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From ADTs to classes: Through a Familiar Example

Identify Constructors
Moving to Imperative Version (from applicative
specification)
Receiver is modified and not returned



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Converting Stack ADT to interface of class Stack

Stack new (void)→constructor Stack()
Stack push (E,Stack)→ push (E)
E top(Stack)→ E(top)
Stack removetop(Stack)→ removetop()
Boolean empty (Stack)→ Boolean empty()

Thus we get:

interface Stack {
Stack();
push (E);
E top();
removetop();
Boolean Empty();

}
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Interfaces, Deferred Classes (Abstract Classes) and
Concrete Classes

Interfaces: Only the interface functions, cannot be
instantiated
Deferred Classes: Partial implementation, cannot be
instantiated
Concrete Classes: Fully implemented, can be instantiated
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Our ADT Example

Types:
E is the element type and T be Stack type.

Functions:
T new (void)
T push (E,T)
E top(T)
T removetop(T)
Boolean empty (T)

Axioms:
empty(new())
top(push(e,t)) = e
removetop(push(e,t)) = t
not empty(push(e,t))

Preconditions:
.. removetop (T) requires not empty (T)
.. pop (T) requires not empty (T)
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An Abstract Class Specification, Extracting
Postconditions

class UnboundedStack {
Stack();

precondition: none
postcondition: stack is empty

push (E e);
precondition: none
postcondition: (1) top() is e (2) stack not empty

E top();
precondition: stack not empty
postcondition: no change to stack

removetop();
precondition: stack not empty
postcondition: stack has one element less

Boolean isEmpty();
}
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Contracts

What are contracts?
How to specify them?
How to use contracts in OO Software Development?
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Contracts

involved between collaborating parties
caller-callee systems: service user and service provider
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The Design by Contract Method of Meyer
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Contract for Member Function Push



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Contract for Member Function Pop (tmp=top,
removetop,return tmp)
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Specifications in Eiffel following Design by Contract I

class Stack [E]
..
top:E is

.. top element
require

not empty
do

...
end
push(e:E) is

.. add e on top
require

not full
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Specifications in Eiffel following Design by Contract II

do
...

ensure
not empty
top=e
size=old size+1

end
removetop is

.. removes top element
require

not empty
do

...
ensure
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Specifications in Eiffel following Design by Contract III

not full
size=old size - 1

end
end
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Preconditions, Postconditions and Invariants

class invariant: a predicate of which the value is true over the
entire lifetime of the object

member function precondition: should be satisfied before the
execution of the member function

member function postcondition: should be satisfied after the
execution of the member function
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No Redundancy in Implementation

The actual function bodies do not check for preconditions.

Also postconditions are not checked by callers.
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What happens when a contract is violated

An error can be generated, an exception can be thrown.
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Using Assertions

The assert macro in C, C++, assertion support in Java
Start with assertions

Add implementations later

1. Design first, then implement
2. Protect implementation against bugs and errors
3. Buggy implementations are caught by the contracts,
assertions
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Preconditions, Postconditions and Inheritance

What happens to them in inheritance?
Can subclasses change them?
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Readings

Bertrand Meyer: Applying Design by Contract, IEEE Computer,
October 1992, pages 40-51.
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