 stores them as 9 and end bound as 11. Further, node N34, child on N3, stores

bounds as 7 and 8 and so on for all the nodes.

This intuition on building the octree can easily be extended to a parallel algorithm. As we can see, we

move down level by level. Thus, on every iteration, we swap the points and create new partitions in the point

array. An important thing to note is that all these partitions can be generated independently of one another

and thus can be parallelized. Hence, initially for the root we have a single thread generating 8 new partitions

corresponding to 8 of its children. We then have maximum of 8 threads generating maximum of 64 new parti-

tions corresponding to 64 grand-children on the root (maximum of 8 because some nodes might turn to leaves

and won’t be divided further and their thread stops); then maximum of 64 threads and so on. The degree of

parallelism increases as we move down to the greater depths of the octree generation process.

Having got a brief overview, we now present the algorithm with some implementation details.

1
8

Partition X-axis

3

2

5

4
7

6

1
8

Partition Y-axis

3

2

5

4
7

6

1 3 6 7 8 2 4 5 1 3 8 6 7 2 5 4

y

x

(a) (b)

Figure 5.16: Spatial Clustering of Points

INPUT: n points belonging to some 3-d domain

OUTPUT: Octree with parent-child relationships established

62

1. Read points in an array P of size n.

2. Initialize the root node of the octree as containing all points of P . Set the bounds defining cluster of

points belonging to the root as 0 and n− 1.

3. Now loop on current step

(a) Allocate threads equal to the number of partitions. (Num Threads = 1 initially for the root and

then increases as we iterate)

(b) For every thread, in parallel, do

i. STOP the thread if the current partition is a leaf.

ii. ELSE, create 8 new partitions and 8 new octree nodes. Record the respective partition bounds

in the nodes created. To create 8 new partitions, we first divide the current partition along the

longest axis (x, y or z) and swap the points belonging to one side of the partition with another

as shown in Fig. 5.16(a). We then repeat the same process and divide the 2 new partitions

along the second longest axis, as in Fig. 5.16(b), and finally along the third. For purpose of

illustration, we have shown partitioning a quadtree instead of an octree.

(c) STOP the loop when every thread running encounters a leaf and hence no new partitions are gener-

ated.

Here are some of the implementation details.

1. MEMORY ALLOCATION: Every iteration of the algorithm creates many new partitions and octree nodes.

We need to allocate memory to store this newly generated information. The problem arises here because

GPU doesn’t allow for dynamic memory allocation. One way to get around this is to allocate maximum

possible memory. But this eventually leads to storing the whole tree (80 + 81 + 82 + ...+ 8l) till level l,

and there by wasting a huge amount of memory [AGCA08].

A better solution is to pre-compute, in the current iteration, the number of nodes which will be generated

at the next iteration. We can thus allocate only the desired memory before the next iteration starts.

This can be achieved by setting a global Num Leaves variable. This will be used to count the leaves

which are formed in the current iteration and hence these won’t be partitioned further. Every thread,

after creating the partitions, checks whether any of the 8 partitions is a leaf or not. If YES (For eg. 2

of the 8 are leaves) it increments the global Num Leaves variable by those many leaf-counts (For eg.

Num Leaves+=2). We use atomic increments available in latest G92 architechture of GPU so that every

thread increments it by a desired amount and the final outcome is the total number of leaves at current

63

level. The new global memory allocated then would be (Nodes at current level - Num Leaves)*8. 8 here

refers to the 8 new partitions generated by each thread.

2. INDEXING MECHANISM: We know that the partitions generated by the iteration will be partitioned

further in the next iteration, provided they don’t represent a leaf. Thus, there might be threads in between

which are stopped as they represent a leaf. Hence, a proper indexing and offset mechanism must be

installed so that the threads know where to write the new partitions in the global array, as shown in

Fig. 5.17.

17 2 2 4 7 7 6 5

leaf1 leaf2

17 19 21 25 32 39 45 50(a)

(b)
points per
partition

point
partitioning

Figure 5.17: Partition Array of a Node

We have a Noden with say 50 points. Let Node1, Node2, . . .Node8 be the children of Noden. As in

Fig. 5.17, points 1−17 belong toNode1, 18−19 toNode2 and so on. Let us assume that a leaf is formed

when the node has 3 or less points. Thus Node2 and Node3 are leaf nodes. Hence the memory allocated

for next iteration is (8 − 2) ∗ 8 = 48 for 48 new partitions. So thread1 will write its 8 partitions at

locations 1− 8, thread2 at 9− 16 and so on. But since Node2 and Node3 are leaves, thread4 will now

write the new partitions at locations where thread2 was suppose to write i.e. 9 − 16 and the remaining

threads will follow the offset. So every node must know how many leaves are present before itself in the

array. One can find this using a simple parallel prefix sum [CUDb] on the array.

Thus, the new location to write new partitions is, say for node A is (original location to write - 8*Number

of leaves before A). This gives a unique indexing for every thread and memory is allocated only as much

as desired.

3. PARENT-CHILD: This relationship is established while partitioning itself as every child partition is gen-

erated from its parent, thereby giving us our desired octree.

DISCUSSION: Maximum memory required for implementation is just equal to storing non-empty octree nodes,

very less compared to [AGCA08] (Implementation 1). However, it looses w.r.t time when compared to [AGCA08]

but is very fast compared to the CPU implementation. As it performs data-dependent clustering, it generates

a different octree compared to our first implementation. Example application areas include color quantiza-

tion, collision detection, visibility determination. Thus they have different application areas and hence we dont

compare them against each other. Parent-Child, containment, range, and neighbor-finding are some example

queries which it can answer.

64

5.3.5 Comparison between Implementation 1 and Implementations 2/3

Implementation 1 requires much more memory as compared to implementations 2 and 3. If the tree is highly

adaptive and have larger number of levels (say 12-15) then in implementation 1 we end up in allocating a large

amount of memory (8l for each level l) most of which remain unused as long as the octree is present on the

GPU. Thus, a lot of device memory is wasted. Moreover, implementation 1 suffers from the problem of bank

conflict since at a single instance many threads may try to read the same memory location in the tree. This, can

hurt the overall performance. Thus, implementation 1 is not of much interest on current GPUs. however with

future GPUs supporting huge memories, it can be a prospect since it provides the fastest of the answers.

5.3.6 GPU Optimizations

To improve the GPU kernel’s performance in implementations 2 and 3, we utilize several optimization tech-

niques enlisted below.

1. LOOP UNROLLING: Loop unrolling achieves a modest speedup compared to our initial implementation.

We found that especially the loops with global memory accesses (as it is the case in our algorithm) in

them benefit a lot from unrolling.

2. OPTIMAL THREAD AND BLOCK SIZE: Each thread block must contains 128 − 256 threads and every

thread block grid no less than 64 blocks for a 16 multiprocessor configuration for optimal performance,

which was obtained via an empirical study. We made sure this was achieved. If the number of nodes at a

level is not a divisor of the block size, only the remaining number of threads is employed for computations

of the last block.

3. OPTIMAL OCTREE DEPTHS: The efficiency of both our kernels (I2 in implementation 2 and I3 in

implementation 3) is substantial as, in the former, we have every thread working only on two adjacent

nodes most of the times while in the latter every thread works on an independent partition. The advantage

achieved is that the work of each thread is completely independent eliminating the need for any shared

memory. This perfectly fits our situation where each thread (in any of the two implementations) on

finishing its work or on making an early exit (say by encountering a leaf) simply moves on to next pair

of adjacent nodes for I2 or a new partition for I3, without the need for synchronizing with other threads.

Note that to realize the full GPU load the number of nodes to be considered should be sufficiently large.

Indeed, if an optimal thread block size is 128 and there are 16 multiprocessors (so we need at least 64

blocks of threads to realize an optimal GPU load), then the number of nodes should be at least 8192 for

a good performance. Thus, we realize a full GPU load for I2 at even a small enough point model (of size

8192, and assuming a point per leaf). On the other hand, for I3, if the octree is built till depth 4, we have

65

at most 84 = 4096 leaves and for depth 5 this number becomes 85 = 32768. Thus, GPU works to its full

potential at a small enough octree depths and the efficiency increases as we move down to greater depths

(> 6). GPU totally out-performs the CPU for depths > 6.

5.4 Results

In this section we compare our implementation of octree on the GPU with the corresponding implementation

on the CPU based on running time. We use 3-d points models of bunny and Ganesha in a Cornell room as

inputs to create the octree.

GPU

CPU0

2000

4000

6000

8000

5
6

7
8

9

GPU

CPU

Bunny (124531 points)

Tree level GPU (ms) CPU (ms)
5 1001 993

6 1231 1421

7 1742 2521

8 2117 3981
9 2323 7851

Figure 5.18: Top-Down Octree Construction (Bunny 124531 points) (sec. 5.3.4)

GPU

CPU0

2000

4000

6000

8000

10000

5 6
7

8
9

GPU

CPU

Ganpati (165646 points)

Tree level GPU (ms) CPU (ms)
5 1321 1200
6 1536 1981
7 2009 2997
8 2654 4521
9 3658 8001

Figure 5.19: Top-Down Octree Construction (Ganpati 165646 points) (sec. 5.3.4)

We see that the GPU outperforms the CPU at higher levels. We implemented the top-down GPU-based

parallel octree construction algorithm using the latest NVIDIA GPUs featuring support for atomic operations

like atomic increment/decrement etc. These GPUs have G92 architecture. The machine used has a Intel Core

2 Duo 1.86 GHz with 2 Gbs of RAM, NVIDIA Quadro FX 3700 with 512 Mbs of memory and Fedora Core 7

(x86 64) installed on it.

66

Chapter 6

View Independent Visibility using V-map
on GPU

In point-based graphics [DTG00, KTB07, GD98, MGPG04], a scene represented as points is to be rendered

from various viewpoints keeping global illumination in mind [DYN04]. That is, a point may be illuminated

by other points, which in turn are illuminated by still other points, and so on. Inter-reflections in such scenes

requires knowledge of visibility between point pairs. Computing visibility for points is all the more difficult (as

compared to polygonal models), since we do not have any surface or object information. The visibility function

is highly discontinuous and, like the BRDF, does not easily lend itself to an analytical FMM formulation. Thus

the nature of this computation is θ(n2) for n primitives, which depends on the geometry of the scene. A

visibility preprocessing step for finding view independent mutual point-pair visibility is useful before the costly

rendering equation is solved. The visibility map (V-map) data structure (see sec. 6.3) was introduced for this

purpose. The basic idea here is to partition the points in the form of an octree. When large portions of a scene

are mutually visible from other portions, a visibility link is set so that groups of points (instead of single points)

may be considered in discovering the precise geometry-dependent illumination interaction. Ray shooting and

visibility queries can also be answered in sub-linear time using this data structure.

6.1 Prior Work: CPU-based V-map Construction [Gor07]

We, in this section, present the CPU-based mutual point-pair visibility algorithm (Section 6.1.2) for Point Based

Models. We further extend this algorithm to an efficient hierarchical algorithm (implemented using Octrees)

to compute mutual visibility between points, represented in the form of a visibility map(V-Map). Thus the key

features are twofold. First, we have a basic point-to-point visibility function that might be useful in its own

right. Second, we have a hierarchical version for aggregated point clouds.

67

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

LEVEL 3
(LEAF)

LEVEL 2

LEVEL 1

LEVEL 0
(ROOT)

With respect to at any level,

−− PARTIALLY VISIBLE

−− COMPLETELY INVISIBLE

−− COMPLETELY VISIBLE

Figure 6.1: Views of the visibility map (with respect to the hatched node in red) is shown. Every point in the
hatched node at the first level is completely visible from every point in only one node (the extreme one). At
level 2, there are two such nodes. The Figure on the left shows that at the lowest level, there are three visible
leaves for the (extreme) hatched node; on the other hand the Figure on the right shows that there are only two
such visible leaves, for the second son (hatched node). The Figure also shows invisible nodes that are connected
with dotted lines. For example, at level 1, there is one (green) node G such that no point in G is visible to any
point in the hatched node. Finally the dashed lines shows “partially visible” nodes which need to be expanded.
Partial and invisible nodes are not explicitly stored in the visibility map since they can be deduced.

