CS 617 Object Oriented Systems
Lecture 6
Classes Implementing Interfaces
Abstract Classes
Open-Closed Principle

Self References (This)
3:30-5:00 pm Mon, Jan 21

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay




Outline

0 Classes: Implementing Interfaces

Q Abstract Classes

e What's Frozen in a Class, and What can Change?
e This: The Self Reference (A Runtime View)

e Single Inheritance



Classes: Implementing Interfaces

Outline

0 Classes: Implementing Interfaces




Classes: Implementing Interfaces

Implementing Interfaces

A class provides an implementation of an interface.

An interface: Defines a set of messages through a set of
abstract member functions (only the type signatures)

A Class: Provides their implementations, i.e. the method
bodies and it exports an interface.

Distinction between Messages and Methods



Classes: Implementing Interfaces

Interfaces: Explicit Vs. Implicit |

interface NameService {
Object find{Name n); H
Boolean bind(Name n, Object o); i

implements 4 implements
—————— e m e ——r——————— -
1 ' 1
! 1 implements 1

class HashMapMameServer

class TreeBasedNameServer implements implements NameService {...}

1
1
MNameService {...} 1
1
1

class NameServer3 implements
MNameService {...}




Classes: Implementing Interfaces

Interfaces: Explicit Vs. Implicit Il

Class Account {

public:

int balance() :

int withdraw (int amount);
int deposit (int amount);

}

@ The interface is embedded in class description in the
above example.

@ Everything kept in public visibility contribute to the
interface.



Classes: Implementing Interfaces

Interfaces: Explicit Vs. Implicit 1l

@ What's the meaning of exporting a variable through the
interface?




Classes: Implementing Interfaces

Class Implementing Multiple Interfaces |

interface Send {
public void send (int wvalue);
}
interface Receive {
public int receive ();
}
class UniChannel implements Send, Receive {
int buffer;

public void send (int value) {buffer=value;}
public void receive (int value) {return value;}



Classes: Implementing Interfaces

Class Implementing Multiple Interfaces Il

receive only

visibility
M
Sender Receiver
= Active = Active
Object Object
A B

~—

send only
wisibility




Classes: Implementing Interfaces

Separating Interfaces from Classes

@ Interfaces provide the protocols for interactions
@ Classes act as implementors

@ Application classes can be implemented purely in terms of
interfaces

@ Application classes can be fully unaware of implementation
classes

@ Implementations classes can vary without having to
change the application classes that use implementation
classes

@ Implementation classes can also be changed without
having to change the application classes that use them



Classes: Implementing Interfaces

Role Modeling with Multiple Interfaces

@ Common implementation class
@ The implementation class implements many interfaces

@ Application classes get restricted contracts through a
narrow window of the interface that they know




Abstract Classes

Outline

Q Abstract Classes




Abstract Classes

Abstract Classes

Partial Implementations

No Implementation == Interface




Abstract Classes

Abstract Classes as Interfaces |

#include<iostream>
using std::cout;
class Channel {
public:
virtual void send(int data) = 0;
virtual int receive () = 0;
bi
class BufferedChannel: public Channel ({
int buffer[l];
public:
BufferedChannel () { };
virtual void send(int data);



Abstract Classes

Abstract Classes as Interfaces |l

virtual int receive ();

bi
void BufferedChannel::send (int data)
{buffer[0]=data;}
int BufferedChannel::receive ()
{return buffer[0];}

main () {
Channel *c = new BufferedChannel () ;

c—>send (10) ;
c—>send (20);
cout << c->receive () << "\n";



Abstract Classes

Abstract Classes Holding Partial Implementation |

class Channel {
protected:
int buffer[10];
int size;

public:
virtual void send(int data) = 0;
virtual int receive () = 0;

}i

class FIFOChannel: public Channel {
public:



Abstract Classes

Abstract Classes Holding Partial Implementation |l

FIFOChannel () { };
virtual void send(int data);
virtual int receive ();

}i

class LIFOChannel: public Channel {

public:

LIFOChannel () { };
virtual void send(int data);
virtual int receive ();

}i




Abstract Classes

Class Member Visibilities

@ Private
— Committed only Locally

@ Public
— Committed to External Classes

@ Protected
— Committed to Subclasses

@ Restricted
— Committed to a Subset of External Classes

Choosing the right visibilities is important for Contracts
The right level of encapsulation enforces the abstraction
Visibility has impact on refinability



What's Frozen in a Class, and What can Change?

Outline

e What's Frozen in a Class, and What can Change?




What's Frozen in a Class, and What can Change?

The Open-Closed Principle: Applying to Classes

@ Never Change an interface of a class once the class is
published.

@ The Contract (in our case, the interface) is closed for
changes.

@ However, the implementation can be changed.
@ The implementation is open for refinements

@ Unique Ids for component Interfaces




This: The Self Reference (A Runtime View)

Outline

e This: The Self Reference (A Runtime View)




This: The Self Reference (A Runtime View)

This: The Self Reference |

seta

class XYZ { Objl\ \

private: ..a.b.c; seta's
public: seta (intval); a body
seth (intwval); uses
setc (intwval); b seth ‘this'
H <
obj2 )
XYZ *0bjl, ¥obj2; seth's
\ body
objl = new XY Z(); uses
a setc ‘this'
b \
. 4 setc's
bj2 = new XY Z();
obj () body
uses
'this'
Lecal Reflsrances as offrets wrt. this




This: The Self Reference (A Runtime View)

This: The Self Reference Il

finclude <iostream>
using std::cout;

class A {
int x;
int y;
public:
AQ) {}
void printthis() { cout << this << "\n";}
void f(int p, int q) { x=p; y=9;}
void printstate () {cout<<x<<" "<<y<<"\n";}

}i



This: The Self Reference (A Runtime View)

This: The Self Reference Il

main () {

A *al = new A();
A xa2 = new A();
cout << al << "\n";
al->printthis();

cout << a2 << "\n";
a2->printthis();




This: The Self Reference (A Runtime View)

Uses of Self References

@ For sharing method bodies across instances of a class

@ Returning self — e.g. cascaded operations
@ Self in parameter passing
@ Dynamic Binding in Inheritance Hierarchies




This: The Self Reference (A Runtime View)

Self Reference Bindings

Is a self reference available in abstract classes?

Is a self reference available in class members?

Is a self reference available in instance members?




Single Inheritance

Outline

e Single Inheritance



Single Inheritance

Inheritance for Conceptually Compatible Classes

@ Contract Conformance (Conceptual Inheritance)
@ Extension
@ Refinement

Is Kind Of Relationship

Subclass (Derived Class)

Superclass (Base Class)



	Classes: Implementing Interfaces
	Abstract Classes
	What's Frozen in a Class, and What can Change?
	This: The Self Reference (A Runtime View)
	Single Inheritance

