
From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

CS 617 Object Oriented Systems
Lecture 4

ADTs, Contracts and The Design by Contract
Method

3:30-5:00pm Mon, Jan 14

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Outline

1 From ADT to Classes

2 Specifying Contracts

3 Design by Contract

4 Defensive Programming & Contracts



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Outline

1 From ADT to Classes

2 Specifying Contracts

3 Design by Contract

4 Defensive Programming & Contracts



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

From ADTs to classes: Through a Familiar Example

Identify Constructors
Moving to Imperative Version (from applicative
specification)
Receiver is modified and not returned



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Converting Stack ADT to interface of class Stack

Stack new (void)→constructor Stack()
Stack push (E,Stack)→ push (E)
E top(Stack)→ E(top)
Stack removetop(Stack)→ removetop()
Boolean empty (Stack)→ Boolean empty()

Thus we get:

interface Stack {
Stack();
push (E);
E top();
removetop();
Boolean Empty();

}



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Interfaces, Deferred Classes (Abstract Classes) and
Concrete Classes

Interfaces: Only the interface functions, cannot be
instantiated
Deferred Classes: Partial implementation, cannot be
instantiated
Concrete Classes: Fully implemented, can be instantiated



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Our ADT Example

Types:
E is the element type and T be Stack type.

Functions:
T new (void)
T push (E,T)
E top(T)
T removetop(T)
Boolean empty (T)

Axioms:
empty(new())
top(push(e,t)) = e
removetop(push(e,t)) = t
not empty(push(e,t))

Preconditions:
.. removetop (T) requires not empty (T)
.. pop (T) requires not empty (T)



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

An Abstract Class Specification, Extracting
Postconditions

class UnboundedStack {
Stack();

precondition: none
postcondition: stack is empty

push (E e);
precondition: none
postcondition: (1) top() is e (2) stack not empty

E top();
precondition: stack not empty
postcondition: no change to stack

removetop();
precondition: stack not empty
postcondition: stack has one element less

Boolean isEmpty();
}



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Outline

1 From ADT to Classes

2 Specifying Contracts

3 Design by Contract

4 Defensive Programming & Contracts



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Contracts

What are contracts?
How to specify them?
How to use contracts in OO Software Development?



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Contracts

involved between collaborating parties
caller-callee systems: service user and service provider



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Outline

1 From ADT to Classes

2 Specifying Contracts

3 Design by Contract

4 Defensive Programming & Contracts



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

The Design by Contract Method of Meyer



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Contract for Member Function Push



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Contract for Member Function Pop (tmp=top,
removetop,return tmp)



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Specifications in Eiffel following Design by Contract I

class Stack [E]
..
top:E is

.. top element
require

not empty
do

...
end
push(e:E) is

.. add e on top
require

not full



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Specifications in Eiffel following Design by Contract II

do
...

ensure
not empty
top=e
size=old size+1

end
removetop is

.. removes top element
require

not empty
do

...
ensure



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Specifications in Eiffel following Design by Contract III

not full
size=old size - 1

end
end



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Preconditions, Postconditions and Invariants

class invariant: a predicate of which the value is true over the
entire lifetime of the object

member function precondition: should be satisfied before the
execution of the member function

member function postcondition: should be satisfied after the
execution of the member function



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

No Redundancy in Implementation

The actual function bodies do not check for preconditions.

Also postconditions are not checked by callers.



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

What happens when a contract is violated

An error can be generated, an exception can be thrown.



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Outline

1 From ADT to Classes

2 Specifying Contracts

3 Design by Contract

4 Defensive Programming & Contracts



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Using Assertions

The assert macro in C, C++, assertion support in Java
Start with assertions

Add implementations later

1. Design first, then implement
2. Protect implementation against bugs and errors
3. Buggy implementations are caught by the contracts,
assertions



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Preconditions, Postconditions and Inheritance

What happens to them in inheritance?
Can subclasses change them?



From ADT to Classes
Specifying Contracts

Design by Contract
Defensive Programming & Contracts

Readings

Bertrand Meyer: Applying Design by Contract, IEEE Computer,
October 1992, pages 40-51.


	From ADT to Classes
	Specifying Contracts
	Design by Contract
	Defensive Programming & Contracts