6.1.1 Visibility Maps

The construction of the visibility map starts assuming a hierarchy is given. For the purpose of illustration of our

method, we use the standard regular octree-based subdivision of space. Figure 6.2 shows a two dimensional

version to illustrate the terminology.

The visibility map for a tree is a collection of visibility links for every node in the tree. The visibility link

for any node p is a list L of nodes; every point in any node in L is guaranteed to be visible from every point in

p. Figure 6.1 provides different views of the visibility map. (The illustration shows directed links for clarity; in

fact, the links are bidirectional.)

Visibility maps entertain efficient answers to the following queries.

1. Is point x visible to point y? The answer may well be, “Yes, and, by the way, there are a whole bunch of

other points near y that are also visible.” This leads to the next query.

68

Level 1

Level 2

Level 3

Level 0

Figure 6.2: Leaf nodes (or cells, or voxels) are at level three.

2. What is the visibility status of u points around x with respect to v points around y? An immediate way

of answer this question is to repeat a “primitive” point-point visibility query uv times. With a visibility

map, based on the scene, the answer is obtained more efficiently with O(1) point-point visibility queries.

3. Given a point x and a ray R, determine the first object of intersection.

4. Is point x in the shadow (umbra) of a light source?

All the above queries are done with a simple traversal of the octree. For example for the third query, we traverse

the root to leaf O(log n) nodes on which x lies. For any such node p, we check if R intersects any node pi in

the visibility link of p. A success here enables easy answer to the desired query.

We first explain the modified point–pair visibility algorithm in subsection 6.1.2 and follow it up by extend-

ing it to construct the V-Maps in the most efficient manner in subsection 6.1.4.

6.1.2 Point–Pair Visibility Algorithm

Since our input data set is a point model with no connectivity information, we don’t have knowledge of any

intervening surfaces occluding a pair of points. Theoretically, it is therefore impossible to determine exact

visibility but only approximate visibility. Albeit, for practical purposes we restrict ourself to boolean visibility

(0 or 1) based on results of the following visibility tests. This algorithm is motivated by work done in [DTG00].

Consider two points p and q with normals np & nq as in Figure 6.3. We run the following tests to efficiently

produce O(1) possible occluders.

69

n

x2
n

n
n

n

2

3

np

q

x5

4

5

p

q

x3

x4

>R

R

x1n1

Figure 6.3: Only x2 and x3 will be considered as occluders. We reject x1 as the intersection point of the
tangent plane lies outside segment pq, x4 because it is more than a distance R away from pq, and x5 as its
tangent plane is parallel to pq.

1. Cull backfacing surfaces not satisfying the constraint np · pq > 0 and nq · qp > 0

2. Determine the possible occluder set X, of points close to pq which can possibly affect their visibility. As

an example, in Figure 6.3, points (x1, x2, x3, x4, x5) ∈X . An efficient way to obtainX is to start with the

output of a 3D Bresenham line segment algorithm [E.62] between p and q. Bresenhams algorithm will

output a set Y of points which are co-linear with and between p and q. Using the hierarchical structure,

add to X , all points from the leaves containing any point from Y .

3. Prune X further by applying a variety of tangent plane intersection tests as shown in Figure 6.3.

Any point from X which fails any of the tangent tests is considered an occluder to pq. If we find K such

occluders, q is considered invisible to p.

Elimination of thresholds as compared to previous point–pair visibility approach [Gor06] simplifies the tasks

for the user and also helps in achieving better results. Also, the bresenham’s algorithm used, gives us an efficient

way to find the potential occluders between given point–pair, thereby providing us with necessary speedups.

6.1.3 Octree Depth Considerations

In a hierarchical setting, and for sake of efficiency, we may terminate the hierarchy to some level with several

points in a leaf. A simple extension of our point–pair visibility algorithm to a leaf–pair would be to compute

visibility between their centroids (p and q, Figure 6.3). Set X now comprises of centroids, each corresponding

to a intersecting leaf (ILF). Our occlusion criteria is then:

70

c1

c2

cZ

(a) A potential occluding set of voxels
are generated given centroids c1 and
c2. The dotted voxel contains no point
and is dropped. cZ3

c1

c2

c1

c2

cZ4

(b) cZ3 is rejected because the tangent
plane is parallel to c1c2. Similarly, we
reject cZ4 as the intersection point of
the tangent plane lies outside the line
segment.

c1

c2

c1

c2

cZ1
cZ2

(c) cZ2 is rejected because the line
segment c1c2 doesn’t intersect the tan-
gent plane within a circle of radius de-
termined by the farthest point from the
centroid. Only cZ1 is considered as a
potential occluder.

Figure 6.4: Point-Point visibility is obtained by performing a number of tests. Now its extended to Leaf-Leaf
visibility

• If the ILF contains no point, it is dropped.

• Likewise, if the tangent plane of the centroid of ILF is parallel to pq(x5), intersects outside segment

pq(x1), or intersects outside distance R (distance between centroid to its farthest point in the leaf)(x3),

we drop the leaf (See Figure 6.4).

Any ILF which fails any of the above tests is deemed to be an occluder for point-pair p − q. We consider

p − q as invisible, if there exists at least one occluding ILF. Although this algorithm involves approximation,

the high density of point models results in no significant artifacts [Gor07].

Extending point–pair visibility determination algorithm to the leaf level (although is an approximation) makes

it much more faster. The strict condition of concluding a leaf–pair as invisible, in a presence of just a single

occluder balances the approximation done. Further, finding just a single occluder makes us exit instantaneously

(as soon as an invisibility case is detected) and thereby avoids making unnecessary computations, making it

much more time efficient.

6.1.4 Construction of Visibility Maps

We now extend the leaf–pair algorithm (subsection 6.1.3) to determine visibility between nodes (non-leaf)

in the hierarchy. In addition, the new algorithm presented is the most efficient and optimized algorithm for

constructing the V-Maps for the given point model. No extra computations between node and leaf pairs are

are performed, thereby reducing much of the time complexity as compared to the original algorithm [Gor06].

We also give a brief overview of how the constructed V-Map can be applied to compute a global illumination

solution.

71

Algorithm 5 Construct Visibility Map
procedure OctreeVisibility(Node A)

1: for each node B in old interaction list (o-IL) of A do
2: if NodetoNodeVisibility(A,B) == VISIBLE then
3: add B in new interaction list (n-IL) of A
4: add A in new interaction list (n-IL) of B
5: end if
6: remove A from old interaction list (o-IL) of B
7: end for
8: for each C in children(A) do
9: OctreeVisibility(C)

10: end for

Algorithm 6 Node to Node Visibility Algorithm
procedure NodetoNodeVisibility(Node A, Node B)

1: if A and B are leaf then
2: return the status of leaf–pair visibility algorithm for A & B (subsection 6.1.3)
3: end if
4: Declare s1=children(A).size
5: Declare s2=children(B).size
6: Declare a temporary boolean matrix M of size(s1 ∗ s2)
7: Declare count=0
8: for each a ∈ children(A) do
9: for each b ∈ children(B) do

10: state=NodetoNodeVisibility(a,b)
11: if equals(state,visible) then
12: Store true at corresponding location in M .
13: count = count+ 1
14: end if
15: end for
16: end for
17: if count == s1 ∗ s2 then
18: free M and return VISIBLE
19: else if count == 0 then
20: free M and return INVISIBLE
21: else
22: for each a ∈ children(A) do
23: for each b ∈ children(B) do
24: Update n-IL of a w.r.t every visible child b (simple look up in M) & vice-versa, free M
25: end for
26: end for
27: return PARTIAL.
28: end if

72

In constructing a visibility map, we are given a hierarchy and, optionally for each node, a list of interacting

nodes termed o-IL (a mnemonic for Old Interaction List). If the o-IL is not given, we initialize the o-IL of

every node to be its seven siblings. This default o-IL list ensures that every point is presumed to interact with

every other point. The V-Map is then constructed by calling Algorithm 6.1.4 initially for the root node, which

sets up the relevant visibility links in New Interaction List(n-IL). This algorithm invokes Algorithm 6.1.4 which

constructs the visibility links for all descendants of A w.r.t all descendants of B (and vice-versa) at the best (i.e.

highest) possible level. This ensures an optimal structure for hierarchical radiosity as well as reduces redundant

computations.

Computational Complexity: The visibility problem provides an answer to N = Θ(n2) pair-wise queries, n

being the number of points in input model. As a result, we measure the efficiency w.r.t N especially since the

V-Map purports to answer any of these N queries. We shall see later that NodetoNodeVisibility() is

linear w.r.t N . OctreeVisibility() then has the recurrence relation T (h) = 8T (h − 1) + N (for a

Node A at height h) resulting in an overall linear time algorithm (w.r.t. N), which is as far the best possible for

any algorithm that builds the V-Map.

The complexity for NodetoNodeVisibility(A,B) is determined by the calls to point-pair visibility

algorithm. Assuming the latter to be O(1), the recurrence relation for the former is T (h) = 64T (h−1)+O(1)

(for a node A at height h). The resulting equation is linear in N .

The overall algorithm consumes a small amount of memory (for storing M) during runtime. The con-

structed V-Map is also a memory efficient data structure as (apart from the basic octree structure) it requires to

store only the link structure for every node.

Visibility Map + GI algorithms:

1. Given a V-Map, ray shooting queries are reduced to searching for primitives in the visibility set of the

primitive under consideration, thereby providing a view-independent preprocessed visibility solution. An

intelligent search (using kd trees) will yield faster results.

2. Both diffuse and specular passes on GI for point models can use V-Maps and provide an algorithm

(similar to photon mapping), which covers both the illumination effects.

6.2 GPU-based V-map Construction

A sequential implementation of the V-map §6.1 takes hours (for octrees with height 8 or more). Reducing the

octree height (to say 7 or below) in the interests of time yields unacceptable results (Fig. 6.5).

Our work is concerned with computing the V-map data structure on the GPU. Specifically,

73

Figure 6.5: Dragon viewed from the floor (cyan dot). The quality is unacceptable for octrees of heights of 7
(left) or less. The figure on the right is for an octree of height 9.

1. If a black-box “kernel” is available to compute the relationships (e.g., gravitational interaction, point-

pair visibility), we show how a hierarchical data structure can be built efficiently (see sec. 6.4) on the

GPU using CUDA. For example, our V-map data structure shows 11 fold speedup (averaged over various

models and octree heights 8 or more). While a point model of a dragon placed inside a point modelled

Cornell room, sub-divided with octree height of 8, takes more than a couple hours, on the CPU, for

visibility computation, GPU performs the same in some minutes.

2. The specific kernel of point-pair visibility (namely, is point p visible from point q) proposed in [GKCD07]

is analyzed, and an alternate but related formulation is given which is more suitable for GPU implemen-

tations.

6.3 The Visibility Map

We assume that the data of interest is available as points; for example, these could be the points belonging to

some 3-D point model of say, the Stanford bunny, or might represent centroids of triangular patches of some

3-D mesh. Given a 3D point model, we sub-divide the model space using an adaptive octree (leaves appear

at various depths). The root represents the complete model space and the sub-divisions are represented by the

descendants in the tree; each node represents a volume in model space.

The visibility map (or V-map) for a tree, as defined in [GKCD07], is a collection of visibility links for every

node in the tree. The visibility link for any node p is a list L of nodes at the same level; every point in any

node in L is guaranteed to be visible from every point in p. Fig. 6.6 shows the link structure for some node N .

Combining all such link structures defined for every node gives the complete V-map of the tree.

74

Visible

Visible

Visible

Visible

Level 2

Level 3

Level 1

Node N

Node N V1 V2 V3 V4

V3

V1

V2

V4

Figure 6.6: Visibility links for Node N

Compute Visibility

A B

Root Complete
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

Partial
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

Compute Visibility

A B

Root

(a) (b) (c) (d)

a1
a2 a3

a4 b1

a2 b1

Figure 6.7: The visibility map is constructed recursively by a variation of depth first search. In general, it is
advantageous to have links at high level in the tree so that we can reason efficiently using coherency about the
visibility of a group of points.

CPU V-MAP CONSTRUCTION: Consider a node-pair AB in Fig. 6.7 for illustration to see if we should set the

visibility link between the two. The same procedure is repeated for all node-pairs in the octree so as to define a

complete V-map.

