
On Theory of VM Placement: Anomalies in
Existing Methodologies and Their Mitigation Using

a Novel Vector Based Approach
Mayank Mishra and Anirudha Sahoo

Department of Computer Science and Engineering
Indian Institute of Technology Bombay, Mumbai, India 400076

Email: {mayank,sahoo}@cse.iitb.ac.in

Abstract—In this paper, we present the methodologies used
in existing literature for Virtual Machine (VM) placement, load
balancing and server consolidation in a data center environment.
While the methodologies may seem fine on the surface, certain
drawbacks and anomalies can be uncovered when they are
analyzed deeper. We point out those anomalies and drawbacks
in the existing literature and explain what are the root causes
of such anomalies. Then we propose a novel methodology based
on vector arithmetic which not only addresses those anomalies
but also leads to some interesting theories and algorithms to
tackle the above mentioned three functionalities required in
managing resources of data centers. We believe that with a strong
mathematical base, our methodology has the potential to become
the foundation of future models and algorithms in this research
area.

I. INTRODUCTION

An important enabler for cloud computing [3] is the Virtu-
alization technology [11]. The ability to virtualize the Physical
Machine(PM) gives immense benefits in terms of reliability,
efficiency, scalability and makes computing available as an
utility service. Virtualization, coupled with migration capabil-
ity, enables the data centers to consolidate their computing
needs and use lesser number of PMs. Virtualization has
enabled data centers to be more elastic and scalable.

VM placement and migration techniques are required for
load balancing, server consolidation and hotspot mitigation.
Thus, VM placement is an important aspect of data center
resource management. The general approach for handling
these problems is to have a mathematical representation or a
metric of resource utilizations by different VMs and PMs and
maintain the balance using this metric. This metric is typically
a function of resource utilization of individual resource types.
Depending on the sophistication of the metric, it can be used
for purposes ranging from simple VM placement to measuring
degree of imbalance in resource utilizations in PM.

The problem of VM placement and migration consists of
two distinct parts. The first part is to correctly estimate the
VM resource requirements. This is a crucial and difficult step
since a VM keeps changing its resource requirement dynami-
cally. There are many proposed approaches for estimating the
resource requirements of VMs [12]. One common approach
is to base this estimation on history of resource utilization of
the VM. Once the resource requirements of VMs are properly
estimated, the next part is to use a VM placement strategy to
achieve efficient resource utilization of PMs. In this paper, we
assume that resource requirement of the VMs is known and
hence we concentrate on the second part of the problem.

There are few research work reported in the literature for
VM placement. Those methods might look fine at a glance, but
a deeper scrutiny can expose various anomalies and drawbacks
which might affect the performance of the system. Most
of them devise a metric, which is a function of resource
utilizations of individual resource types. They use this metric
for placement and migration of VMs as well as for load
balancing and consolidation of servers. In this paper, we
present various methodologies used in the literature for VM
placement, server load balancing and server consolidation and
point out the drawbacks and anomalies in those methodologies
and discuss the root cause of such anomalies. Then we propose
a novel methodology based on vector arithmetic which not
only addresses those anomalies but also leads to some inter-
esting theories and algorithms to tackle the above mentioned
three functionalities required in managing resources of data
centers. We believe that with a strong mathematical base, our
methodology has the potential to become the foundation of
future models and algorithms in this research area.

II. RELATED WORK

There have been many methodologies reported in the lit-
erature for VM placement and migration. Most of them use
a metric to make VM placement/migration related decisions.
These metrics vary greatly in terms of their usefulness.
Some approaches use metric which is a weighted sum of
the resources [4] while some others use a more complex
mathematical function of resources [13]. The estimation of
the resource requirement for VMs is a field of research in
itself. Resource estimation requires analysis of logs of the
past resource usage of the applications which are intended
to be hosted on VMs. As there is overhead involved in
running applications in virtualized environment, the resource
requirement of an application would be different when it runs
on a VM than when it runs on a PM. An overhead estimation
model for application is also required for finding accurate
resource needs on virtual platforms. Various approaches have
been proposed in the literature for this purpose. In [12],
authors discuss a microbenchmark based overhead estimation
approach for application’s resource requirement in different
virtualization architectures. Paper [6] discusses various models
for application performance prediction in virtualized environ-
ment. Methodology used in [9] employs forecasting techniques
to estimate the resource requirements of VMs along with the
time and cost of migrations to fulfill changes in resource re-
quirement. The estimation of application resource requirement



