

Reuse at Design Level:
Design Patterns – III

CS 617- Lecture 19
Thu., 27 March 2008

3:30-5:00 pm

Rushikesh K. Joshi
Department of Computer Sc. & Engg.

Indian Institute of Technology, Bombay
Mumbai - 400 076

A Problem: modeling of operations such
that they can be externally added to a
class

 You have an existing class that is ready to
accept new operations

 A new operation can be plugged in by
means of an external object which can
handle such a new operation

 For example: Class Tree has operations to
form a tree and a plug point through which
new operations can be added

Example: Visitor Pattern

Tree

visit(TreeVisitor tv) visitme (Tree t)

BFSTreeVisitor

visitme (Tree t)

tv->visitme(self);

 DFSTreeVisitor

visitme(Tree t)

parameter

accesses/parameter
TreeVisitor

A Problem: Separate collection and
iterations over the collection

 A collection supports members to add and
remove elements, to check for membership

 Iterations over the collection can be
specified separately such that the two
abstractions are not intermingled

 The iterator hides the internal
implementation of the collection

 Multiple ways of iteration can be supported
 Iterators can be used concurrently

Iterator Pattern

Collection
add()

remove()
createItr()

create

access
Set

createItr()

 List

createItr()

Iterator
first()
next()

current()

Set_Itr List_Itr
create

create

access

A Problem: Separate construction of
objects from their representation

 E.G. transforming from one representation
into another

 A transformation function for each
component

 Finally you can obtain the whole
transformed representation

Director

construct()
buildpart()
getresult()

Builder2

buildpart()
getresult()

for all components {
 builder->buildpart()}
builder->getresult();

Builder1

buildpart()
getresult()

builder Builder

Builder Pattern