To establish the visibility link between A and B we need to check if all the points in the leaves defined

by A are visible to all the points in B. In doing so, we might as well take advantage of this work, and set the

visibility links of all descendants of A with respect to all descendants of B. In Fig. 6.7(a) we see (green arrows

to the extreme left) how we recursively go down and compute the visibility between a1 and b1 with the help

of their leaves. This information is now propagated upwards in the sub-tree depending on the type of relation

established at the leaves. In our example, Fig. 6.7(b), if all leaves of a1 are visible to all leaves of b1, then the

75

visibility link between a1 and b1 is set (using dynamic memory allocation) with no links between their leaves

However, if only some leaves of a1 are visible to some leaves of b1, then its a case of partial visibility and no

new link is propagated upwards between a1 and b1 (Fig. 6.7(c)). The same process is repeated then for a2 and

b1 (Fig. 6.7(d)) and then for rest of the descendants. It is easily observed that recursion (not available on the

GPU) is a natural way of efficiently constructing the V-map.

With the setting given above (e.g., links only at the same level) we restrict the pairing of nodes to a subset of

the all node pairs set. It is common in the scientific computing literature to define this subset as an interaction

list. Every node has its own interaction list and its cardinality may vary from node to node.

As mentioned earlier, a sequential implementation of the V-map construction given in [GKCD07] takes

hours (for octrees with height 8 or more). Employing octrees of greater height, it is therefore desirable to

exploit the inherent parallelism in the V-map construction algorithm and get both quick and accurate results.

Parallelism stems from the fact that the visibility between a node pair, say a1 and b1 in Fig. 6.7 is entirely

independent of the visibility between another node pair, say a2 and b1.

6.4 V-map Computations on GPU

Various ways to parallelize the V-Map computations on the GPU are addressed below.

6.4.1 Multiple Threads Per Node Strategy

A

N

I0 I1 I2 I3

T0
T1

T3T2

Interaction List

Figure 6.8: Parallelism at a node level

One of the intuitive ways to parallelize the algorithm is to make each thread compute the visibility between

any node A with a node in its interaction list. For example, as shown in Fig. 6.8, thread T0 computes visibility

between A and I0 (e.g.,. I0 can be the node B of Fig. 6.7), thread T1 computes visibility between A and I1 and

so on. Once visibility between A and all nodes in its interaction list is computed, we move to another node N

and repeat the same. Thus we allocate multiple threads per node but only one per node pair.

The number of threads running concurrently is the size of the interaction list. The degree of parallelism

here is limited by the size of the interaction list of a node which might be quite small (generally in tens or

76

hundreds). To unleash the power of GPU we need thousands of threads running concurrently, which is not

the case here. However, the threads per node strategy can be combined with other strategies (see below, for

example, sec. 6.4.2).

A more serious limitation is that each thread has to perform recursion as well as dynamic memory allocation

for setting up links at the descendant levels. This is not possible on the current GPUs. Recursion can be

implemented with a user stack; but the dynamic allocation problem persists.

6.4.2 One Thread per Node Strategy

Another intuitive way to compute visibility is to let each thread compute visibility between a node and all the

nodes in its interaction list, going down the octree level by level, starting form the root. For example, as shown

in Fig. 6.9 thread T0 computes visibility between a node A and all the nodes in its list, thread T1 computes

visibility between a node N and all the nodes in its list and so on. Thus we allocate only one thread to compute

visibility between a node and its entire interaction list.

A I0 I1 I2 I3

N I0 I1

Thread T0

Thread T1

Interaction List

Level
L

Level
L

Figure 6.9: Parallelism across nodes at the same level

Note that all nodes at a particular level are considered concurrently before moving on to the next level.

Thus the degree of parallelism is equal to the number of nodes at a particular level considered and changes with

every level. The performance of the algorithm increases as we go down the octree, as the number of nodes per

level tends to increase with greater octree depths (root being at depth 0).

One of the drawbacks of this parallel algorithm is the fact that it does not utilize the commutative nature

of visibility. That is, if node N1 is visible to node N2, then N2 is also visible to N1. Although such cases can

be detected, and threads made to stop execution, almost half of the threads would be wasted. Further, the same

limitations (sec. 6.4.1) of dynamic memory allocation and recursion apply to this parallel algorithm, thereby

making this case undesirable.

6.4.3 Multiple Threads per Node-Pair

Here we consider a nodeA and say nodeB belongs to its interaction list. We compute the visibility between all

leaves of A with all leaves of B, in parallel on the GPU (and afterwords repeat the same for other node-pairs

in the tree). The recursive part is computed on the CPU which uses traditional dynamic memory management.

77

Lookup from LVS

A B

Root Complete
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

Partial
Visibility

A B

Root

New Visibility
Link

Lookup Lookup

(b) (c) (d)
Compute Visibility & Store in LVS

A B

Root

(a)

a2 a3

a1 a4 b1

Figure 6.10: The visibility map on the GPU uses thousands of threads concurrently by working at the large
number of leaves (a) and stores the result in a table. The links at other levels are set based on a lookup
computation.

To achieve the same, we introduce a minor modification to the original CPU-based algorithm (compare

Fig. 6.7(a) with Fig. 6.10(a)). In the CPU-based approach, we first recurse in the sub-trees of A and B and then

having reached the leaf level, compute the leaf-leaf visibility. In contrast, in our GPU implementation, we first

compute all leaf-pair visibility between two nodes and store it in a Boolean array LVS (Leaf Visibility Status).

The CPU does the standard recursion, and having reached the leaf level, use a simple look-up to LVS to find the

already computed answer.

For example, in Fig. 6.10, we first compute visibility of all leaves of A with respect to all leaves of B and

store it in the LVS (Fig. 6.10(a)). We then recurse their sub-trees, as in the CPU implementation, and look up

the visibility value from the LVS (Fig. 6.10(b)) to find whether the descendants (say a1 and b1) are completely

visible (Fig. 6.10(c)) or partially visible (Fig. 6.10(d)). We repeat the same for all other descendant pairs (say

(a2, b1)).

6.5 Leaf-Pair Visibility

n

x2
n

n
n

n

2

3

np

q

x5

4

5

p

q

x3

x4

x1n1

Figure 6.11: Visibility between points p and q

78

Having presented the strategy for constructing, in parallel, a global V-map for a given tree, we now dis-

cuss the leaf-leaf visibility algorithm performed by each thread. We build on the atomic point-pair visibility

algorithm (Fig. 6.11) given in [GKCD07] and extend it for computing visibility between leaves.

6.5.1 Prior Algorithm

As presented in [GKCD07], to compute visibility between any two points p and q, we check if they face

each other. If yes, we then determine a set of potential occluders using a 3D Bresenham’s line algorithm.

Bresenham’s algorithm outputs a set Y of points which are collinear with and between p and q. Going down the

octree recursively, all points from the leaves containing any point from Y is added to a set X. The Bresenham

step-length is based on the sampling resolution of the original point dataset.

The potential occluders are pruned further based on the tangent plane intersection tests. In Fig. 6.11, the

set X consists of potential occluders points (x1, x2, x3, x4, x5). In fact, only points x2 and x3 are considered

as actual occluders. Point x1 is rejected as the intersection point of the tangent plane lies outside segment pq,

point x4 because it is more than a distance ∆ away from pq, and point x5 as its tangent plane is parallel to pq.

If K (a parameter) of actual occluders are found, q is considered invisible to p.

Instead of point pairs p and q, one may also use leaves, and apply the same idea. p and q (of Fig. 6.11) are

now the leaf’s centroids (not centers) and the potential occluders are the centroids of the leaves intersecting line

segment pq. ∆ is the distance from the centroid of an intersecting leaf to its farthest point and is different for

every leaf [GKCD07].

Applying this idea for the GPU model, we see that in this way of computing leaf-leaf visibility, we require

each thread to recursively go down the octree for finding the potential occluders between the leaf pair consid-

ered. As octree height increases, the size of leaves becomes small, thereby reducing the step length of the 3D

Bresenham’s Line algorithm by a significant amount. This drastically increased the load and the computations

as it requires more recursive traversals of the octree. In our GPU implementation, the Bresenham approach

is therefore abandoned in computing potential occluders; however, the second stage of actual occluders is re-

tained.

6.5.2 Computing Potential Occluders

At the time of construction of the octree, a sphere is initially, and implicitly constructed for every leaf node.

The center of each sphere is the center of the respective leaf, and the radius is the distance from the center to the

farthest point in the leaf. The spheres for internal nodes are constructed recursively using the maximum radius

of their children (Fig. 6.12(a)). Spheres of siblings therefore might overlap, but this makes our visibility test a

bit conservative without hampering the correctness of the results. Note that, only the radius of the sphere need

to be stored, since the center is already present in the octree.

79

C

A

D

B

D1

D2

D3

p

q
C1 C2

C3

C4

r1
r2

r3 r4

(a) (b)

C

R

L1

L2

Figure 6.12: (a) Constructing parent sphere from child, (b) Line Segment-Sphere Intersection test

Consider the leaf pair L1 and L2. We now recursively compute the intersection status of the line segment

pq (p being centroid of L1 and q of L2) and the spheres of nodes of the octree, starting from the root. It is

significant to note that we are not interested in computing the actual point of intersection, only the Boolean

decision of intersection between pq and the sphere under consideration. This is achieved by performing a very

simple dot-product computation. If a node contains L1 or L2 or intersects line segment pq, we recursively

perform a similar test in the sub-tree of the intersecting node. Otherwise we discard the node.

For example, we discard the sub-tree of node C (Fig. 6.12(b)) as it does not intersect pq nor does it contain

L1 or L2. On the other hand, we traverse the children of node D and recursively repeat the same for sub-trees

of children D1 and D2. In this we reaching the (potential occluder) intersecting leaf nodes.

Each thread then performs the same tangent-surface intersection tests (as detailed in sec. 6.5.1) for their

respective leaf-pairs. If mutually visible, each thread adds 1 to the corresponding location in the Boolean array

LVS which will be eventually looked up.

6.6 GPU Optimizations

To improve the GPU kernel’s performance, we utilize several optimization techniques enlisted below.

1. ASYNCHRONOUS COMPUTATIONS: Asynchronous kernel launches were made by overlapping CPU

computations with kernel execution. Thus, while the CPU is busy recursing the sub-trees of nodes to

set visibility links at different levels of octree, our GPU kernel is busy performing leaf-pair visibility

computations for the next node pair whose sub-trees will eventually be visited by CPU when the kernel

finishes its part.

80

2. LOOP UNROLLING: Any flow control instruction (if, switch, do, for, while) can significantly impact

the effective throughput by causing threads to diverge. Thus, major performance improvements can be

achieved by unrolling the control flow loop. We found that especially the loops with global memory

accesses (as is the case in our algorithm) can benefit from unrolling.

3. OPTIMAL THREAD AND BLOCK SIZE: Obtained via an empirical study, each thread block must contains

128 − 256 threads and every thread block grid no less than 64 blocks for optimal performance on G80

GPU.

4. OPTIMAL OCTREE HEIGHTS: As every thread works on single leaf-pair, multiple threads are indepen-

dent. Each leaf pair may have a different number of potential occluders to be considered. The thread that

finishes work for a given leaf-pair simply takes care of another leaf-pair, without the need for any shared

memory or synchronization with other threads. To effectively use the GPU, the number of leaf-pair

should be sufficiently large. With 16 multi-processors, we need at least 64 thread-blocks, each having

256 threads to utilize the GPU. Thus the number of leaf pairs considered concurrently should be at least

16384 for good performance.

6.7 Results

The CUDA based parallel V-map construction algorithm, implemented on G80 NVIDIA GPU, was tested on

several point models. In this section we provide qualitative visibility validation and quantitative results. Note

that all input such as the models in the room, the light source, and the walls of the Cornell room are given as

points.

6.7.1 Visibility Validation

We validate our proposed method here using an adaptive octree structure. We remark that the user divides the

octree adaptively depending on the input scene density. Increasing or decreasing the levels of subdivision for a

given scene is essentially a trade-off between quality of the visibility (user driven), and the computational time.