also depends upon the underlying virtualization framework.
An application can have different overheads based on the
type of virtualization (Paravirtulization [5], [?], hardware
virtualization [2]) used in the system. Discussion on different
types of virtualizations and a comparison among them can be
found in [11], [7].

In this paper, we focus on problems related to VM Place-
ment, Load Balancing and Consolidation. In the next section,
we present a detailed description of some of the well known
approaches used to address these problems.

III. METHODOLOGIES USED IN EXISTING LITERATURE

In the existing literature, VM placement problem has been
stated to be similar to multi-dimensional bin packing prob-
lem [13]. In this section, we first present a short comparison
between bin packing [1] and VM placement problem so
that the exact difference between them is clear. Then we
present some methodologies reported in existing literature for
VM placement, server load balancing[13] [10] and server
consolidation[8]. We point out the metrics used in these
methodologies. The choice of metric is very crucial for the
kind of operation it is intended for. Some metrics are suitable
for VM placement, but can be ineffective for server load
balancing and vice versa. We will show that some of metrics
and methodologies used in the current literature may look
fine but a deeper analysis would reveal the subtle problems
inherent in them. We bring out problems these methodologies
exhibit and point out the root cause of the problem. Lessons
learnt from the pitfalls of discussed methodologies enable us
to propose a novel scheme for VM placement, server load
balancing and server consolidation.

A. Comparison Between VM Placement and Bin Packing
Problem

If a VM is considered to be a three dimensional object
(assuming cpu, memory and I/O as the three dimensions) then
the problem of placing the VMs over the PMs looks similar to
the three dimensional bin packing problem. But they are not
exactly the same. In 3D bin packing problem, a set of three
dimensional objects (generally cuboids) are required to be
placed inside three dimensional containers (also cuboids). The
aim is to pack as many objects in the containers as possible,
so that the number of containers required is minimized. While
packing objects into a given container, two objects can be
placed side by side or one on top of the other. But if we
consider VMs as the objects, then placing VMs side by side
or one on top of the other is not a valid operation. This is
because once a resource is utilized or occupied by a VM, it can
not be reused by any other VM. This is the main difference
between three dimensional bin packing and VM placement
problem. We depict this difference in Figure 1. For simplicity,
we show resources in two dimensions in a PM. A certain
amount of resources has been used up in the PM (shown as
lightly shaded rectangle). When a new VM (shown as a dark
shaded rectangle) is to be placed in this PM, the only allowed
position for this rectangle is the one shown with a ‘X’ mark.
In case of bin packing problem, the positions marked ‘X’ are
also allowed, whereas they are not allowed in VM placement.

The problem of placing the VMs over the PMs is actually
similar to Vector Packing Problem which is also a NP-Hard

Fig. 1. VM Placement
in Two Dimension Re-
source Space

Fig. 2. Depiction of
Various Vectors used

problem. A paper which describes the approximation solutions
for the Vector packing problem is [?].

