
Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

CS 617 Object Oriented Systems
Lecture 6

Classes Implementing Interfaces
Abstract Classes

Open-Closed Principle
Self References (This)

3:30-5:00 pm Mon, Jan 21

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Outline

1 Classes: Implementing Interfaces

2 Abstract Classes

3 What’s Frozen in a Class, and What can Change?

4 This: The Self Reference (A Runtime View)

5 Single Inheritance



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Outline

1 Classes: Implementing Interfaces

2 Abstract Classes

3 What’s Frozen in a Class, and What can Change?

4 This: The Self Reference (A Runtime View)

5 Single Inheritance



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Implementing Interfaces

A class provides an implementation of an interface.

An interface: Defines a set of messages through a set of
abstract member functions (only the type signatures)

A Class: Provides their implementations, i.e. the method
bodies and it exports an interface.

Distinction between Messages and Methods



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Interfaces: Explicit Vs. Implicit I



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Interfaces: Explicit Vs. Implicit II

Class Account {

public:
int balance():
int withdraw (int amount);
int deposit (int amount);
}

The interface is embedded in class description in the
above example.
Everything kept in public visibility contribute to the
interface.



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Interfaces: Explicit Vs. Implicit III

What’s the meaning of exporting a variable through the
interface?



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Class Implementing Multiple Interfaces I

interface Send {
public void send (int value);

}
interface Receive {

public int receive ();
}
class UniChannel implements Send, Receive {
int buffer;

public void send (int value) {buffer=value;}
public void receive (int value) {return value;}

}



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Class Implementing Multiple Interfaces II



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Separating Interfaces from Classes

Interfaces provide the protocols for interactions
Classes act as implementors
Application classes can be implemented purely in terms of
interfaces
Application classes can be fully unaware of implementation
classes
Implementations classes can vary without having to
change the application classes that use implementation
classes
Implementation classes can also be changed without
having to change the application classes that use them



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Role Modeling with Multiple Interfaces

Common implementation class
The implementation class implements many interfaces
Application classes get restricted contracts through a
narrow window of the interface that they know



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Outline

1 Classes: Implementing Interfaces

2 Abstract Classes

3 What’s Frozen in a Class, and What can Change?

4 This: The Self Reference (A Runtime View)

5 Single Inheritance



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Abstract Classes

Partial Implementations

No Implementation == Interface



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Abstract Classes as Interfaces I

#include<iostream>
using std::cout;
class Channel {
public:

virtual void send(int data) = 0;
virtual int receive () = 0;

};
class BufferedChannel: public Channel {
int buffer[1];
public:

BufferedChannel () { };
virtual void send(int data);



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Abstract Classes as Interfaces II
virtual int receive ();

};
void BufferedChannel::send (int data)

{buffer[0]=data;}
int BufferedChannel::receive ()

{return buffer[0];}
main () {
Channel *c = new BufferedChannel();

c->send(10);
c->send(20);
cout << c->receive() << "\n";

}



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Abstract Classes Holding Partial Implementation I

class Channel {
protected:
int buffer[10];
int size;

public:
virtual void send(int data) = 0;
virtual int receive () = 0;

};

class FIFOChannel: public Channel {
public:



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Abstract Classes Holding Partial Implementation II

FIFOChannel () { };
virtual void send(int data);
virtual int receive ();

};
class LIFOChannel: public Channel {
public:

LIFOChannel () { };
virtual void send(int data);
virtual int receive ();

};



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Class Member Visibilities

Private
– Committed only Locally
Public
– Committed to External Classes
Protected
– Committed to Subclasses
Restricted
– Committed to a Subset of External Classes

Choosing the right visibilities is important for Contracts
The right level of encapsulation enforces the abstraction
Visibility has impact on refinability



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Outline

1 Classes: Implementing Interfaces

2 Abstract Classes

3 What’s Frozen in a Class, and What can Change?

4 This: The Self Reference (A Runtime View)

5 Single Inheritance



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

The Open-Closed Principle: Applying to Classes

Never Change an interface of a class once the class is
published.
The Contract (in our case, the interface) is closed for
changes.
However, the implementation can be changed.
The implementation is open for refinements
Unique Ids for component Interfaces



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Outline

1 Classes: Implementing Interfaces

2 Abstract Classes

3 What’s Frozen in a Class, and What can Change?

4 This: The Self Reference (A Runtime View)

5 Single Inheritance



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

This: The Self Reference I



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

This: The Self Reference II

#include <iostream>
using std::cout;

class A {
int x;
int y;
public:

A() {}
void printthis() { cout << this << "\n";}
void f(int p, int q) { x=p; y=q;}
void printstate(){cout<<x<<" "<<y<<"\n";}

};



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

This: The Self Reference III

main () {

A *a1 = new A();
A *a2 = new A();
cout << a1 << "\n";
a1->printthis();

cout << a2 << "\n";
a2->printthis();

}



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Uses of Self References

For sharing method bodies across instances of a class
Returning self – e.g. cascaded operations
Self in parameter passing
Dynamic Binding in Inheritance Hierarchies



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Self Reference Bindings

Is a self reference available in abstract classes?

Is a self reference available in class members?

Is a self reference available in instance members?



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Outline

1 Classes: Implementing Interfaces

2 Abstract Classes

3 What’s Frozen in a Class, and What can Change?

4 This: The Self Reference (A Runtime View)

5 Single Inheritance



Classes: Implementing Interfaces
Abstract Classes

What’s Frozen in a Class, and What can Change?
This: The Self Reference (A Runtime View)

Single Inheritance

Inheritance for Conceptually Compatible Classes

Contract Conformance (Conceptual Inheritance)
Extension
Refinement

Is Kind Of Relationship

Subclass (Derived Class)

Superclass (Base Class)


	Classes: Implementing Interfaces
	Abstract Classes
	What's Frozen in a Class, and What can Change?
	This: The Self Reference (A Runtime View)
	Single Inheritance