Fig. 6.13(a) shows a point model of an empty Cornell room with some artificial lighting to make the model

visible. Note the default colors of the walls. We now introduce a bluish white Stanford bunny. In Fig. 6.13(b),

the eye (w.r.t. which visibility is being computed) is on the floor, marked with a cyan colored dot. The violet

(purple) color indicates those portions of the room that are visible to this eye. Notice the “shadow” of the

bunny on the back wall. The same idea is repeated with the eye (marked in cyan) placed at different locations

for various different point models (all bluish white in color) of the Buddha (Fig. 6.13(c)), and an Indian Goddess

Satyavathi (Fig. 6.13(d)). We found that an octree of height 8 gave us accurate visibility results, however, it is

81

(a) An empty Cornell room (b) Bluish Bunny (eye on the floor)

(c) The Buddha (eye on the green wall) (d) Satyavathi

Figure 6.13: Visibility tests where purple color indicates portions visible to the candidate eye (in cyan)

more prudent to go to higher depths such as 9 or 10.

6.7.2 Quantitative Results

Fig. 6.14 shows the running time of our implementation. Each graph in Fig. 6.14 refers to a particular model,

and shows the only-CPU, and CPU-GPU combo running time for various octree levels (5-10). For example.,

Fig. 6.14(a) shows results for the Stanford bunny in the Cornell room while Fig. 6.14(b) shows the same for

Buddha. The table also shows the number of leaves (at various depths) in the various adaptive octrees. This

is an important parameter on which the degree of parallelism indirectly depends. The running times tabulated,

also depends on the number of threads per block. A block size of (16 × 16) gives the best results with 256

threads per block.

The CPU and GPU have almost identical run times if the model has octree height of 6 or below. For best

82

5 6 7 8 9 10

0

500

1000

1500

2000
GPU

CPU

Max Octree Levels

Max
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1675 1.87 0.34 0.18

6 2181 6.24 2.51 0.40

7 7837 21.54 99.31 4.61

8 20971 68.25 652.51 9.56

9 27514 83.47 1159.04 13.88

10 39111 95.98 1839.96 19.17

Bunny in Cornell Room

(a)

5 6 7 8 9 10

0

200

400

600

800
GPU

CPU

Max Octree Levels

Max
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1407 1.35 1.01 0.75

6 4612 1.87 1.56 0.83

7 9215 4.62 6.79 1.47

8 16891 23.89 150.03 6.28

9 22117 39.11 456.68 11.68

10 28981 54.19 780.23 14.39

Buddha in Cornell Room

(b)

5 6 7 8 9 10

0

200

400

600

800

1000
GPU

CPU

Max Octree Levels

Max
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 965 0.85 0.42 0.49

6 1358 1.08 1.05 0.97

7 5380 6.74 35.96 5.34

8 12587 18.25 128.82 7.05

9 21452 45.91 483.84 10.54

10 29523 73.83 995.16 13.48

Dragon in Cornell Room

(c)

5 6 7 8 9 10

0

500

1000

1500

2000
GPU

CPU

Max Octree Levels

Max
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1232 0.76 0.52 0.69

6 2012 1.4 1.05 0.75

7 7902 32.43 135.45 4.18

8 14500 76.53 587.02 7.67

9 28936 94.37 998.26 10.58

10 45191 101.12 1747.85 17.28

Ganesha & Satyavathi in Cornell Room

(d)

5 6 7 8 9 10

0

200

400

600

800
GPU

CPU

Max Octree Levels

Max
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1487 1.12 0.45 0.40

6 6325 2.89 1.11 0.38

7 9598 12.67 21.21 1.67

8 16981 25.32 136.21 5.37

9 23928 36.78 321.14 8.73

10 31512 45.34 640.87 14.13

Ganesha in Cornell Room

(e)

5 6 7 8 9 10

0

200

400

600

800
GPU

CPU

Max Octree Levels

Max
Levels

Leaves GPU (mins) CPU (mins) Speedup

5 1503 0.72 0.67 0.93

6 4142 1.02 1.17 1.15

7 10782 15.46 29.33 1.89

8 16512 32.39 156.71 4.84

9 26987 48.94 478.94 9.79

10 34191 67.88 794.53 11.71

Satyavathi in Cornell Room

(f)

Figure 6.14: V-map construction times (CPU & GPU) for models with differing octree heights

Figure 6.15: Dragon viewed from the floor (cyan dot). The quality is unacceptable for octrees of heights of 7
(left) or less. The figure on the right is for an octree of height 9.

throughput from the GPU we need at least 16384 leaf-pairs to be considered concurrently which is generally

not the case for octrees built till level 6. The GPU starts out performing the CPU for octrees with greater heights

(Fig. 6.14). However, the quality of the visibility solution is below par for octrees with heights 7 or below (Fig.

6.15). Thus, to get a good acceptable accuracy in results (Fig. 6.13) and throughput from GPU, we use octree

83

heights of at least 8. Speedup is also given in the tables. We achieve an average speed-up (across all models) of

15 when the input models are divided with octree of height 10. Thus, we see that the CUDA implementation of

V-map construction algorithm is efficient and fast. Once constructed, they allow for an interactive walkthrough

of the point model scene.

Figure 6.16: Point models rendered with diffuse global illumination effects of color bleeding and soft shadows.
Pair-wise visibility information is essential in such cases. Note that the Cornell room as well as the models in
it are input as point models.

As a proof of applicability, we now use the parallel constructed V-map in a global illumination algorithm,

where the Fast Multipole Method is used to solve the radiosity kernel. Fig. 6.16 shows results with the color

bleeding effects and the soft shadows clearly visible. The V-map also works well even in the case of aggregated

input models (e.g., point models of both Ganesha and Satyavathi placed in a point model of a Cornell room).

Note that the input is a single, large, mixed point data set consisting of Ganesha, Satyavathi, and the Cornell

room. These models were not taken as separate entities nor were they segmented into different objects during

the whole process.

84

Chapter 7

Discussion: Specular Inter-reflections
and Caustics in Point based Models

7.1 Introduction

After having seen the algorithms and techniques for computing diffuse global illumination on point models, let

us now focus on computing specular effects (reflections and refractions) including caustics for the point mod-

els. These, combined with already calculated diffuse illumination gives the user a complete global illumination

solution for point models.

Attempts have been made to get these effects. Schaufler [SJ00] was the first to propose a ray-tracing technique

for point clouds. Their idea is based on sending out rays with certain width which can geometrically be de-

scribed as cylinders. The intersection detection is performed by determining the points of the point cloud that

lie within such a cylinder followed by calculating the ray-surface intersection point as distance-weighted aver-

age of the locations of these points. The normal information at the intersection point is determined using the

same weighted averaging. This approach does not handle varying point density within the point cloud. More-

over, the surface generation is view-dependent, which may lead to artifacts during animations. Wand [WS03]

introduced a similar concept by replacing the cylinders with cones, but they started with triangular models as

their input instead of point models. Adamson [AA03] proposed a method for ray-tracing point-set surfaces but

was computationally too expensive, the running times being in several hours. Wald [WS05] then described a

framework for interactive ray-tracing of point models based on a combination of an implicit surface represen-

tation, an efficient surface intersection algorithm and a specifically designed acceleration structure. However,

implicit surface calculation was too expensive and hence they used ray-tracing only for shadow computations.

Also, the actual shading was performed only by a local shading model. Thus, transparency and mirroring re-

flections were not modelled. Linsen [LMR07] recently introduced a method of Splat-Based Ray-Tracing for

Point Models handling the shadow, reflections and refraction effects efficiently. However, they did not consider

rendering caustics effects in their algorithm.

85

Our proposed method is a combination of many such methods discussed above, which combines the advan-

tages each of them offer under one domain. We will successfully be able to get all the desired specular effects

(reflections, refractions and caustics) along with producing a time and memory efficient algorithm for the same.

We will also be able to fuse it with the diffuse illumination algorithm to give a complete global illumination

solution.

Our proposed algorithm follow the Photon Mapping (for polygonal models) [Jen96] strategy closely. Therefore,

we start by giving a brief overview of all the stages of photon mapping algorithm in Section 7.2 and conclude

with some limitations of this technique. We then follow it up with our proposed method in Section 7.3 to get

all the desired specular effects in a point model scene.

7.2 Photon Mapping

This section aims to give an overview of the photon mapping algorithm along with some of their limitations

(for details refer [Jen96]).

The global illumination algorithm based on photon maps is a two-pass method. The first pass builds the photon

map by emitting photons from the light sources into the scene and storing them in a photon map when they

hit non-specular objects. The second pass, the rendering pass, uses statistical techniques on the photon map to

extract information about incoming flux and reflected radiance at any point in the scene. The photon map is

decoupled from the geometric representation of the scene. This is a key feature of the algorithm, making it ca-

pable of simulating global illumination in complex scenes containing millions of triangles, instanced geometry,

and complex procedurally defined objects. We will look into the details related to the emission, tracing, storing

of photons and rendering in the remainder of this section.

To help explain the algorithms presented in this section we adopt a notation for light transport introduced by

Heckbert [Hec90]. In Heckbert′s notation a path traveled by light can be described by a regular expression

of the interactions the light has been through. Possible interactions are: the light source (L), the eye (E), a

diffuse reflection (D), a specular reflection (S). An example is the light path LS+DE, which describes light

coming from the light source, being specular reflected one or more times before being diffusely reflected in the

direction of the eye. Incidentally, this is the path traveled by light when creating caustics.

7.2.1 Photon Tracing (First Pass)

The purpose of the photon tracing pass is to compute indirect illumination on diffuse surfaces. This is done by

emitting photons from the light sources, tracing them through the scene, and storing them at diffuse surfaces.

Photon Emission: The photons emitted from a light source should have a distribution corresponding to the

distribution of emissive power of the light source. If the power of the light is Plight and the number of emitted

86

photons is ne, the power of each emitted photon is

Pphoton = Plight/ne.

Pseudocode for a simple example of photon emission from a diffuse point light source is given below:

Algorithm 7 Photon emission from a diffuse point light
procedure emitPhotons

1: n = 0 // number of emitted photons
2: while not enough photons do
3: DO
4: // use simple rejection sampling
5: // to find diffuse photon direction
6: x = random number between −1 and 1
7: y = random number between −1 and 1
8: z = random number between −1 and 1

while (x ∗ x+ y ∗ y + z ∗ z > 1)
9:10: d = < x, y, z >

11: p = light source position
12: trace photon from p in direction d
13: n = n + 1
14: end while
15: scale power of stored photons with 1/n

Photon Tracing: Once a photon has been emitted, it is traced through the scene using photon tracing. When

a photon hits an object, it can either be reflected, transmitted, or absorbed (with some power loss), decided

probabilistically based on the material parameters of the surface using Russian roulette [Jen96] Examples of

photon paths are shown in Figure 7.1.

Photon Storing: Photons are only stored where they hit diffuse surfaces (or, more precisely, nonspecular

surfaces). The reason is that storing photons on specular surfaces does not give any useful information: the

probability of having a matching incoming photon from the specular direction is zero, so if we want to render

accurate specular reflections the best way is to trace a ray in the mirror direction using standard ray tracing.

For all other photon-surface interactions, data is stored in a global data structure, the photon map. Note that

each emitted photon can be stored several times along its path. Also, information about a photon is stored at

the surface where it is absorbed if that surface is diffuse. For each photon-surface interaction, the position,

incoming photon power, and incident direction are stored.

Three Photon Maps: For efficiency reasons, it pays off to divide the stored photons into three photon

maps:

87

Figure 7.1: Photon paths in a scene (a Cornell box with a chrome sphere on left and a glass sphere on right):
(a) two diffuse reflections followed by absorption, (b) a specular reflection followed by two diffuse reflections,
(c) two specular transmissions followed by absorption.

• Caustic Photon Map: contains photons that have been through at least one specular reflection before

hitting a diffuse surface: LS+D.

• Global Photon Map: an approximate representation of the global illumination solution for the scene for

all diffuse surfaces: L{S|D|V }∗D

• Volume Photon Map: indirect illumination of a participating medium: L{S|D|V }+V.

A separate photon tracing pass is performed for the caustic photon map since it should be of high quality and

therefore often needs more photons than the global photon map and the volume photon map. The construction

of the photon maps is most easily achieved by using two separate photon tracing steps in order to build the

caustics photon map and the global photon map (including the volume photon map). This is illustrated in

Figure 7.2 for a simple test scene with a glass sphere and 2 diffuse walls. Figure 7.2(a) shows the construction

of the caustics photon map with a dense distribution of photons,and Figure 7.2(b) shows the construction of the

global photon map with a more coarse distribution of photons.

