
Standalone instances
Single Inheritance

CS 617 Object Oriented Systems
Lecture 12

Implementations of Dynamic Dispatch
3:30-5:00 pm, Thu Feb 14

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



Standalone instances
Single Inheritance

Outline

1 Standalone instances

2 Single Inheritance



Standalone instances
Single Inheritance

Outline

1 Standalone instances

2 Single Inheritance



Standalone instances
Single Inheritance

Method sharing

class A {
int x; int y;
some z; public:

void f(int a) ...;
void g(int b) ...;

};

main () {
A *a1 = new A();
A *a2 = new A();

a1->f(10);
a2->f(20);

}



Standalone instances
Single Inheritance

A runtime view



Standalone instances
Single Inheritance

Summary

instance variables: per object
method bodies shared
relative addressing
use of ’this’ or ’self’



Standalone instances
Single Inheritance

Outline

1 Standalone instances

2 Single Inheritance



Standalone instances
Single Inheritance

Single Inheritance, Single Subclass

class A {
int x, y; some z;
public: void f(int a) ...;

void g(int b) ...;
};
class B : public A {
int p,q;
public: void f(int a) {...}

void h(int c) {...}
}
main () {
A *a1 = new A();
A *a2 = new B();
B *b1 = new B();
A *a3 = b1;
... invoke f,g,h as permissible on the instances ..
}



Standalone instances
Single Inheritance

A runtime view



Standalone instances
Single Inheritance

Summary

Instance includes sub-objects corresponding to parents
Method sharing as before
Memory allocation scheme for sub-objects: methods
should be able to find the addresses of instance variables
accessible to them



Standalone instances
Single Inheritance

Dynamic Binding

main () {
...
A *a3;
...
if C1, a3 = a1;

else a3 = b1;
... invoke f,g on a ..
}



Standalone instances
Single Inheritance

Accounting for Dynamic Binding



Standalone instances
Single Inheritance

Locating Instance Variables?

Will shared function bodies be able to locate their respective
instance variables?

What should pass on as ’this’?



Standalone instances
Single Inheritance

Dispatch Tables, and Sharing Them



Standalone instances
Single Inheritance

Translating Assignments and Invocations

A *a1 = new A();
B* b1 = new B();
A *a3; ...
if C1, a3 = a1; else a3 = b1;

a->f(val1);
a->g(val2);

The Scheme of Implementation:

A *a1 = allocate_A()
a1->DT=A’s DT
B* b1 = allocate_B()
b1->DT=B’s DT
A *a3; ...
if C1, a3 = a1; else a3 = b1;

a3->(DT[0])(a3,val1);
a3->(DT[1])(a3,val2);



Standalone instances
Single Inheritance

Single Inheritance, Multiple Subclasses I

class A {
int x, y; some z;
public: void f(int a) ...;

void g(int b) ...;
};
class B : public A {
int p,q;
public: void f(int a) {...}

void h(int c) {...}
}
class C : public A {
int r,s;
public: void f(int a) {...}

void g(int c) {...}
}



Standalone instances
Single Inheritance

Single Inheritance, Multiple Subclasses II

main () {
A *a;
...
if C1, a = new A();

else if C2 a = new B();
else a = new C();

... invoke f,g on a ..
}



Standalone instances
Single Inheritance

Multiple Inheritance

Will MI pose new problems?


	Standalone instances
	Single Inheritance

