CS 617 Object Oriented Systems
Lecture 9
Polymorphism: Mere Syntactic Vs. Dynamic
Binding,
Subtyping, Subsumption

Covariance, Contravariance
3:30-5:00 pm Thu, Jan 31

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay




Outline

Q Dynamic Binding and Polymorphism
e Some Syntactic Forms of Genericity/Polymorphism

Q Subtyping

e Subsumption Rules




Dynamic Binding and Polymorphism

Outline

0 Dynamic Binding and Polymorphism




Dynamic Binding and Polymorphism

Dynamic Binding and Polymorphism |

class A {

public:
virtual void f () { cout « "A.f"; };
virtual void g () { cout « "A.g"; };
virtual void h () { cout « "A.h "; };
virtual void k () { cout « "Ak"; };

b

class B : public A {

public:
virtual void g () { cout «"B.g"; };
virtual void h () { cout « "B.h "; };

|5

class C : public B {

public:
virtual void h () { cout « "C.h "; };
virtual void k () { cout « "C.k"; };




Dynamic Binding and Polymorphism

Dynamic Binding and Polymorphism I

C

B
A*
A*
A*

main () {
*cp = new C;
bp = cp;
al =cp;
a2 =bp;
a3 = new B;
cp->f(); cp->g(); cp->h(); cp->k();
bp->f(); bp->g(); bp->h(); bp->k();
al->f(); a1->g(); al->h(); a1->k();
(); a2->h(); a2->k();
(); a3->h(); a3->k();

)
)
)
)

(

()5
a2->f(); a2->g

();a3->g

a3->f




Some Syntactic Forms of Genericity/Polymorphism

Outline

e Some Syntactic Forms of Genericity/Polymorphism




Some Syntactic Forms of Genericity/Polymorphism

Member Function Overloading |

class Complex {
inti;// real component
int j ; / imaginary component
public:
Complex (int x, inty) { i=x; j=y; }
Complex add (Complex a) {
i+=a.;j+=a.;
Complex tmp (i,j);
return (tmp); }
Complex add (int i) {
Complex tmp (i,0);
add (tmp); }
void printState () { ... printc1 and c2 ... };
|3



Some Syntactic Forms of Genericity/Polymorphism

Member Function Overloading |

int main () {

Complex c1 (2,3), c2(4,6);
c1.printState();
c2.printState();
cl.add (c2);
c1.add (100);
c1.printState();
c2.printState();




Some Syntactic Forms of Genericity/Polymorphism

Operator Overloading |

class Complex {
private:

inti;// real component

intj ; // imaginary component

public:

Complex (int x, inty) { i=x; j=y; }

Complex operator + (Complex a) {
Complex tmp (i+a.i,j+a.j);
return (tmp); }

Complex operator + (int x) {
Complex tmp (i+x,));
return (tmp); }

void printState () { ... }

1
e 4 4444



Some Syntactic Forms of Genericity/Polymorphism

Operator Overloading

int main () {
Complex c1 (2,3), c2(4,6);
..print c1 and c2 before the addition..
¢l =cl1+c2;
c1 =c1+100;
cl+c2;
¢c1+100;
..print ¢1 and c2 after c1=c1+c2; c1=c1+100; c1+c2; c1+100; ..




Some Syntactic Forms of Genericity/Polymorphism

Templates |

template <class T>
class Node {
public:
T element;
Node<T> #*next;
Node<T> x*previous;
Node (T e) { element = e; next=previous=NULL; }

bi




Some Syntactic Forms of Genericity/Polymorphism

Templates |l

template <class T>
class List {

protected:

int len; // cardinality
Node<T> xhead;
Node<T> *tail;

public:

List ();
List <T>& in (T element);
// attach given elem at beginning



Some Syntactic Forms of Genericity/Polymorphism

Templates Il

T out ();
// take away front elem and return it.
// receiver list is the pruned one

List <T>& push (T element);
// attach given elem at end

T pop ()i
// take away last node and return it.
//receiver list is the pruned one