7.2.2 Preparing the Photon Map for Rendering

In the rendering pass, the photon map is a static data structure that is used to compute estimates of the incoming

flux and the reflected radiance at many points in the scene. To do this it is necessary to locate the nearest

photons in the photon map. This is an operation that is done extremely often, and it is therefore a good idea to

optimize the representation of the photon map before the rendering pass such that finding the nearest photons

is as fast as possible.

88

(a) (b)

Figure 7.2: Building (a) the caustics photon map and (b) the global photon map.

The data structure should be compact and at the same time allow for fast nearest neighbor searching. It should

also be able to handle highly non-uniform distributions this is very often the case in the caustics photon map.

A natural candidate that handles these requirements is a balanced kd-tree.

The balanced kd-tree: The time it takes to locate one photon in a balanced kd-tree has a worst time

performance of O(logN) [Moo93], where N is the number of photons in the tree.

7.2.3 Rendering (Second Pass)

Given the photon map, we can proceed with the rendering pass. The photon map is view independent, and

therefore a single photon map constructured for an environment can be utilized to render the scene from any

desired view. The final image is rendered using distribution ray tracing in which the pixel radiance is computed

by averaging a number of sample estimates. Each sample consists of tracing a ray from the eye through a

pixel into the scene. The radiance returned by each ray equals the outgoing radiance in the direction of the ray

leaving the point of intersection at the first surface intersected by the ray. The outgoing radiance, Lo, is the sum

of the emitted, Le, and the reflected radiance

Lo(x,−→w) = Le(x,−→w) + Lr(x,−→w)

where the reflected radiance, Lr, is computed by integrating the contribution from the incoming radiance, Li,

Lr(x,−→w) =
∫
σx
fr(x,−→w

′
,−→w)Li(x,−→w

′
)cosθidw

′
i

where fr is the bidirectional reflectance distribution function (BRDF), and x is the set of incoming directions

around x. The BRDF is separated into a sum of two components: A specular/glossy, fr,s, and a diffuse, fr,d

fr(x,−→w
′
,−→w) = fr,s(x,−→w

′
,−→w) + fr,d(x,−→w

′
,−→w)

89

The incoming radiance is classified using 3 components:

• Li,l(x,−→w
′
) is direct illumination by light coming from the light sources.

• Li,c(x,−→w
′
) is caustics - indirect illumination from the light sources via specular reflection or transmis-

sion.

• Li,d(x,−→w
′
) is indirect illumination from the light sources which has been reflected diffusely at least once.

The incoming radiance is the sum of these three components:

Li(x,−→w
′
) = Li,l(x,−→w

′
) + Li,c(x,−→w

′
) + Li,d(x,−→w

′
)

By using the classifications of the BRDF and the incoming radiance we can split the expression for reflected

radiance into a sum of four integrals:

Lr(x,−→w) =
∫
σx

fr(x,−→w
′
,−→w)Li(x,−→w

′
)cosθidw

′
i

=
∫
σx

fr(x,−→w
′
,−→w)Li,l(x,−→w

′
)cosθidw

′
i +∫

σx

fr,s(x,−→w
′
,−→w)(Li,c(x,−→w

′
) + Li,d(x,−→w

′
))cosθidw

′
i +∫

σx

fr,d(x,−→w
′
,−→w)Li,c(x,−→w

′
)cosθidw

′
i +∫

σx

fr,d(x,−→w
′
,−→w)Li,d(x,−→w

′
)cosθidw

′
i

There are 4 integrals in the above equation. 1st term computes Direct Illumination. 2nd terms computes Spec-

ular and Glossy Reflection. 3rd term computes Caustics. 4th term computes Multiple Diffuse Reflections.

Specular and Glossy Reflection: Specular and glossy reflection is computed by evaluation of the term∫
σx
fr,s(x,−→w

′
,−→w)(Li,c(x,−→w

′
) + Li,d(x,−→w

′
))cosθidw

′
i

The photon map is not used in the evaluation of this integral since it is strongly dominated by fr,s which has a

narrow peak around the mirror direction. Using the photon map to optimize the integral would require a huge

number of photons in order to make a useful classification of the different directions within the narrow peak

of fr,s. To save memory this strategy is not used and the integral is evaluated using standard Monte Carlo ray

tracing optimized with importance sampling based on fr,s.

Caustics: Caustics are represented by the integral∫
σx
fr,d(x,−→w

′
,−→w)Li,c(x,−→w

′
)cosθidw

′
i

90

The evaluation of this term is dependent on whether an accurate or an approximate computation is required. In

the accurate computation, the term is solved by using a radiance estimate from the caustics photon map. The

number of photons in the caustics photon map is high and we can expect good quality of the estimate. The

approximate evaluation of the integral is included in the radiance estimate from the global photon map.

7.2.4 Radiance Estimate

The reflected illumination is reconstruction from the photon map through a series of queries to the photon maps.

Each query is used to estimate the reflected radiance at a surface point as the result of a local photon density

estimate. A query to the photon map locates the k photons nearest the surface point for which the reflected

radiance is to be estimated. In conjunction with the surface BRDF, the incoming direction, the surface point

and the area encompassing the photons this information is used in a local density estimate that estimates the

reflected radiance. This estimate is called the radiance estimate [Sch06].

The accuracy of the radiance estimate is controlled by two important factors; the resolution of the photon map

and the number of photon used in each radiance estimate. If few photons are used in the radiance estimate,

noise in the illumination becomes visible, if many photons are used edges and other sharp illumination features

such as those caused by caustics are blurred. Unless an excessive number of photons are stored in the photon

map, it is impossible to avoid either of these effects. This is the mentioned trade-off problem between variance

versus bias as it manifests itself in photon mapping.

Figure 7.3 shows an example output of Photon Mapping algorithm.

7.2.5 Limitations of Photon Mapping

Although Photon Mapping is a well established technique for giving a complete global illumination solution, it

too suffers from some limitations as itemized below:

• Works only for polygonal models. We need to modify the algorithm so that it works for point models as

well.

• One obvious cost factor for photon mapping is the cost for performing k nearest neighbor queries used

for density estimation of photons. As we already have a pre-computed diffuse illumination, we are only

interested in caustic maps. But still, although kNN queries are commonly considered to be rather cheap,

it is infact quite expensive when compared to a fast ray tracer for rendering (about 10 times expensive)

even for just caustic maps.

• Photon Generation and Tracing are quite slow as well. Needs to be optimized.

91

Figure 7.3: Example output of Photon Mapping Algorithm [Jen96] showing reflection, refractions and caustics

7.3 Our Approach

We now present our algorithm to generate specular effects for point models. We try to eliminate the restrictions

of traditional Photon Mapping algorithm at the same time optimizing on the basic technique using a combina-

tion of several algorithms available in literature.

Note that, our specular-effects generation algorithm takes as input a point model with diffuse global illumi-

nation solution already calculated for it. As the diffuse global illumination solution is view-independent, it

provides us with an advantage of having an interactive walk-through of the input scene of point models. How-

ever, specular effects being view-dependent needs to be calculated for every new view-point in the ray-trace

rendered frame. Thus, if specular effect generation takes a lot of time, we loose out of having an interactive

walk-through of the scene. We desire not to loose this advantage, and try to optimize every algorithm required

for specular effect generation.

We saw traditional Photon Map works only for polygonal models, which have surface information. But point

models do not have any kind of surface representations. We thereby make necessary modifications in this

algorithm to apply it to point models. We can divide our goal in 2 major tasks:

• Modifying Path Tracing (First Pass)

• Modifying Ray Tracing (Second Pass)

All the other modules of the algorithm are independent of surface representations.

92

Fortunately, solution to both of the above tasks is the same. Proper analysis of the algorithm suggests that

both Photon Tracing and the final rendering is done using Ray Tracing techniques. So, modifying the Ray

Tracing technique to suit Point Models is sufficient. There has been some research efforts in the same direction

(as discussed in Section 7.1). We will discuss here one of the very efficient techniques for doing the same,

Splat-based Ray Tracing [LMR07], in the next section.

7.3.1 Splat-Based Ray Tracing

Surface splatting is established as one of the main rendering techniques for point clouds. This section presents

a ray-tracing approach for objects whose surfaces are represented by point clouds. This approach is based on

casting rays and intersecting them with disks around points or splats [LMR07].

Splats in their general form define a piece-wise constant surface. In particular, each splat has exactly one surface

normal assigned to it. Assuming that the point cloud was obtained by scanning a smooth surface, the application

of the rendering technique should result in the display of a smoothly varying surface. Since ray tracing is based

on casting rays, whose directions depend on the surface normals, there’s a need to define smoothly varying

normals over the entire surface, i.e., also within each splat. To do so, estimated normals at each point of the

point cloud are considered and splat radii are computed depending on local curvature properties. The generated

splats should cover several points of the point cloud. The normals at the covered points of each splat are used to

determine a smoothly varying normal field defined over a local parameter space of the splat. It can be beneficial

to consider further surrounding points and their normals for the normal field computations. Details on the splat

and normal field generation are described later in the Section 7.3.1.1.

The actual ray-tracing procedure is executed by sending out rays that intersect the splats, potentially being

reflected or refracted. Surface normals are interpolated from the normal fields. Care has to be taken where

splats overlap. The ray-splat intersection and the overall image generation is described in subsection 7.3.2.

7.3.1.1 Splat Generation

Let P be a point cloud consisting of n points p1, ...,pn ∈ <3. We generate m splats S1, ..., Sm that cover the

entire surface represented by point cloud P . For each of these splats we are computing its radius ri ∈ <, i =

1, ...,m, and a normal field ni(u, v), i = 1, ...,m, where (u, v) ∈ [−1, 1]x[−1, 1] with u2 + v2 ≤ 1 describes a

local parametrization of the splat.

Splat Radius: The radii of the m splats S1, ..., Sm should vary with respect to the curvature of the surface cov-

ered by the splat. In regions of high curvature, a piece-wise constant surface representation via splats requires

us to use many splats with small radii to stay within a predefined error bound. In regions of low curvature, some

few large splats may suffice to represent the surface well. For the definition of the error bound, the maximum

distance of points of P covered by the splat to their closest point on the splat is chosen.

93

Let pi ∈ P be any of the points of point cloud P and let ni be the respective surface normal of the surface

described by P at position pi. If the normal ni is unknown, we determine the normal by computing the k nearest

neighbors q1, ...,qk ∈ P of pi, fit a plane through pi and its neighbors in the least-squares sense, and set ni to

the normal of the fitting plane.

Let the neighbors of pi be sorted in the order of increasing distance to pi. We initially define splat Sj =

(cj , nj , rj) with center cj = pi, normal nj = ni, and radius rj = 0. Next, the splat is grown iteratively, until

the error bound condition is violated.

At each iteration step, the radius is increased such that the splat covers 1 additional neighbor of pi. The normal

remains unchanged, but center cj is moved along the surface normal ni such that the splat position minimizes

its maximal distance to all covered points of P. Figure 7.4(a) illustrates the optimal choice of cj .

Figure 7.4: (a) Generation of splat Sj starts with point pi and grows the splat with radius rj by iteratively
including neighbors ql of pi until the approximation error δε for the covered points exceeds a predefined error
bound. (b) Splat density criterion: Points whose distance from the splats center cj when projected onto splat Sj
is smaller than a portion perc of the splats radius rj are not considered as starting points for splat generation.
(c) Generation of linear normal field (green) over splat Sj from normals at points covered by the splat. Normal
field is generated using local parameters (u, v) ∈ [1, 1]X[1, 1] over the splats plane spanned by vectors uj and
vj orthogonal to normal nj = ni. The normal of the normal field at center point cj may differ from ni.

Splat Density: Let Sj be the splat that covers the point pi and its k nearest neighbors q1, ...,qk, again

sorted by increasing distance to pi. To not generate holes in the surface, these k nearest neighbors should also

include all natural neighbors of pi, when computing natural neighbors locally for points projected into a fitting

plane. If the natural neighbors of one of the points ql, l ∈ 1, ..., k, are also among the k nearest neighbors of pi,

no splat needs to be generated starting from ql . Obviously, the smaller the distance of a neighbor ql to point

pi is, the higher are the chances that the natural neighbors are already among the neighbors of pi.

