Practice of Programming using Java

Lecture 10 July 1, 2006. 2-5 pm

Rushikesh K Joshi
Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Exceptions

Exceptions are also objects, but they are
special
..e. They are throwable and catchable

try {
anobj.f() --- f may throw an exception

}

catch (Exceptione) {]

}
finally {

Creating New Exception Types

Class MyException extends Exception {
// @ new exception type

}

class MyClass {
public void f(int i) throws MyException { }

}

This creates a checked exception which can be thrown by other
classes

Catch block has to be specified when a member function which can
throw a checked exception is invoked

Standard Unchecked Exceptions

Some exceptions are unchecked

Subclasses of

RuntimeException
Array index out of bound exception
Null pointer exception
Airthmetic exception
lllegal monitor state (thread wanting to wait on a monitor object
of which it is not the owner) etc

Error

Assertion error
Linkage error
Virtual machine error etc

Try Catch Finally

Try block is executed till an exception gets thrown; if not,
the block completes

There could be multiple catch clauses.

The first matching (type based) catch is selected for
execution

Finally clause is optional

Finally caluse is executed always if present irrespective of
how try terminated (break/exception/normal)

Break and Labeled Break

break; exits from any block
e.g. Exit from switch, for, while, do blocks
example: for (...) {...; ... break;}

Unlabled break terminates the innermost block statement
To break out of an outer statement labeled break is used

alabel : ...
for (i=....) {
for (j = ...) { break alabel;}

Continue and Labeled Continue

Continue
skips to the end of current loop's body (while/do/for)
loop termination is evaluated
loop may continue with next iteration
for (...) { if (..) continue; ...}

Continue can be used to skip the rest of the body over trivial
cases

To skip the current iteration of an outer loop, labeled continue
IS used

alabel : for (i=....)

Assertions

assert expression;

if the expression evaluates to true, throw an error
AssertionError

assert exp1 : exp2;

value exp2 is sent to AssertionError's constructor

See the demo programs for instructions on compilation and
execution of Java code with assertion facility. In old Java
compilers, assertion is not a keyword and it has been added
later.

Use of Assertions in Software Systems

A Boolean expression placed in a program where its evaluation
Is always true

Typically supported as text annotations or embedded
executables

Focus is on what part rather than how part of the system

Detection, classification and Diagnosis of errors

Applying Assertions: An Example

Insert (value: T)

Before execution, assert:
Count < capacity

After execution, assert:
Count = old count+1
Count <= capacity
Valuesfold count]=value

Assertions In Practice

Contract view
Needs to be enforced by following it as a contract
A good design process

Defensive programming view
An assertion expresses programmer’s intentions
Failure? — handle exception/abort
A good debugging process

The contract view

Example: Meyer’s design by contract method
Express contracts
Assign the responsibilities

ad-hoc redundant checks are not needed

Produce contract documentation based on assertions

The contract

Parties involved: client (caller class) and server (callee class)

Precondtions --- the server's business logic benefits from it since a message is not
accepted if precondition is not satisfied. Precondition is an obligation for the client

Postconditions — the client's code benefits from postconditions of member functions defined
in the server. Since postcondition is checked by the server, the caller need not again
check the validity of the return results. |

If preconditions or postconditions are not satisfied, assertion errors or exceptions can be
generated

The C ASSGFt MaCFO [in C Programming Language]

#include <assert.h>

void insert (int i) {

assert (count < CAPACITY);

}

main () {

... insert (element); ...

Eiffel: Design by Contract System [oy Meyer]

Preconditions
To be asserted before method execution begins

Postconditions

To be asserted after method execution before returning the
result

Class Invariants

To be asserted
after every object creation
after every method execution
i.e. in observable states only,
not necessarily during method execution

An Example: design by contract In Elffel
-- Use assertions in Java

insert (value: T) is
require
count < capacity

do

-- Actual functional code

ensure
count = old count+1
count <= capacity
valuesfold count]=value

end

