CS 617 Object Oriented Systems
Lecture 7
Inheritance- Contracts, Extensions,
Refinements
Single Inheritance

An Elaborate Example
3:30-5:00 pm Thu, Jan 24

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Outline

e Single Inheritance

© s Implementation Available in Subclasses?

© Examples: Interfaces, Abstract Classes, Concrete Classes

Single Inheritance

Outline

0 Single Inheritance

Single Inheritance

Inheritance for Conceptually Compatible Classes

@ Contract Conformance (Conceptual Inheritance)
@ Extension
@ Refinement

Is Kind Of Relationship

Subclass (Derived Class)

Superclass (Base Class)

Single Inheritance

Inheritance for Pure Extension

base = {f1(),f2(),f3()}

derived = base + {f4(),f5()}

Example:
basestream={read,write,close}
derivedstream={read,write,close,seek}

Single Inheritance

Inheritance for Refinement

base = {f1(),f2(),f3()}

derived = {f1(),f2(),f3()} with different behavior

Example:
baseStream={read,write,close}

derivedSafelySharableStream={read,write,close} automatically
locks the stream during an operation

Single Inheritance

Visibility in Derived Classes

| visibility in base | Accessibility \
private all in base
protected all in base, all in derived
public all

Is Implementation Available in Subclasses?

Outline

© s Implementation Available in Subclasses?

Is Implementation Available in Subclasses?

What Happens to Implementation?

@ Inherited method bodies: available as they are, or
replaceable through refinements

@ Private Members: Not accessible, but available for the
sake of method bodies that are ’inherited’

@ Protected Members: Accessible. Communication between
superclass’s member functions and subclass’s member
functions can take place through these

Examples: Interfaces, Abstract Classes, Concrete Classes

Outline

© Examples: Interfaces, Abstract Classes, Concrete Classes

Examples: Interfaces, Abstract Classes, Concrete Classes

Example: A Collection Hierarchy-The Collection
Interface: from Java’s util library

interface Collection {
boolean add (Object o);
boolean addAll (Collection c);
boolean contains (Object 0);
boolean containsAll(Collection c);
boolean equals(Object 0);
boolean isEmpty();
boolean remove(Object 0);
void clear ();
boolean removeAll(Collection c);
boolean retainAll (Collection c);
int size();
Object][] toArray();
Iterator iterator(); ...

}
e 4 4444

Examples: Interfaces, Abstract Classes, Concrete Classes

The lterator Interface

interface Iterator {

boolean hasNext(); // true if the iteration has more elements
Object next(); // returns the next element
void remove(); // remove last element returned

Examples: Interfaces, Abstract Classes, Concrete Classes

Implementing Collection Types: Set, List

Can Some behavior be implemented in an Abstract Collection
Class?

Examples: Interfaces, Abstract Classes, Concrete Classes

Abstract Collection partly implements Collection |

abstract class AbstractCollection {
//concrete operations:
remove: iterate over the collection and remove if you find
it throws an UnsupportedOperationException if the
iterator returned by iterator() does not implement
remove.
toArray: allocate a new array, iterate over the collection,
insert objects in the array, return it
contains: iterate over the collection to check whether it
contains the given element
isSEmpty: check if size()==0

String toString(); // returns string representing the

Examples: Interfaces, Abstract Classes, Concrete Classes

Abstract Collection partly implements Collection Il

collection— an added operation
// only two abstract operations:
abstract int size();
abstract Iterator iterator();
// what about add?
add: always throws UnsupportedOperationException.
Modifiable collections should implement add,
and remove on iterator..

Examples: Interfaces, Abstract Classes, Concrete Classes

Abstract Set: Further Abstract Implementation

@ extends Abstract Collection

@ Skeletal implementation for Sets

@ Also implements interface Set

@ interface Set defines constrains on contracts of add

@ Mainly no overriding of member functions of Abstract
Collection

@ Adds a new member function: boolean equals(Object 0)
@ equals checks for size, and then all memberships

Examples: Interfaces, Abstract Classes, Concrete Classes

TreeSet, HashSet

@ They extend Abstract Set
@ They use different data structures

@ HashSet doesn’t provide any guarantees about iteration
order

@ TreeSet provides some guarantees about iteration order

Examples: Interfaces, Abstract Classes, Concrete Classes

TreeSet

@ TreeSet also implements SortedSet interface
@ SortedSet extends Set
@ SortedSet interface adds constraints on iterator traversal

@ The order used is ascending order based on a
compareTo() operation

@ Each element inserted must implement interface
Comparable

Examples: Interfaces, Abstract Classes, Concrete Classes

Interface SortedSet

@ extends Collection, Set
@ Object first()
@ Object last()

@ Comparator comparator(): returns comparator associated
with this set

@ SortedSet headSet (Object toElement)
@ SortedSet tailSet (Object fromElement)
@ SortedSet subset (Object fromElement, Object toElement)

Examples: Interfaces, Abstract Classes, Concrete Classes

A Snapshot of the Inheritance Hierarchy

Collection I e e e e e e e e e e - -
A i lterator
! i (returned) i
P ;
AbstractCollection
Comparabie
..Da Set
H (elements
rod added)
PR e kS
AbstractList | A R ——
AbstractSet R F—— y i comparator
i i | (retuned by :
= = = = =" comparator()) i
H

SortedSet
,ﬂ - A ; A

HashSet
_____ 1
I

TreeSet

	Single Inheritance
	Is Implementation Available in Subclasses?
	Examples: Interfaces, Abstract Classes, Concrete Classes