This motivation led to the following criterion: If splat Sj is generated starting from point pi, then no splats need

94

to be generated starting from neighbored points within the projected distance perc.rj from the splats center cj

, where perc ∈ [0, 1] is a factor that defines the percentage of the splats radius used for the criterion, see

Figure 7.4(b). The factor perc is defined globally for P, which is possible as it is multiplied with the locally

varying radii rj . The optimal choice for perc is a value such that the generated splats cover the entire surface

and have minimal overlap.

Normal Field: In order to generate a smooth-looking visualization of a surface with a piece-wise constant

representation, there is a need to smoothly (e. g. linearly) interpolate the normals over the surface before locally

applying the light and shading model. Since we do not have connectivity information for our splats, we cannot

interpolate between the normals of neighbored splats. Instead, we need to generate a linearly changing normal

field within each splat. The normal fields of adjacent points should approximately have the same interpolated

normal where the splats meet or intersect.

Let Sj = (cj , nj , rj) be one of the splats generated as described above. In order to define a linearly changing

normal field over the splat, we use a local parametrization on the splat. Let uj be a vector orthogonal to the

normal vector nj and vj be defined as vj = njxuj . Moreover, let ‖uj‖ = ‖vj‖ = rj . The orthogonal vectors

uj and vj span the plane that contains splat Sj . A local parametrization of the splat is given by

(u, v) 7→ cj + uuj + vvj

with (u, v) ∈ <2 and u2 + v2 ≤ 1. The origin of the local 2D coordinate system is the center of the splat Sj .

Using this local parametrization, a linearly changing normal field nj(u, v) for splat is defined Sj by

nj(u, v) = −→n j + uνjuj + vωjvj

The vector −→n j describes the normal direction in the splats center. It is tilted along the splat with respect to the

yet to be determined factors νj , ωj ∈ <. Figure 7.4(c) illustrates the idea.

To determine the tilting factors νj and ωj is exploited the fact that the normal directions are known at the points

of point cloud P that are covered by the splat. Let pl be one of these points. pl is projected onto the splat, local

coordinates (ul, vl) of pl are determined, and the following equation is derived

nl = −→n j + ulνjuj + vlωjvj

where nl denotes the surface normal in pl. Proceeding analogously for all other points out of P covered by

splat Sj , a system of linear equations is obtained with unknown variables νj and ωj. Since the system is

overdetermined, it can only be solved approximately.

95

7.3.2 Ray Tracing

7.3.2.1 Main Approach

The input of the ray-tracing procedure are the m splats S1, ..., Sm generated from point cloud P. Each splat Sj

is given by its center cj , its radius rj , and its normal field nj(u, v) using local parameters (u, v) over the local

coordinate system (uj , vj).

The standard ray-tracing method that is applied sends out primary rays from the camera position through the

center of each pixel of the resulting image onto the scene. The intersection of the primary rays with the objects

of the scene using ray-splat intersections is computed. From the intersection points are sent out secondary rays,

i.e., shadow rays towards all light sources, reflection rays in case of reflective surfaces, and refraction rays in

case of transmissive surfaces. In the latter two cases, we enter the recursion until the ray-trace depth is met.

7.3.2.2 Octree Generation

In order to process computations of ray-splat intersections efficiently, an octree for storing the splats is used.

The generation of the octree and the insertion of the splats is done in two steps.

The first step is the dynamic phase, where the octree is generated. Starting with an empty octree represented by

the root that describes the bounding box of the entire scene, each splat is iteratively inserted into that leaf cell

that contains the center of the splat. As soon as one leaf cell would contain more than a given small number cs

of splat entries, the leaf cell gets subdivided into eight equally-sized subcells. The splats that were stored in the

former leaf cell get adequately distributed among its children, which are the new leaf cells. This first phase is

as simple as generating an octree for points. The iteration stops once all splats have been inserted.

The second step is the static phase. Further splat insertions are made, but the structure of the octree does not

change anymore, i.e., no further cell subdivisions are executed. The additional splat insertions are necessary,

as splats have an expansion and may stretch over various cells. Thus, in this second phase, we want to insert

the splats into all leaf cells they intersect, see Figure 7.5(a). Since such an exact cell-splat intersection is

computationally rather expensive, the splats are inserted into leaf cells that potentially intersect the splat.

For each splat Sj , the tree is traversed top-down applying a nested test for each traversed cell. The first test

checks for splat Sj whether the axes-aligned box with center cj and side length 2.rj intersects the cell. If the

test fails, tree traversal for that branch stops. For all leaf cells, for which the first test was positive, a second

test is performed. The second test uses the local parametrization of the splat. The local parameters (0,0), (0,1),

(1,0), and (1,1) define a 2D square that bounds the splat. The position of these four points is checked against

the leaf cell. If all four points lie on one side of one of the six planes that bound the leaf cell, the splat cannot

intersect the leaf cell, see Figure 7.5(c). Otherwise, the splat is inserted into the leaf cell, see Figure 7.5(b).

96

Figure 7.5: (a) Octree generation: In the first phase, the octree is generated while inserting splats Sj into the
cells containing their centers cj (red cell). In the second phase, splat Sj is inserted into all additional cells it
intersects (yellow cells). (b)(c) The second test checks whether the edges of the bounding square of splat Sj
intersect the planes E that bound the octree leaf cell. (b) Sj is inserted into the cell. (c) Sj is not inserted into
the cell. This second test is only performed if the first test (bounding box test) was positive.

7.3.2.3 Ray-splat Intersection

The intersection of rays with splats is computed using the octree partitioning of the three-dimensional scene.

For primary rays starting from the camera position (or eye point), the intersection of the ray with the bounding

box of the octree is computed, i.e., with the cell represented by the octrees root. The leaf cell to which the

intersection point belongs is determined, and then algorithm continues from there. From then on, primary and

secondary rays can be treated equally.

If the rays hits a (leaf) cell of the octree, intersection of the ray with all splats stored within that cell is checked

for. If the ray does not intersect any of the splats stored in that cell or if the cell is empty, the algorithm pro-

ceeds with the adjacent cell in the direction of the ray. If it ends up leaving the bounding box of the octree, the

respective background color is reported back. If the ray intersects a splat stored in the current cell, it computes

the precise intersection point and applies the shading, reflection, and refraction model possibly using recursive

calls to compute the color, which is reported back. If the ray hits multiple splats stored in the current cell, the

algorithm computes the intersection points and pick the most appropriate one.

After having a look at the Splat-Based Ray Tracing technique, we know how to incorporate Photon Mapping

for point models (replacing the ray-tracer). But, Photon Mapping by itself still takes a lot of time to generate

97

visually pleasing results. Hence, next, we try to optimize the traditional Photon Mapping algorithm to work

faster (and possibly at interactive rates). Photon mapping, if divided, works in three stages:

• Photon Generation

• Photon Traversing and performing intersection tests

• Photon retrieval using kNN queries while ray-trace rendering

We target each of the three stages of Photon Mapping one by one and try to optimize them as much as possible

in the following sections.

7.3.3 Optimizing Photon Generation and Sampling

Recall that we generate only caustic photon maps as we already have a pre-computed diffuse global illumination

solution. Thus, the obvious candidate for optimization is the time required for generating caustic photons.

Looking at the Photon Mapping algorithm reveals that some of the cost factors for photon generation can not be

improved on. For example, rays will be incoherent during photon generation, and each light path will require

several surface interactions (for reflection and refraction) in order to generate a caustic photon. However, the

number of paths that actually yield caustic photons can be influenced, and should be maximized.

7.3.3.1 Sampling Caustics using Selective Photon Tracing

We use a method similar to Wald [GWS04] which uses, Selective Photon Tracing (SPT) [DBMS02]. Like [GWS04]

we do not consider the temporal domain, but rather use Selective Photon Tracing for adaptively sampling path

space: In a first step, a set of “pilot photons” is traced into the scene in order to detect paths that generate

caustics. For those pilot paths, periodicity properties of the Halton sequence [Nie92] are exploited to generate

similar photons.

By using Selective Photon Tracing the increase in the yield of caustic photons is roughly by a factor of four.

Essentially, this means that the same number of caustic photons can be generated with only one fourth of all

rays. As the improvement depends significantly on the (projected) size of the caustic generator, the results for

smaller caustic generators are likely to be more significant than large ones.

This approach also handles indirect caustics , as the photons of one group also stay together after diffuse

bounces. Most importantly, however, this method does not require any preprocessing and maintains the photon

map’s property of being independent of scene geometry and thus well-suited for both complex scenes and in-

teractive setups.

More details of this algorithm can be found in [GWS04] and [DBMS02].

98

We thus, previously, had a ray-tracer (Splat-Based Ray Tracing) which is capable of generating specular ef-

fects (sans caustics) on point models. Combining this ray-tracer with the new faster caustic-map generation

technique (using Selective Photon tracing) gives us quite a bit of speedup.

7.3.4 Optimized Photon Traversal and Intersection tests

The intersection tests performed for generating caustic photon map is similar to those performed while doing

Splat-Based Ray-Tracing (ray-splat intersections), and thereby we need not worry about designing a new algo-

rithm for the same. Further, Splat-Based Ray-Tracing uses Octree data-structure for traversal of the primary

and secondary rays during ray-tracing. The use of Octree data structure provides us with quite a few advantages:

• We already have Octree data structure generated for input point model while doing diffuse illumination.

Hence same structure can be re-used.

• The same traversal algorithm which Splat-Based Ray Tracing uses on Octrees can be used for photon

traversal as well.

• Further more, we can go for an even more optimized algorithm for Octree Traversal using neighbor

finding [Sam89]. Here we traverse the octree horizontally via neighbor finding instead of traversing

vertically starting from the root to the desired node.

Thus, we already have a well-established data structure (Octree) and algorithm (ray-splat intersection) for

performing optimal photon traversal and intersection tests of rays and splats around points.

7.3.5 Fast Photon Retrieval using Optimized kNN Query Algorithm

We now have an optimized caustic photon generation code, an optimized photon traversal and ray-splat inter-

section code, a good ray-tracer capable of handling specular effects on point models. All it remains is to have

an optimized kNN query algorithm for fast photon retrieval while rendering.

Although, kd-trees provides for fast kNN queries, they are still slow for interactive settings we desire. Also,

its difficult to extend kd-trees to hardware, and would account for high latency or would require a large cache

to avoid this latency on average.

The algorithm discussed here avoids the above mentioned issues of kd-trees and provides for low-latency and

has sub-linear access time, there by providing for fast photon retrieval and optimized kNN query algorithm.

We just provide a brief overview. Details of this algorithm can be found in Ma [MM02].

7.3.5.1 Low Latency Photon Retrieval Using Block Hashing

Jensen [Jen96] uses the kd-tree data structure to find these nearest photons. However, solving the kNN problem

via kd-trees requires a search that traverses the tree. Even if the tree is stored as a heap, traversal still requires

99

random-order memory access and memory to store a stack. More importantly, a search-path pruning algorithm,

based on the data already examined, is required to avoid accessing all data in the tree. This introduces serial

dependencies between one memory look up and the next, consequently slowing down the retrieval process.

We present here a hashing-based AkNN (Approximate kNN) solution for fast retrieval of photons. This algo-

rithm has bounded query time, bounded memory usage, and high potential for fine-scale parallelism. Moreover,

the algorithm results in coherent, non-redundant accesses to block-oriented memory. The results of one mem-

ory look up do not affect subsequent memory lookups, so accesses can take place in parallel within a pipelined

memory system. The algorithm is based on array access, and is more compatible with current texture-mapping

capabilities than tree-based algorithms.

A novel technique called Block Hashing(BH) is used to solve the approximate kNN (AkNN) problem in pho-

ton mapping. The algorithm uses hash functions to categorise photons by their positions. Then, a kNN query

proceeds by deciding which hash bucket is matched to the query point and retrieving the photons contained

inside the hash bucket for rendering purposes. One attraction of the hashing approach is that evaluation of hash

functions takes constant time. In addition, once we have the hash value, accessing data we want in the hash

table takes only a single access. These advantages permit us to avoid operations that are serially dependent on

one another, such as those required by kd-trees, and hepls towards a low-latency implementation.

The technique is designed under two assumptions on the behavior of memory systems.