List <T>& operator << (T element);
// same as 1in ; receiver list returned



Some Syntactic Forms of Genericity/Polymorphism

Templates IV

List <T>& operator + (T element);
// same as push ; receiver list returned

T operator - () >
// same as out; element returned: unary prefix

T operator ~ ();
// same as pop; element returned: unary prefix

vold read_visit (ListVisitor<T> *visitor);
// visitor object gets to reads all elements



Some Syntactic Forms of Genericity/Polymorphism

Templates V

}i

volid rw_visit (ListVisitor<T> =*visitor);
//visitor object gets to read/write
// transformed elements are to be returned

int length () {return len;}

List <T> & operator = (List <T> inputlist);
// copy constructor

void nullify ();
// nullifies the given list by terminating it




Some Syntactic Forms of Genericity/Polymorphism

Templates VI

int main (void) {

List <char> 1,m,n;
List <Account> la;

/] ..




Some Syntactic Forms of Genericity/Polymorphism

Syntactic Polymorphism

@ Polymorphism Merely syntactic

@ Compiler can remove polymorphism during compile time
through a type analysis

@ For example: all calls to overloaded functions are resolved

@ Same type list is used to hold elements of different types,
but the compiler generates two different implementations
for two different types

@ No dynamic binding in syntactic polymorphism




Some Syntactic Forms of Genericity/Polymorphism

Polymorphism at Runtime

Can we use a value of one type where a value of another type
is expected?




Subtyping

Outline

Q Subtyping




Subtyping

Relating Two Different Types

@ Principle of Safe Substitution: A value of one type can
safely used where a value of another type is expected
@ When can you say a value of type T; can be used where a
value of type T is expected?
Aa;
B b;

Cc;
R (B val) {.. use val here ..}

f(a); when is this permitted?
f(c); when is this permitted?



Subtyping

Consider Some Types which are Finite Sets of
Integers

we know something about type int:
int = {-MAXINT .. 0 ... +MAXINT }

Now Let’s define types A, B, C as below
Type A = {1,2,3,4,5}

Type B = {1,2,3}

Type C = {1,2}

What can we say about type safety of the above program?



Subtyping

What about acceptability of returned parameter?

A a;
B b;
Cc;
R (B val) {.. use val here ..}

f(x); when is this permitted?
f(x); when is this permitted?
f(x); when is this permitted?

a
b
c




Subtyping

The Subtype Relation

S<: T (Meaning: S is a subtype of T)

It's safe to use a value of a subtype where a value of a
supertype is expected.

s:S, S< T
(caIIed The Rule of Subsumption: The latter subsumes (includes) the
former)

Formulate Rules for Subtyping for simple types, structures,
functions, and now Object Types



Subsumption Rules

Outline

e Subsumption Rules




Subsumption Rules

Set Types

Subsets are Subtypes




Subsumption Rules

Record Types

One Rule (depth rule):

for eachiel..n §;<:T;, s:S1. p
s:Ty.n

Sy 5, Ty, are two records

Formulate a rule based on width of records?



Subsumption Rules

Function Types

F T — T
9:51— 5

Whenis g <: f?




Subsumption Rules

Now to Subtyping induced by Class Inheritance

class A {
public T2 f(T1);
public T4 g(T3);
}
class B inherits A {
public S2 f(S1);
public S4 g(S3);
}
main () {
Aa=newB
XX =new X
Yy
y = a.f(x) «— when will this statement work safely?

}
e 4 4444



Subsumption Rules

Covariance and Contravariance

Which one is type-safe?

At what point of time do you guarantee type safety?




Subsumption Rules

Subtyping and Subsumption put to Use

@ Code written in terms of supertype works on all its
subtypes

@ Code written in terms of an interface will work on all
classes implementing the interface

@ code written in terms of a superclass will work on all its
subclasses

@ Provided that subtyping is established between the base
and the derived entities



	Dynamic Binding and Polymorphism
	Some Syntactic Forms of Genericity/Polymorphism
	Subtyping
	Subsumption Rules

