
About the Course
The Origins

Some Insights into the Non-OO Imperative World

CS 617 Object Oriented Systems
Lecture 1

Jan 1, 2008
3:30-5:00 pm

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Outline

1 About the Course

2 The Origins

3 Some Insights into the Non-OO Imperative World



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Outline

1 About the Course

2 The Origins

3 Some Insights into the Non-OO Imperative World



About the Course
The Origins

Some Insights into the Non-OO Imperative World

The Content of Course

A PG level Advanced Course on Object Oriented Systems
Not a First Course



About the Course
The Origins

Some Insights into the Non-OO Imperative World

The TAs

Akankshi Ratadiya
Namrata Jain



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Course Planning I

1 Course Overview, Introduction (1.5)
2 Abstractions, Encapsulation, Interfaces and

Implementations (1.5)
3 Abstract Data Types (1.5)
4 Design by Contract (1.5)
5 Classes, Implementation sharing, ’this’ (1.5)
6 Single inheritance, Dynamic Binding, Polymorphism (1.5)
7 Subtyping in Inheritance (1.5)
8 ’self or this’ again, and ’super’; Multiple Inheritance (1.5)
9 Dynamic Dispatch Implementations (1.5)

10 Inheritance Variations and Comparative Studies (1.5)
11 Metaclasses, Comparative Studies (1.5)



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Course Planning II
12 Engineering Properties: building abstractions and

hierarchies, Metapatterns, Making frameworks (1.5)
13 Object Oriented Metrics and Design Properties (1.5)
14 Design Reuse, Creational Patterns with Example

Applications (3)
15 Structural Patterns with Example Applications (4.5)
16 Behavioral Patterns with Example Applications (3)
17 Lifecycle Models and Impact of Object Orientation (1.5)
18 Architectural Patterns (3)
19 Static Modeling with Object Orientation (3)
20 Dynamic Modeling with Object Orientation (3)
21 UML, Tools (1.5)
22 Discussions on Projects (from time to time)



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Evaluation Pattern

Quiz I: 10
Midsem: 20
Class Participation, Interactions, Impact, Attendance: 5
Endsem: 50
Term Project (Implementation Projects, can be done in
groups of 2): 15



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Course Website

http://www.cse.iitb.ac.in/ rkj/cs617-08
past offerings of cs 686 are also available through my home
page.
see esp: http://www.cse.iitb.ac.in/ rkj/cs686-2006.html



About the Course
The Origins

Some Insights into the Non-OO Imperative World

References

Selected Papers from Journals, Conferences
Technical Reports
Books on Design and Modeling
Reference Books for Languages
Class slides!

The reading details will be announced from time to time.



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Outline

1 About the Course

2 The Origins

3 Some Insights into the Non-OO Imperative World



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Why was Object Orientation Proposed?

For Managing the complexity in program organization
It’s about how you structure your programs
Asbtractions have impact on Programming Language
Design
Programming Paradigm has impact on Software
Development Methodology
Object orientation has applications beyond programming
and software development
So what were the techniques for program structuring prior
to Object Orientation?



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Some Program Structuring Methods

Structures
Procedures & Functions
Files
Structured Programming



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Some OOPLs

Simula I, Simula 67 (1962-1967)
Lisp based languages, Smalltalk (1970s)
C++ (starting early 80s)
Eiffel (1980s)
Java (mid 90s)
C sharp (around 2000)
Scripting Languages: javascript, python, ruby



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Impact of OOPLs on Software Engineering

Coad and Yourdon: OOA
Beck, Cunningham: CRC
Booch: OOD
Rumbaugh et al.: OMT
Jacobson: Use Case Driven OOSE
Unified Modeling Language, later into OMG



About the Course
The Origins

Some Insights into the Non-OO Imperative World

Outline

1 About the Course

2 The Origins

3 Some Insights into the Non-OO Imperative World



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program with C Globals I

#include <stdio.h>
// another instance cannot be handled by these functions
// they use globals

int accountNumber;
int balance;

void initialize() {balance=0;} // inlined member function
void deposit (int amount) { balance+=amount; }
void withdraw(int amount) {balance-=amount;}
void getbalance() {printf("%d\n",balance); }

int main () {



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program with C Globals II

initialize();
initialize();
deposit(500);
deposit(1500);
withdraw(100);
withdraw(100);
getbalance();
getbalance();

}



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A Program with static state per function I

#include <stdio.h>
// static members keep local state
// but functions cannot share state

void deposit (int amount) { static balance=0;
balance+=amount;
printf("%d\n",balance); }

void withdraw(int amount) {static balance=0;
balance-=amount;
printf("%d\n",balance); }

int main () {



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A Program with static state per function II

deposit(500);
deposit(1500);
withdraw(100);
withdraw(100);
}



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A Program with static state shared, just one function I

#include <stdio.h>
// static members keep local state
// but functions cannot share state

void account (int func_no, int amount) {

static balance=0;

switch (func_no) {
case 0: balance+=amount; break;
case 1: balance-=amount; break;
}
printf("%d\n",balance);



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A Program with static state shared, just one function II

}

int main () {

account(0,500);
account(0,1500);
account(1,100);
account(1,100);
}



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program with C structures-functions shared I

#include <stdio.h>

struct Account {

int accountNumber;
int balance;
};

void initialize(struct Account *acc) {acc->balance=0;} // inlined member function
void deposit (struct Account *acc, int amount) { acc->balance+=amount; }
void withdraw(struct Account *acc, int amount) {acc->balance-=amount;}
void getbalance(struct Account *acc) {printf("%d\n",acc->balance); }



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program with C structures-functions shared II

int main () {

struct Account acc1, acc2;
initialize(&acc1);
initialize(&acc2);
deposit(&acc1,500);
deposit(&acc2,1500);
withdraw(&acc1,100);
withdraw(&acc2,100);
getbalance(&acc1);
getbalance(&acc2);

}



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program in C - objects introduced I

#include <stdio.h>
// compiles in g++
// structures hold functions and behave as object definitions
// structures are classes except that default visibility is public
// in classes, default visibility is private

struct Account {

void deposit(int amount);
void withdraw(int amount) ;
void getbalance();
void initialize() {balance=0;} // inlined member function



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program in C - objects introduced II

private:
int accountNumber;
int balance;
};

void Account::deposit (int amount) { balance+=amount; }
void Account::withdraw(int amount) {balance-=amount;}
void Account::getbalance() {printf("%d\n",balance); }

int main () {

Account acc1, acc2;
acc1.initialize();



About the Course
The Origins

Some Insights into the Non-OO Imperative World

A program in C - objects introduced III

acc2.initialize();
acc1.deposit(500);
acc2.deposit(1500);
acc1.withdraw(100);
acc2.withdraw(100);
acc1.getbalance();
acc2.getbalance();

}


	About the Course
	The Origins
	Some Insights into the Non-OO Imperative World