• Its assumed that memory is allocated in fixed-sized blocks.

• Its assumed that access to memory is via burst transfer of blocks that are then cached.

Thus if any part of a fixed-sized memory block is touched, access to the rest of this block will be virtually

zero-cost. Therefore, in BH all memory used to store photon data is broken into fixed-sized blocks.

Locality-Sensitive Hashing: Since our goal is to solve the kNN problem as efficiently as possible in a

block-oriented cache-based context, our hashing technique requires hash functions that preserve spatial neigh-

borhoods. These hash functions take points that are close to each other in the domain space and hash them

close to each other in hash space. By using such hash functions, photons within the same hash bucket as a

query point can be assumed to be close to the query point in the original domain space. Consequently, these

photons are good candidates for the kNN search. The algorithm uses the Locality-Sensitive Hashing (LSH)

algorithm proposed by [GIM99] for the same.

The hash function in LSH groups one-dimensional real numbers in hash space by their spatial location. It

does so by partitioning the domain space and assigning a unique hash value to each partition. To deal with

n-dimensional points, each hash table will have one hash function per dimension. Each hash function generates

one hash value per coordinate of the point and the final hash value is calculated by
∑n−1

i=0 hiP
i where hi are

100

the hash values and P is the number of thresholds. Thus each photon gets mapped to three hash tables corre-

sponding to its x, y, z location co-ordinates. Details on how the thresholds for partitions are selected, how hash

tables are created and what is an optimal bucket size can be referred from Ma [MM02].

Further, each of these photons occupies exactly six 32-bit words in memory and are stored in fixed size memory

blocks of 64 32-bit words (10 photons per block).

Block Hashing: It, thus, contains a preprocessing phase and a query phase. The preprocessing phase consists

of three steps after the photons have been traced in the scene.

• Organizing the photons into fixed-sized memory blocks

• Creation of a set of hash tables

• Inserting photon blocks into the hash tables.

Details of the pre-processing phase can be looked in Ma [MM02]. In the second phase, the hash tables will be

queried for a set of candidate photons from which the k nearest photons will be selected for each point in space

to be shaded by the renderer.

Querying:

Figure 7.6: Merging the results from multiple hash tables. (a) the query point retrieves different candidates
sets from different hash tables, (b) the union set of candidates after merging, and (c) the two closest neighbors
selected.

A query into the BH data structure proceeds by delegating the query to each of the L hash tables. These

parallel accesses will yield as candidates all photon blocks represented by buckets that matched the query. The

101

final approximate nearest neighbor set comes from scanning the unified candidate set for the nearest neighbors

to the query point (see Figure 7.6.) Note that unlike kNN algorithms based on hierarchical data structures,

where candidates for the kNN set trickle in as the traversal progresses, in BH all candidates are available once

the parallel queries are completed. Therefore, BH can use algorithms like selection (instead of a priority queue)

when selecting the k nearest photons.

Thus, this completes the whole set-up of making Photon Mapping work for point models and optimizing

every stage of the algorithm. However, issues like how to handle specular objects while computing purely

diffuse global illumination using FMM is still a question. This is just a starting point and many issues need to

be tackled while actual implementation.

102

Chapter 8

Conclusion and Future Work

Point-sampled geometry has gained significant interest due to their simplicity. The lack of connectivity touted

as a plus, however, creates difficulties in many operations like generating global illumination effects. This

becomes especially true when we have a complex scene consisting of several models, the data for which is

available as hard to segment aggregated point-based models. Inter-reflections in such complex scenes requires

knowledge of visibility between point pairs. Computing visibility for point models becomes all the more diffi-

cult, than for polygonal models, since we do not have any surface or object information.

Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction be-

tween two primitives depends on the rest of the scene. One way to reduce the difficulty is to consider clustering

of regions such that their mutual visibility is resolved at a group level. Most scenes admit clustering, and the

Visibility Map data structure we propose enables efficient answer to common rendering queries. We extended,

in this report, the novel, provably efficient, hierarchical, visibility determination scheme for point based models

to the highly parallel structures of modern day GPUs. By viewing this visibility map as a ‘preprocessing’ step,

photo-realistic global illumination rendering of complex point-based models have been shown. By extending

the V-map construction algorithm on the GPU, efficient speed-ups have also been reported.

Further, we have used the Fast Multipole Method (FMM) as the light transport kernel for inter-reflections,

in point models, to compute a description – illumination maps – of the diffuse illumination. Parallel imple-

mentation of FMM is a difficult task with data decomposition and communication efficiency being the major

challenges. In §3, we discussed one such algorithm which uses only a static data decomposition on octrees and

offers communication efficiency. We exploited the parallel computing power of GPUs for implementation of

the Fast Multipole Method based radiosity kernel as well as the point-pair visibility determination algorithm

using Visibility Maps to provide an efficient, fast inter-visibility and global illumination solution for point mod-

els. Different implementations of parallel octree construction on GPU were also presented which are to be

eventually merged with the GPU-based parallel FMM algorithm.

A complete global illumination solution for point models should cover both diffuse and specular (reflections,

103

refractions, and caustics) effects. Diffuse global illumination is handled by generating illumination maps. We,

thus, further saw in the report how various algorithms from the literature were combined under a single domain

to get us a time-efficient system designed to generate the desired specular effects for point models. We now aim

to implement these algorithms, merge them together and get the specular effects solution for point models.

We, thus, will have a two–pass global illumination solver for point models. The input to the system will be a

scene consisting of both diffuse and specular point models. First pass will calculate the diffuse illumination

maps, followed by the second pass for specular effects. Finally, the scene will be rendered using splat-based

ray-tracing technique. However, a question remains that since we are parting the diffuse and specular effect

calculations for the scene, how would we handle specular objects (and their effects on diffuse objects) while

calculating only diffuse global illumination (This issue is very well handled in Photon Mapping [Jen96]) in the

first pass of the global illumination solver. This important issue needs to be investigated thoroughly.

104

References

[AA03] Anders Adamson and Marc Alexa. Ray tracing point set surfaces. In SMI ’03: Proceedings of

the Shape Modeling International 2003, page 272, Washington, DC, USA, 2003. IEEE Computer

Society. 7, 85

[ABCO+03] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T.

Silva. Computing and rendering point set surfaces. IEEE Transactions on Visualization and

Computer Graphics, 9(1):3–15, 2003.

[AGCA08] Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, and Srinivas Aluru. Fast, parallel, gpu-

based construction of space filling curves and octrees. In SI3D ’08: Proceedings of the 2008

symposium on Interactive 3D graphics and games, pages 1–1, New York, NY, USA, 2008. ACM.

ii, 43, 56, 60, 63, 64

[Ama84] John Amanatides. Ray tracing with cones. In Hank Christiansen, editor, Computer Graphics

(SIGGRAPH ’84 Proceedings), volume 18, pages 129–135, 1984. 7

[AS99] S. Aluru and F. Sevilgen. Dynamic compressed hyper-octrees with applications to n-body prob-

lems. Proceedings of Foundations of Software Technology and Theoritical Computer Science,

pages 21–33, 1999.

[AS07] S. Aluru and S. Seal. Handbook of Parallel Computing: Models, Algorithms and Applications,

chapter Spatial Domain Decomposition Methods in Parallel Scientific Computing. Chapman and

Hall, CRC Computer and Information Science Series, 2007.

105

[BCL+92] J. A. Board, J. W. Causey, J. F. Leathrum, A. Windemuth, and K. Schulten. Accelerated molecular

dynamics simulation with the parallel fast multipole method. Chemistry Physics Letters, 198:89–

94, 1992. 8

[BG] R. Beatson and L. Greengard. A Short Course on Fast Multipole Methods.

[Bit02] Jiri Bittner. Hierarchical Techniques for Visibility Computations. PhD thesis, Czech Technical

University, 2002.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R.

Evans. Reconstruction and representation of 3d objects with radial basis functions. Proceedings

of ACM SIGGRAPH, pages 67–76, August 2001. 8

[CGR88] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle simula-

tions. SIAM Journal of Scientific and Statistical Computing, 9:669–686, July 1988.

[CGR99] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in three dimensions.

Journal of Computational Physics, 155:468–498, 1999.

[Chr] T. W. Christopher. Bitonic Sort Tutorial. http://www.tools-of-computing.com/tc/

CS/Sorts/bitonic_sort.htm. 36

[CUDa] CUDA. NVIDIA CUDA Programming Guide. http://developer.nvidia.com/cuda.

8, 15, 16, 18, 61

[CUDb] CUDPP. CUDA Data Parallel Primitives Library. http://www.gpgpu.org/developer/

cudpp. 56, 59, 64

[DBMS02] K. Dmitriev, S. Brabec, K. Myszkowski, and H. Seidel. Interactive global illumination using

selective photon tracing. In The 13th Eurographics Workshop on Rendering, pages 21–34, 2002.

98

[DDP96] Frédo Durand, George Drettakis, and Claude Puech. The 3d visibility complex: A new approach

to the problems of accurate visibility. In Eurographics Rendering Workshop, pages 245–256,

1996.

[DDP97] Frédo Durand, George Drettakis, and Claude Puech. The visibility skeleton: a powerful and

efficient multi-purpose global visibility tool. Computer Graphics, 31:89–100, 1997.

[DS96] George Drettakis and François Sillion. Accurate visibility and meshing calculation for hierarchi-

cal radiosity. In Rendering Techniques, 7th EG Workshop on Rendering, pages 269–278, 1996.

106

http://www.tools-of-computing.com/tc/CS/Sorts/bitonic_sort.htm
http://www.tools-of-computing.com/tc/CS/Sorts/bitonic_sort.htm
http://developer.nvidia.com/cuda
http://www.gpgpu.org/developer/cudpp
http://www.gpgpu.org/developer/cudpp

[DS00] J. Dongarra and F. Sullivan. The top ten algorithms. Computing in Science and Engineering,

2:22–23, 2000. 8, 21

[DTG00] Philip Dutre, Parag Tole, and Donald P. Greenberg. Approximate visibility for illumination com-

putation using point clouds. Technical report, Cornell University, 2000. 67, 69

[DYN04] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Radiosity for point sampled

geometry. In Pacific Graphics, 2004. iv, 5, 67

[E.62] Bresenham J. E. Bresenham’s line drawing algorithm, 1962. 70

[EDD03] A. Elgammal, R. Duraiswami, and L. Davis. Efficient kernel density estimation using the fast

gauss transform with applications to color modeling and tracking. IEEE Transactions on PAMI,

2003. 8

[GAC08] R. Goradia, P. Ajmera, and S. Chandran. Gpu-based hierarchical computation for view indepen-

dent visibility. Accepted at ICVGIP, Indian Conference on Vision, Graphics and Image Process-

ing, 2008. 13

[GCCCed] Rhushabh Goradia, Anish Chandak, Biswarup Choudary, and Sharat Chandran. Fmm-based

illumination maps for point models. In Was submitted to Symposium on Point Based Graphics

(pbg06), 2006 (Not Accepted).

[GD98] J. P. Grossman and William J. Dally. Point sample rendering. In Rendering Techniques, pages

181–192, 1998. 67

[GD07] Nail A. Gumerov and Ramani Duraiswami. Fast multipole methods on graphics processors. Astro

GPU, 2007. 24, 25

[GDB03] N. A. Gumerov, R. Duraiswami, and E. A. Borikov. Data structures, optimal choice of param-

eters, and complexity results for generalized multilevel fast multipole methods in d dimensions.

Technical report, Perceptual Interfaces and Reality Laboratory, Institute for Advanced Computer

Studies, University of Maryland, College Park, 2003.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via

hashing. In VLDB ’99: Proceedings of the 25th International Conference on Very Large Data

Bases, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. 100

107

[GKCD07] R. Goradia, A. Kanakanti, S. Chandran, and A. Datta. Visibility map for global illumination in

point clouds. Proceedings of ACM SIGGRAPH GRAPHITE, 5th International Conference on

Computer Graphics and Interactive Techniques, 2007. v, 7, 12, 13, 74, 76, 79

[GKM96] L. Greengard, M. C. Kropinski, and A. Mayo. Integral equation methods for stokes flow and

isotropic elasticity. Journal of Computational Physics, 125:403–414, 1996. 8

[Gor06] Rhushabh Goradia. Fmm-based illumination maps for point models. Second Progress Report,

Ph.D., 2006. 22, 70, 71

[Gor07] Rhushabh Goradia. Global illumination for point models. Third Progress Report, Ph.D., 2007.

ii, 13, 67, 71

[GR87] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Computational

Physics, 73:325–348, 1987. 8, 21

[Gre88] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cam-

bridge, Massachusetts, 1988.

