

Reuse at Design Level:
Design Patterns – II

CS 617- Lecture 18
Mon., 24 March 2008

3:30-5:00 pm

Rushikesh K. Joshi
Department of Computer Sc. & Engg.

Indian Institute of Technology, Bombay
Mumbai - 400 076

A Structural Pattern
 Bridge

 Implementation and Abstraction Hierarchies can
vary independently

A problem: Varying Implementations
and Abstractions

 In a collection hierarchy, one one hand, the
abstractions vary
 collection – set, queue, array

 On the other hand, their implementations
may also vary
 array based, linked list based

A structural pattern: Bridge

Collection

add(Object o)
ismember(..)

remove(Object o)
size()

getIteraror()

Set StackQueue

CollImpl
size

add_at
get_at

remove_at
pos_of

ismember
..

Linked Array

Behavioral Patterns
 Template Method

 Let certain steps in a superclass be defined by
the subclass

 Strategy
 encapsulate a family of algorithms and make

them interchangeable

 Iterator
 provide accessors for iterating over the

elements of an aggregation

Next problem: Some steps in an
implementation can vary

 In a hierarchy of classes, a behavior is quite
common for all classes, but only that some
steps are dependent on the the nature of
these classes

 How to avoid redundancy in defining such
behavior

 Where should such a method be located?

In a Hierarchy:
Template Method

AbstractCollection

addAll(AbstractCollection c)
add(Object o)

Iterator getIterator();

ConcreteCollection

add(Object o) {...}
getIterator() {..}

i=c.getIterator()
while(!i.done())

add(i.next());

The Template Method
Pattern

AbstractClass

templateMethod()
primitiveMethod()

ConcreteClass

primitiveMethod()

….
primitiveMethod

….

Next problem: An object alters its
behavior as it changes its state

Example: A TCP connection object
provides methods such as open(), close(),
send().. The connection object changes the
behavior of these methods as it changes
its state from disconnected to listening to
established to closed

TCP States through the
State Pattern

TCPConnection
open ()

close ()..

TCPState

open ()
close () ..

 Listening

open ()
close ()

Closed
open ()
close ()

State->open ()

 Established

open ()
close ()

state

The State Pattern

Context

request ()

State

handle ()

ConcreteState2

handle ()

state->handle ()

 ConcreteState1

handle ()

state

Next Problem: Use different algorithms for
different situations in a given problem
context: Strategy Pattern

Example: A document is composed of text.
Various line breaking algorithms can be
used in formatting the document before
printing

Consider the following strategies:
simple compose: determine line breaks, one line at a time
para compose: consider lines in an entire paragraph
array compose: each row has a fixed number of letters

The Solution

Document

format ()

Compositor

compose ()

SimpleCompositor

compose()

arrayCompositor

compose ()

compositor->compose ()

 paraCompositor

compose()

compositor

The Strategy Pattern

Context

aMethod ()

Strategy

algorithm ()

ConcreteStrategy1

algorithm()

ConcreteStrategy3

algorithm ()

strat->algorithm ()

 ConcreteStrategy2

algorithm ()

strat

Problem: When an object changes its state, its
dependents are updated

 1-* dependency between observed and
observers

 One observed, Many observers

The Observer Pattern

Subject

attach(Observer)
detach(Observer)

notifyAll()

Concrete
Subject

..Concrete
Subject

Observer

update()

Concrete
Observer

..Concrete
Observer

A Problem: one of many
request handlers
 A request may get handled by one of many

objects
 The sender may not exactly which one can

handle the request
 One way is to chain the handlers..

Example: Chain of
Responsibility?

client

Concrete
handler1

Handler

handle()

Concrete
handler2

Example: Chain of
Responsibility

client

Concrete
handler1

Handler

handle()

Concrete
handler2

succsessor

References
[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns,

Addison-Wesley, 1995
[2] W. Pree, Design Patterns for Object-Oriented Development,

Addison-Wesley, 1995
[3] Linda Rising, The Patterns Handbook, Cambridge University Press,

1998