B. Terminologies Used

In this section we would like to introduce few terminologies
which we will use in this paper to help us explain the existing
as well our methodologies better. Please refer to Figure 2
where the quantities are illustrated. We consider three major
resources available with the PM namely CPU, Memory and
I/O. These resources form the three dimensions of an abstract
object. We normalize the resources along each axis. Hence,
the total available resource can be represented as a unit cube
as shown in the Figure 2. We refer to this cube as Normalized
Resource Cube (NRC). All the resource related information is
expressed as a vector within the NRC. Thus, The total capacity
of PM is expressed as a vector from the origin of the cube (0, 0,
0) to point (1, 1, 1). This vector is identified as Total Capacity
Vector (TCV). Resource Utilization Vector (RUV) represents
the current utilization of resources of a PM. RUV is the vector
addition of normalized utilization vectors of each resource
type. Note that the normalization of utilization of individual
resource type happens with respect to the total capacity of
that resource type. The vector difference between TCV and
RUV represents the Remaining Capacity Vector (RCV), which
essentially captures how much capacity is left in the PM. The
resource requirement of a VM is represented by Resource
Requirement Vector (RRV) which is the vector addition of
normalized resource requirement vectors of each resource
type. Note that the resource requirement is normalized with
respect to the total capacity of the target PM. If RUV of a
PM exactly aligns with the TCV, then we say that the PM is
utilized in a balanced manner along each resource axis. So, to
measure the degree of imbalance of resource utilization of a
PM, we define the Resource Imbalance Vector (RIV) of PM,
which is the vector difference between RUV’s projection on
TCV and RUV. RIV of a VM is defined in a similar way: it is
the vector difference between RRV’s projection on TCV and
the RRV.

C. SandPiper

SandPiper is a XEN based automated provisioning system
for monitoring and detecting hotspots [13]. Thus, it detects
when a VM is underprovisioned and either allots more re-
sources locally (if possible) or migrates the VM to a new PM
which is capable of supporting the VM. In this discussion,
we will focus mainly on how this migration is done. More
specifically, how Sandpiper decides the destination PM.

Sandpiper takes VM migration decision based on a metric,
which it refers to as volume. As we describe later, this is
not actually volume. So to avoid confusion, we term it as
sand volume. Sandpiper defines this as



sand volume =
1

1− cpu
∗ 1

1− net
∗ 1

1−mem

where cpu, net and mem are the corresponding normalized
utilizations of the resources. If we consider PM as a 3-D object
with the above three resources as its three dimensions, then
the total capacity of the PM corresponds to a unit cube. Thus,
the total normalized utilization (of all the three resources)
corresponds to occupied volume, i.e., this much of volume (or
combined resources) has been used up. We refer to the volume
which is available as exploitable volume. Thus, exploitable
volume is given by

exploitable volume = (1− cpu) ∗ (1− net) ∗ (1−mem)
which is the remaining capacity volume of the PM. Therefore,

the metric used by Sandpiper is actually not the total utilization
volume of the PM, but it is actually the inverse of the
exploitable volume of the PM. We will use the term total
utilization volume and volume interchangeably in this paper
and we define it as (cpu ∗ net ∗mem).

When a hotspot is detected the PMs are ordered in decreas-
ing order of their sand volumes. Within each server, VMs are
considered in decreasing order of their sand volume to size
ratio (VSR), where size is the memory footprint of the VM.
The VM migration algorithm then proceeds by considering
the VM with highest VSR from the PM having highest
sand volume and determines whether it can be migrated to
the target PM with least sand volume. The move is only
possible if each of individual resource requirement of VM
can be fulfilled by the new PM. If sufficient resources are
not available on that PM then the PM with second least
sand volume is considered and so on. If none of the PMs
is able to satisfy the resource requirement of VM then the
VM with next highest VSR is considered.

The above approach of migrating VM is a worst fit algo-
rithm with a greedy approach. Intuitively, this algorithm might
seem fine. But if one thinks little bit more about the approach it
will be clear that this approach may not be as appropriate. We
illustrate the flaw in this approach by a simple example. For
simplicity, without loss of generality, we reduce the problem
to two dimensions (two resources). Consider two PMs with
total utilization volume (area) as shown in Figure 3A and 3C.
The sand volume of the two PMs are

sand volume(PM1) =
1

0.33
∗ 1

0.67
= 4.52

sand volume(PM2) =
1

0.43
∗ 1

0.43
= 5.40

Let us say the VM to be migrated (from the highest
sand volume PM) has dimensions as cpu = 0.3 and mem =
0.2. As per Sandpiper algorithm, PM1 will be picked as
target PM, since its sand volume is lower and it satisfies the
individual dimensional requirements of the VM. Once this VM
is migrated to PM1, the resource utilization would be as shown
in Figure 3B. From this figure, it is clear that the space left on
PM1 (after placing the VM) is very small. On the other hand
if the VM was placed on PM2 (Figure 3D), then the space
left is more than that when it is placed on PM1. Moreover,
the relative resource utilization among individual resources in
PM2 is more balanced than PM1. It is obvious, that the VM
placement should happen based on exploitable volume of the
PMs and that the shape of the exploitable volume should also