[GSCH93] Steven J. Gortler, Peter Schröder, Michael F. Cohen, and Pat Hanrahan. Wavelet radiosity. In SIG-

GRAPH ’93: Proceedings of the 20th annual conference on Computer graphics and interactive

techniques, pages 221–230, New York, NY, USA, 1993. ACM Press. 7

[GST05] Dominik Göddeke, Robert Strzodka, and Stefan Turek. Accelerating double precision FEM sim-

ulations with GPUs. In Proceedings of ASIM 2005 - 18th Symposium on Simulation Technique,

Sep 2005. 25

[GTG84] C. M. Goral, K. E. Torrance, and D. P. Greenberg. Modeling the interaction of light between

diffuse surfaces. Computer Graphics, 18(3):213–222, Jul 1984.

[GWS04] Johannes Günther, Ingo Wald, and Philipp Slusallek. Realtime caustics using distributed pho-

ton mapping. In Rendering Techniques, pages 111–121, jun 2004. (Proceedings of the 15th

Eurographics Symposium on Rendering). 98

[HA05] B. Hariharan and S. Aluru. Efficient parallel algorithms and software for compressed octrees

with applications to hierarchical methods. Parallel Computing, 31:311–331, 2005.

[Har] M. Harris. Parallel Prefix Sum (Scan) with CUDA. http://developer.download.

nvidia.com/compute/cuda/sdk/website/samples.htm.

108

http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.htm
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.htm

[HAS02] B. Hariharan, S. Aluru, and B. Shanker. A Scalable Parallel Fast Multipole Method for Analysis

of Scattering from Perfect Electrically Conducting Surfaces. Proc. Supercomputing, page 42,

2002.

[Hau97] A. Haunsner. Multipole expansion of the light vector. IEEE Transactions on Visualization and

Computer Graphics, 3(1):12–22, Jan-Mar 1997.

[Hec90] P. S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics,

ACM Siggraph Conference proceedings, pages 145–154, 1990. 86

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algorithm. In

Computer Graphics, volume 25, pages 197–206, 1991.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan) with cuda.

In Hubert Nguyen, editor, GPU Gems 3. Addison Wesley, August 2007.

[Jen96] H. W. Jensen. Global illumination using photon maps. Eurographics Rendering Workshop 1996,

pages 21–30, June 1996. vii, 7, 86, 87, 92, 99, 104

[Jen03] Henrik Wann Jensen. Monte carlo ray tracing. Siggraph Course 4, pages 15–30, 2003.

[Kaj86] James T. Kajiya. The rendering equation. In Proceedings of the 13th annual conference on

Computer graphics and interactive techniques, pages 143–150. ACM Press, 1986.

[KC03] A. Karapurkar and S. Chandran. Fmm-based global illumination for polygonal models. Master’s

thesis, Indian Institute of Technology, Bombay, 2003. iv, 4, 22, 25, 26

[KGC04] A. Karapurkar, N. Goel, and S. Chandran. Fmm-based global illumination for polygonal models.

Indian Conference on Computer Vision, Graphics, and Image Processing, pages 119–125, 2004.

[KTB07] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of point sets. In SIGGRAPH ’07,

page 24. ACM, 2007. 67

[LHN05] S. Lefebvre, S. Hornus, and F. Neyret. GPU Gems 2, chapter Octree Textures on the GPU, pages

595–614. Addison Wesley, 2005. 40

[LMR07] Lars Linsen, Karsten Muller, and Paul Rosenthal. Splat-based ray tracing of point clouds. Journal

of WSCG, (Proceedings of Fifteenth International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision - WSCG 2007), UNION Agency, 2007. 85, 93

109

[LPC+00] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas Pereira, Matt

Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The

digital michelangelo project: 3D scanning of large statues. In Kurt Akeley, editor, Siggraph 2000,

Computer Graphics Proceedings, pages 131–144. ACM Press / ACM SIGGRAPH / Addison

Wesley Longman, 2000. 3

[LTC06] Y. Landa, R. Tsai, and L.T. Cheng. Visibility of point clouds and mapping of unknown environ-

ments. In ACIVS06, pages 1014–1025, 2006.

[LW85] Marc Levoy and Turner Whitted. The use of points as a display primitive. Technical report,

University of North Carolina at Chapel Hill, 1985.

[MGPG04] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas. Registration of point cloud data from a

geometric optimization perspective. In Symposium on Geometry Processing, pages 23–31, 2004.

67

[MM02] Vincent C. H. Ma and Michael D. McCool. Low latency photon mapping using block hashing.

In SIGGRAPH/Eurographics Graphics Hardware Workshop, pages 89–98, 2002. 99, 101

[Moo93] Andrew W. Moore. An introductory tutorial on kd-trees. Carnegie Mellon University, 1993. 89

[NHP07] L. Nyland, M. Harris, and J. Prins. GPU Gems 3, chapter Fast N-Body Simulation with CUDA,

pages 677–696. Addison Wesley, 2007. v, 23, 24

[Nie92] H. Niederreiter. Random number generation and quasi-monte carlo methods. Society for Indus-

trial and Applied Mathematics, 1992. 98

[OBA+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. Multi-level

partition of unity implicits. ACM Trans. Graph., 22(3):463–470, 2003. 3, 7

[OCL96] Ming Ouhyoung, Yung-Yu Chuang, and Rung-Huei Liang. Reusable radiosity object. In Com-

puter Graphics Forum, volume 15/3, pages 347–356. Eurographics / Blackwell Publishers, Au-

gust 1996. ISBN 1067-7055.

[OLG+07] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E. Lefohn,

and Timothy J. Purcell. A survey of general-purpose computation on graphics hardware. Com-

puter Graphics Forum, 26(1):80–113, 2007. iv, 9

[Pau03] Mark Pauly. Point Primitives for Interactive Modeling and Processing of 3D Geometry. PhD

thesis, ETH Zurich, 2003.

110

[PD90] Harry Plantinga and Charles R. Dyer. Visibility, occlusion, and the aspect graph. International

Journal of Computer Vision, 5(2):137–160, 1990.

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplification of point-sampled sur-

faces. In VIS ’02: Proceedings of the conference on Visualization ’02, pages 163–170, Washing-

ton, DC, USA, 2002. IEEE Computer Society.

[PKKG03] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape modeling with point-

sampled geometry. ACM Trans. Graph., 22(3):641–650, 2003. 3

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels: Surface ele-

ments as rendering primitives. In Kurt Akeley, editor, Siggraph 2000, Computer Graphics Pro-

ceedings, pages 335–342. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

3

[RL00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering system for

large meshes. In Kurt Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, pages

343–352. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000. 3, 7

[Sac64] R. A. Sack. Addition theorems for functions of spherical harmonics. Journal of Mathematical

Physics, 5(2):245–251, Feb 1964.

[SAF05] Fatih E. Sevilgen, Srinivas Aluru, and Natsuhiko Futamura. Research note: Parallel algorithms

for tree accumulations. J. Parallel Distrib. Comput., 65(1):85–93, 2005.

[Sag94] H. Sagan. Space Filling Curves. Springer-Verlag, 1994.

[Sam89] H. Samet. Implementing ray tracing with octrees and neighbor finding. Computers and Graphics,

13(4):445–460, 1989. 99

[Sch06] Lars Schjoth. Diffusion based photon mapping. International Conference on Computer Graphics

Theory and Applications GRAPP, 2006. 91

[SHZO07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives for gpu

computing. In Graphics Hardware 2007, pages 97–106. ACM, August 2007.

[SJ00] G. Schaufler and H. Jensen. Ray tracing point sampled geometry. In Eurographics Rendering

Workshop Proceedings, pages 319–328, 2000. 7, 85

111

[SK98] A. James Stewart and Tasso Karkanis. Computing the approximate visibility map, with applica-

tions to form factors and discontinuity meshing. Eurographics Workshop on Rendering, pages

57–68, June 1998.

[SP94] F. Sillion and C. Puech. Radiosity and Global Illumination. Morgan Kaufmann Publishers, 1994.

[TH93] S. Teller and P. Hanrahan. Global visibility algorithms for illumination computations. In Proc. of

SIGGRAPH-93: Computer Graphics, pages 239–246, 1993.

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walkthroughs. Com-

puter Graphics, 25(4):61–68, 1991.

[Wal05] Ingo Wald. High-Quality Global Illumination Walkthroughs using Discretized Incident Radiance

Maps. Technical Report, SCI Institute, University of Utah, No UUSCI-2005-010 (submitted for

publication), 2005. 7

[Wik] Wikipedia. The N-Body Problem. http://en.wikipedia.org/wiki/N-body_

problem. (Last seen on 30th June, 2008).

[WS93] M. S. Warren and J. K. Salmon. A parallel hashed octree n-body algorithm. Proceedings of

Supercomputing, pages 12–21, 1993.

[WS03] Michael Wand and Wolfgang Straer. Multi-resolution point-sample raytracing. Graphics Inter-

face, pages 139–148, 2003. 3, 85

[WS05] Ingo Wald and Hans-Peter Seidel. Interactive Ray Tracing of Point Based Models. In Proceedings

of 2005 Symposium on Point Based Graphics, 2005. iv, 5, 7, 85

[ZPKG02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross. Pointshop 3d: An interactive

system for point-based surface editing, 2002.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Surface splatting. In

SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interac-

tive techniques, pages 371–378, New York, NY, USA, 2001. ACM Press.

112

http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem

	Introduction
	Point Based Modelling and Rendering
	Global Illumination
	Diffuse and Specular Inter-reflections

	Fast computation with Fast Multipole Method
	Parallel computations using the GPU
	Octrees and FMM
	Octrees
	Spatial Locality Based Domain Decomposition
	Visibility between Point Pairs

	Problem Definition and Contributions
	Overview of the Report

	General Purpose Computations on GPU (GPGPU)
	Programming a GPU for General Purpose Computations
	NVIDIA CUDA Programming Model
	GPU Program Optimization Techniques

	Parallel FMM on the GPU
	Fast computation with Fast Multipole Method
	Prior Work
	Direct N-Body Simulations on the GPU

	Parallel FMM computations on GPU
	Implementation Details
	Upward Pass
	Downward Pass
	Quality Comparisons
	Timing Comparisons

	Space Filling Curves
	Octrees
	Octrees: Introduction
	Non-Adaptive and Adaptive Octrees

	Prior Work: Octree Construction on the GPU
	Problems

	Octree on the GPU
	Implementation 1: Non-Adaptive Octree using Direct Indexing Rhushabh
	Implementation 2:Parallel Memory Efficient Bottom-Up Adaptive Octree
	Implementation details
	Implementation 3:Parallel Memory Efficient Top-Down Adaptive Octree
	Comparison between Implementation 1 and Implementations 2/3
	GPU Optimizations

	Results

	View Independent Visibility using V-map on GPU
	Prior Work: CPU-based V-map Construction rhushabh:aps3
	Visibility Maps
	Point--Pair Visibility Algorithm
	Octree Depth Considerations
	Construction of Visibility Maps

	GPU-based V-map Construction
	The Visibility Map
	V-map Computations on GPU
	Multiple Threads Per Node Strategy
	One Thread per Node Strategy
	Multiple Threads per Node-Pair

	Leaf-Pair Visibility
	Prior Algorithm
	Computing Potential Occluders

	GPU Optimizations
	Results
	Visibility Validation
	Quantitative Results

	Discussion: Specular Inter-reflections and Caustics in Point based Models
	Introduction
	Photon Mapping
	Photon Tracing (First Pass)
	Preparing the Photon Map for Rendering
	Rendering (Second Pass)
	Radiance Estimate
	Limitations of Photon Mapping

	Our Approach
	Splat-Based Ray Tracing
	Ray Tracing
	Optimizing Photon Generation and Sampling
	Optimized Photon Traversal and Intersection tests
	Fast Photon Retrieval using Optimized kNN Query Algorithm

	Conclusion and Future Work

