

Reuse at Design Level:
Design Patterns – III

CS 617- Lecture 19
Thu., 27 March 2008

3:30-5:00 pm

Rushikesh K. Joshi
Department of Computer Sc. & Engg.

Indian Institute of Technology, Bombay
Mumbai - 400 076

A Problem: modeling of operations such
that they can be externally added to a
class

 You have an existing class that is ready to
accept new operations

 A new operation can be plugged in by
means of an external object which can
handle such a new operation

 For example: Class Tree has operations to
form a tree and a plug point through which
new operations can be added

Example: Visitor Pattern

Tree

visit(TreeVisitor tv) visitme (Tree t)

BFSTreeVisitor

visitme (Tree t)

tv->visitme(self);

 DFSTreeVisitor

visitme(Tree t)

parameter

accesses/parameter
TreeVisitor

A Problem: Separate collection and
iterations over the collection

 A collection supports members to add and
remove elements, to check for membership

 Iterations over the collection can be
specified separately such that the two
abstractions are not intermingled

 The iterator hides the internal
implementation of the collection

 Multiple ways of iteration can be supported
 Iterators can be used concurrently

Iterator Pattern

Collection
add()

remove()
createItr()

create

access
Set

createItr()

 List

createItr()

Iterator
first()
next()

current()

Set_Itr List_Itr
create

create

access

A Problem: Separate construction of
objects from their representation

 E.G. transforming from one representation
into another

 A transformation function for each
component

 Finally you can obtain the whole
transformed representation

Director

construct()
buildpart()
getresult()

Builder2

buildpart()
getresult()

for all components {
 builder->buildpart()}
builder->getresult();

Builder1

buildpart()
getresult()

builder Builder

Builder Pattern

