

Reuse at Design Level:
Design Patterns

CS 617- Lecture 17
Mon. 17 March 2008

3:30-5:00 pm

Rushikesh K. Joshi
Department of Computer Sc. & Engg.

Indian Institute of Technology, Bombay
Mumbai - 400 076

Reuse in Software
Engineering

 Reuse at code level is common in
software development

 e.g. C standard libraries such as math.h
and stdio.h;

 user defined libraries such as
“serverutils”, “library.h”

 What about reusing old design solutions
and not just the code ?

Christopher Alexander’s
Work
Two books for building architects
The timeless way of building: Alexander

1977
A Pattern language: Alexander et al. 1977
 He classified the problems that occurred

again and again and described core
solutions to them that could be used
again and again

 Examples: main entrance, sequence of
sitting spaces, public outdoor room,
interior windows

Patterns in Software
Engineering
 Studies in other disciplines is helpful in

software engineering other than computer
science, its basic discipline

 Researchers in Object Oriented Software
Engineering now find that design patterns
can be formulated to represent commonly
occurring problems in design and also the
solutions to them

Framework Cookbooks

 Frameworks such as Smalltalk’s MVC
were available in 80’s

 But using a framework for a specific
application needed the knowledge of
classes and class interactions in the
framework

 e.g Krasner and Pope’s cookbook on
MVC framework (1988)

 e.g. Ralph Johnson’s cookbook: HotDraw
for implementing graphical editor
(1992)

The Growth of Pattern
Community

 Gamma described patterns in ET++ framework
in his Ph.D. thesis in 1992

 Peter Code published an article on design
patterns in an issue of CACM in 1992

 Code organized OOPSLA workshops on patterns
in 1992 and 1993

 The pioneering book on design patterns by the
gang of four

 Since then patterns have been discussed widely
in the OO Software community

A Problem
In a graphical editor, by clicking on an

object, one can obtain a copy of the
original object. Obtaining a copy of an
existing object is a common design
problem in on-line compositions.

We can provide a design solution to solve
this problem, and reuse this design
whenever similar situation arises.

copy of self

The Solution

Client

operation ()

ShapePrototype

clone ()

 CirclePrototype

clone ()

 RectanglePrototype

clone ()

proto

proto-->clone()

copy of self

copyof self

The Design Pattern:
Prototype

Client

operation ()

Prototype

clone ()

ConcretePrototype1

clone ()

 ConcretePrototype2

clone ()

proto

proto-->clone()

copy of self

Describing a Design Pattern
 Specify the generic problem that is solved
 Motivate the design pattern solution with

the help of an example
 Provide the structure for the pattern
 Discuss collaborations between classes
 Discuss other issues related to the pattern

such as trade-offs, implementation
techniques etc.

Pattern Description
Template provided by Erich
Gamma et. al
 Pattern name, its classification
 Intent, Motivation, Applicability
 Structure, Participants, Collaborations
 Consequences, Implementation, Sample

code,
 Known uses
 Related patterns

Classification of Patterns
 Creational Patterns

 concerned about ways to create new objects
 Structural Patterns

 concerned about the composition of objects and
classes

 Behavioral Patterns
 concerned about ways in which objects interact

Creational Patterns
 Singleton

 To create a sole instance of a class
 Prototype

 To create objects by cloning existing objects

 Builder
 build an object from existing representation

Creational Patterns
 Factory Method

 defer instantiation to subclasses
 Abstract Factory

 Provides interface to create families of objects
without specifying the concrete classes of the
objects

Singleton
A class that creates only one instance at most

Singleton

static getSoleInstance()

operation ()

static soleInstance ..return soleInstance

Implementing Singleton
 Make the constructor protected

 Prohibit normal creation mode
 A new instance can only be created

through a class method
 The class method is the static method in

our case
 Return the unique instance crated

Singleton.c
Class Singleton {
protected:

Singleton () ;
public:

static Singleton *getSoleInstance () {….};
private:

static Singleton *soleInstance;
}

Factory Method
Example: In a modeling tool, you can select a type of

entity or relation and then create an actual entity
of the selected type. The selected icon thus acts

 as a factory or creator of some actual type.

