CS 617 Object Oriented Systems
Lecture 1
Jan 1, 2008
3:30-5:00 pm

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Outline

0 About the Course

e The Origins

e Some Insights into the Non-OO Imperative World

About the Course

Outline

o About the Course

About the Course

The Content of Course

@ A PG level Advanced Course on Object Oriented Systems
@ Not a First Course

|App|icati0n Projectsl

IBasic Fnundatinnsl

]
|C0mparative Studies of OOPle

|Engineering Properties of Object Orientationl

|Object Oriented Design & Patternsl

OOAD/Object Oriented Modeling Techniquesl

|Architectural Patterns |

About the Course

The TAs

@ Akankshi Ratadiya
@ Namrata Jain

About the Course

Course Planning |

@ Course Overview, Introduction (1.5)

© Abstractions, Encapsulation, Interfaces and
Implementations (1.5)

© Abstract Data Types (1.5)

© Design by Contract (1.5)

@ Classes, Implementation sharing, ’this’ (1.5)

© Single inheritance, Dynamic Binding, Polymorphism (1.5)
@ Subtyping in Inheritance (1.5)

© ’self or this’ again, and 'super’; Multiple Inheritance (1.5)
© Dynamic Dispatch Implementations (1.5)

@ Inheritance Variations and Comparative Studies (1.5)

@ Metaclasses, Comparative Studies (1.5)

About the Course

Course Planning Il

@ Engineering Properties: building abstractions and
hierarchies, Metapatterns, Making frameworks (1.5)

@® Object Oriented Metrics and Design Properties (1.5)

@ Design Reuse, Creational Patterns with Example
Applications (3)

@® Structural Patterns with Example Applications (4.5)

@ Behavioral Patterns with Example Applications (3)

@ Lifecycle Models and Impact of Object Orientation (1.5)

@ Architectural Patterns (3)

@ Static Modeling with Object Orientation (3)

@ Dynamic Modeling with Object Orientation (3)

@ UML, Tools (1.5)

@ Discussions on Projects (from time to time)

About the Course

Evaluation Pattern

@ Quiz I: 10

@ Midsem: 20

@ Class Participation, Interactions, Impact, Attendance: 5
@ Endsem: 50

@ Term Project (Implementation Projects, can be done in
groups of 2): 15

About the Course

Course Website

http://www.cse.iitb.ac.in/ rkj/cs617-08

past offerings of cs 686 are also available through my home
page.

see esp: http://www.cse.iitb.ac.in/ rkj/cs686-2006.html

About the Course

References

@ Selected Papers from Journals, Conferences
@ Technical Reports

@ Books on Design and Modeling

@ Reference Books for Languages

@ Class slides!

The reading details will be announced from time to time.

The Origins

Outline

e The Origins

The Origins

Why was Object Orientation Proposed?

@ For Managing the complexity in program organization
@ It's about how you structure your programs

@ Asbtractions have impact on Programming Language
Design

@ Programming Paradigm has impact on Software
Development Methodology

@ Object orientation has applications beyond programming
and software development

@ So what were the techniques for program structuring prior
to Object Orientation?

The Origins

Some Program Structuring Methods

@ Structures

@ Procedures & Functions
o Files

@ Structured Programming

The Origins

Some OOPLs

@ Simula |, Simula 67 (1962-1967)

@ Lisp based languages, Smalltalk (1970s)

@ C++ (starting early 80s)

@ Eiffel (1980s)

@ Java (mid 90s)

@ C sharp (around 2000)

@ Scripting Languages: javascript, python, ruby

The Origins

Impact of OOPLs on Software Engineering

Coad and Yourdon: OOA

Beck, Cunningham: CRC

Booch: OOD

Rumbaugh et al.: OMT

Jacobson: Use Case Driven OOSE

Unified Modeling Language, later into OMG

Some Insights into the Non-OO Imperative World

Outline

e Some Insights into the Non-OO Imperative World

Some Insights into the Non-OO Imperative World

A program with C Globals |

#include <stdio.h>
// another instance cannot be handled by these func
// they use globals

int accountNumber;
int balance;

void initialize() {balance=0;} // inlined member f
void deposit (int amount) { balance+=amount; }

volid withdraw (int amount) {balance—=amount;}

void getbalance () {printf ("%d\n",balance); }

int main () {

Some Insights into the Non-OO Imperative World

A program with C Globals Il

initialize();

)
initialize () ;
deposit (500) ;
deposit (1500);
withdraw (100) ;
)

withdraw (100

4

getbalance();
getbalance () ;

Some Insights into the Non-OO Imperative World

A Program with static state per function |

#include <stdio.h>
// static members keep local state
// but functions cannot share state

void deposit (int amount) { static balance=0;
balance+=amount;
printf ("$d\n",balance); }

void withdraw (int amount) {static balance=0;
balance—=amount;
printf ("$d\n",balance); }

int main () {

Some Insights into the Non-OO Imperative World

A Program with static state per function Il

deposit (500) ;
deposit (1500);
withdraw (100);
withdraw (100) ;
}

Some Insights into the Non-OO Imperative World

A Program with static state shared, just one function |

#include <stdio.h>
// static members keep local state
// but functions cannot share state

void account (int func_no, int amount) {
static balance=0;

switch (func_no) {

case 0: balance+=amount; break;
case 1: balance—=amount; break;
}

printf ("$d\n",balance);

Some Insights into the Non-OO Imperative World

A Program with static state shared, just one function Il

}

int main () {

account
account
account
account

}

0,500);
0,1500);
1,100);

(
(
(
(1,100);

Some Insights into the Non-OO Imperative World

A program with C structures-functions shared |

#include <stdio.h>
struct Account {

int accountNumber;
int balance;

}i

void initialize (struct Account =xacc) {acc->balance=
void deposit (struct Account =xacc, int amount) { ac
void withdraw (struct Account =xacc, int amount) {acc
void getbalance (struct Account xacc) {printf ("%d\n"

Some Insights into the Non-OO Imperative World

A program with C structures-functions shared Il

int main () {

struct Account accl, acc2;
initialize (&accl);
initialize (&acc?2);

deposit (&accl, 500);
deposit (&acc2,1500);
withdraw (&accl, 100);
withdraw (&acc2,100)

14

getbalance (&accl) ;
getbalance (&acc2) ;

Some Insights into the Non-OO Imperative World

A program in C - objects introduced |

#include <stdio.h>

// compiles in g++

// structures hold functions and behave as object d
// structures are classes except that default visib
// in classes, default visibility is private

struct Account {

void deposit (int amount);

volid withdraw (int amount) ;

void getbalance();

void initialize() {balance=0;} // inlined member f

Some Insights into the Non-OO Imperative World

A program in C - objects introduced Il

private:
int accountNumber;
int balance;

}i

void Account::deposit (int amount) { balance+=amoun
void Account::withdraw (int amount) {balance—-=amount
void Account::getbalance () {printf ("%d\n",balance);
int main () {

Account accl, acc?2;
accl.initialize();

Some Insights into the Non-OO Imperative World

A program in C - objects introduced Il

acc2.initialize();
accl.deposit (500);
acc2.deposit (1500);
accl.withdraw (100) ;
acc?2.withdraw (100)

4

accl.getbalance();
acc2.getbalance();

	About the Course
	The Origins
	Some Insights into the Non-OO Imperative World

