Practice of Programming using Java

Lecture 7 June 24, 2006. 2-5 pm

Rushikesh K Joshi
Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Constructors in Inheritance

class A {

A(intx) {..}

}

class B extends A {

B(inty){....} how to pass parameters to A(int x)?

}
class User {
public static void main (String args[]) {
Bb =new B(10);

}

Constructors in Inheritance

class A {

A(intx) {..}

}

class B extends A {

B(int y) {
super (2*y);

Default Constructors in Inheritance

class A {
int id;
A (int x) {id=x}
A () {id=unassigned;}

}

class B extends A {
int hostelid;
B(int y) {hostelid=y}
B(int y, int x) { super(x); hostelid = y;}

}

Method Overloading

More than one method implementation with
same method name

Class A {
public void f (int x) { ...

J{)
String s) {

public void f
public void f (String s[]) {.....} }

a.f(); a.f(10); a.f(argsli]); a.f(args);

(
public void f (
(
(

Overloading vs. Overriding

Overloading
Signatures of methods are different
Which method to select?
resolved with the help of type signatures
Overriding

Signatures of methods are same, but they appear in
different classes within an inheritance tree

Which method to select?
Resolved at runtime as discussed in last class

Multiple inheritance

A class cannot be extended from multiple classes
A class can implement multiple interfaces
An interface can extend multiple interfaces

* Diamonds formulated with these rules do not create any problems of
ambiguities

Abstraction control through interfaces

i1={1,2} i2extends il {3}, i3 ={4,5}, i4 extends i3 {6}
C implements i2, i4 { 1,2,3,4,5,6 code}
1,2,3,4,5,6 functions implemented in class C
c=new C();
class A1(i1 anobj) will be able to use 1 and 2 of C
as in A1 a1l = new A1 (c)
class A2(i2 anobj) should use only 1,2,3 of C
class A3 should use only 4,5 of C
class A4 should use only 4,5,6 of C

Extending Interfaces

Interface A {
public void f();

}

interface B {
public void g();

}

interface C extends A, B {
public void h();

}

class Impl implements C{...}

Multiple Inheritance with Interfaces

Interface A { f }

interface B{ g}

interface C{ h }

interface D extends A, B { k}

class Myclass implements C { h}

class MyAnotherClass extends Myclass implements D, C{f gk }

Abstract Classes

Specify partial behavior
Some behavior is unknown and can be left out for variants
Mostly used when there are multiple possible variant subclasses
Cannot be instanciated
abstract class A {

protected int i;

public void m() {i=20;}

public abstract int n();

}

class B extends A {
public int n() {return i;}

Types of Methods

Abstract — no implementation

Fully Concrete — full implementation

Partly concrete, i.e. some steps in it are
abstract

Overridable
Nonoverridable

An application : A Drawing Tool

Design of the central hierarchy

Think of classes Shape, Circle, Rectangle and
Triangle to support following abilities for all
shapes:

Create, move, clone, resize etc

What do you keep in the superclass?
Foruse asitis
For specialization and subsequent polymorphism

Benefits of inheritance

Superclass (Interface) Shape contains most
common properties

It also contains abstract member functions which
are applicable to all shapes

Abstract member functions are concretely
defined in subclasses

Application has a lot of code written in terms of
superclass shape