An object is used to create another

One creator object creates instances of one class

Hierarchy of creators, polymorphism on creation

Return new Box

An Example of Factory
Method
 Primitive PrimIcon

createprimitive ()

BoxIcon

createprimitive()

Box
create

RelationIcon

createprimitive()

Relation

 Return new ConcreteProduct

The Factory Method Pattern

Product Creator

factoryMethod()

ConcreteFactory

factoryMethod()

concreteProduct

Structural Patterns
 Adapter

 convert an interface to another
 Composite

 Compose objects in a tree structure

 Decorator
 Attach additional Responsibilities dynamically

More Structural Patterns
 Proxy

 Provide a surrogate or placeholder for another
object

 Facade
 Provide a unified interface to a set of interfaces

in a subsystem

 Bridge
 Decouple abstraction from implementation, let

them vary independently

Adapter Pattern
 You are building a collection class

hierarchy for collections such as FIFO, Set,
LIFO

 You find that there is an existing class
Stack which can be used for providing LIFO
collection

 How do we adapt the existing class to the
new interface of Collection classes?

The Solution

Client Collection
insert ()
fetch ()

 Stack
push()
pop ()

 LIFO

insert ()
fetch ()

pop ()

 FIFO

insert ()
fetch ()

The Adapter Pattern
Class Adapter

Client Target

request ()

 Adaptee

specificReq ()

 Adapter

request ()

specificReq()

The Adapter Pattern
Object Adapter

Client Target

request ()

 Adaptee

specificReq ()

 Adapter

request ()

adaptee->specifiReq()

adaptee

Composite Pattern
 An Example: A Graphic Document is

composed of graphical objects such as
Line, Rectangle, Circle, Text, Image or
another Graphical Document

 Thus a graphic document is a tree
structured composition

The Solution

Client GraphicElement

draw ()
 add () ..

 Circle

draw ()

GraphicDoc
draw()
add (..)

For all g in GEs
g->draw()

 Line

draw ()
GEs

Instance Structure for an
Instance of a Composite
Class

myPicture

hasPicture aSquare aText

aLine aRectangle

The Composite Pattern

Client Component

operation ()

Composite

operation()
add (..)

For all c in children
c->operation()

 aLeaf

operation ()

children

How to interact with
components within a
subsystem?
Study the following scenario

The Facade Pattern
 Provide a unified interface for a subsystem

Facade

A Paradigm for Remoting
 Distribution transparency - Client unaware

of the distributed nature of the server
 Location Transparency - Client unaware of

the location of the server
 A client invokes methods on an object as if

it is a local object
 Proxy Handles provide a mechanism to

implement this paradigm

Designing Surrogate Objects

ClientProg Account

deposit ()

AccountProxy

deposit ()

remoteAcc->deposit

 RealAccount

deposit ()

remoteAcc

The Proxy Pattern

Client subject

operation ()

Proxy

operation()

realSubj->operation

 RealSubject

operation ()

realSubj

The Proxy
 Both real and proxy objects inherit from an

abstract superclass
 Thus, they both provide the same

interface
 Their implementations are different
 A client can handle anyone of them

through generalization, i.e. a superclass
pointer

 Internally proxy carries out the
communication with the remote object

The Pattern
 Client has a pointer to the Subject
 Subject is the abstract superclass
 RealSubject is the server implementation
 Proxy is the proxy implementation

available at the client process
 Proxy has a handle to RealSubject
 operation() is implementation differently

by RealSubject and Proxy classes

The Decorator: Object
Diagram

borderDecorator

scrollDecorator
 textView

client

component
component

Visualcomponent

draw ()

Decorator

draw()
Component->draw()

 TextView

operation ()

Border
draw()

drawBorder()

Scroller
draw ()

drawScroller

component

Decorator::draw()
drawBorder()

References
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns,

Addison-Wesley, 1995
[2] W. Pree, Design Patterns for Object-Oriented Development,

Addison-Wesley, 1995
[3] Linda Rising, The Patterns Handbook, Cambridge University Press,

1998

