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Method sharing

class A {
int x; int y;
some z; public:

void f(int a) ...;
void g(int b) ...;

};

main () {
A *a1 = new A();
A *a2 = new A();

a1->f(10);
a2->f(20);

}
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Summary

instance variables: per object
method bodies shared
relative addressing
use of ’this’ or ’self’
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Single Inheritance, Single Subclass

class A {
int x, y; some z;
public: void f(int a) ...;

void g(int b) ...;
};
class B : public A {
int p,q;
public: void f(int a) {...}

void h(int c) {...}
}
main () {
A *a1 = new A();
A *a2 = new B();
B *b1 = new B();
A *a3 = b1;
... invoke f,g,h as permissible on the instances ..
}
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Summary

Instance includes sub-objects corresponding to parents
Method sharing as before
Memory allocation scheme for sub-objects: methods
should be able to find the addresses of instance variables
accessible to them
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Dynamic Binding

main () {
...
A *a3;
...
if C1, a3 = a1;

else a3 = b1;
... invoke f,g on a ..
}
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Accounting for Dynamic Binding
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Locating Instance Variables?

Will shared function bodies be able to locate their respective
instance variables?

What should pass on as ’this’?
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Dispatch Tables, and Sharing Them
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Translating Assignments and Invocations

A *a1 = new A();
B* b1 = new B();
A *a3; ...
if C1, a3 = a1; else a3 = b1;

a->f(val1);
a->g(val2);

The Scheme of Implementation:

A *a1 = allocate_A()
a1->DT=A’s DT
B* b1 = allocate_B()
b1->DT=B’s DT
A *a3; ...
if C1, a3 = a1; else a3 = b1;

a3->(DT[0])(a3,val1);
a3->(DT[1])(a3,val2);
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Single Inheritance, Multiple Subclasses I

class A {
int x, y; some z;
public: void f(int a) ...;

void g(int b) ...;
};
class B : public A {
int p,q;
public: void f(int a) {...}

void h(int c) {...}
}
class C : public A {
int r,s;
public: void f(int a) {...}

void g(int c) {...}
}
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Single Inheritance, Multiple Subclasses II

main () {
A *a;
...
if C1, a = new A();

else if C2 a = new B();
else a = new C();

... invoke f,g on a ..
}
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Multiple Inheritance

Will MI pose new problems?
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