Fig. 3. Illustration of Anomaly in SandPiper VM Placement

be taken into account while deciding the target PM to migrate
a VM to.

The root cause of Sandpiper choosing the wrong PM is that
it converts the three dimensional resource information of PMs
into a single dimension metric (which is sand volume) and
then uses this single dimension metric for worst fit in a three
dimensional scenario. In this process, the information about
the shape of the resource utilization is lost. If the resource
utilization was actually single dimensional, then comparing
target PMs with respect to the dimension would be correct.
In another words, if two PMs have same exploitable volume
(in single dimension case), then they both are equally suitable
as target PM. But when resources are in multiple dimensions,
even if two PMs have same exploitable volume, one may be
better than the other based on the shape of its exploitable
volume. So, a good VM placement algorithm should not only
consider exploitable volume of resources, it also should take
the shape of the exploitable volume into account.

D. Vector Dot

Another novel scheme for VM placement has been reported
in [10], which the authors refer to as VectorDot method.
In this method, normalized resource utilization of PMs and
normalized resource requirement of the VMs are expressed
as vectors. Basically, VectorDot uses Dot Product of RUV of
PM and RRV of VM to choose the target PM for placement of
VM. The PM, whose RUV gives the lowest Dot Product with
RRV of VM, is chosen. The main idea behind this method is to
place VM on a target PM for which the resource requirement
vector of the VM is complementary to the resource utilization
vector of the PM. This ensures relatively balanced use of
different resources. For example a VM which has small
CPU requirement and high MEM requirement should be put
on a PM which has large CPU utilization but small MEM
utilization. In terms of RUV and RRV, it means that for a
given VM (to be placed), among all the target PMs, the PM,
whose RUV makes largest angle with the RRV of the VM, is
the most appropriate target PM. VectorDot uses dot product
of RUV and RRV to find the most appropriate target PM.
VectorDot uses a metric they termed as extended dot product,



which makes use of dot product of RUV and RRV to find the
most appropriate target PM.

The PM selection method used by VectorDot may seem all
right. But a closer look at it would reveal that the method
can lead to undesirable situation, which we explain by giving
a simple numerical example. Here again, the example is in
a two dimensional space, to keep it simple. The example is
depicted in Figure 4. The figure shows the normalized total
capacity vector (TCV) for two PMs, RUVs of the two PMs
and RRV of a VM. Of the two PMs one has to be chosen
based on VectorDot method for placement of the VM. The
RUVs of the two PMs and RRV of VM are represented by
vectors −−−→

RUV (PM1) = 0.5̂i + 0.4ĵ
−−−→
RUV (PM2) = 0.3̂i + 0.4ĵ
−−−→
RRV (V M) = 0.1̂i + 0.2ĵ

where î and ĵ denote the unit vector along CPU and MEM
axis respectively. So, the dot product between −−−→

RRV (V M)
and −−−→RUV (PM1) is 0.13, whereas the dot product between−−−→
RRV (V M) and −−−→

RUV (PM2) is 0.11. So, VectorDot will
choose PM2 as target PM. However, it is clear from Fig 4
that PM1 is a better choice for VM. This is because the VM
has complementary resource requirement with respect to PM1,
i.e., VM needs more memory than CPU and PM1 has used up
less memory and more CPU. In case of PM2, it has used up
more memory and less CPU and hence clearly the VM does
not have complementary resource requirement with respect to
PM2. Since the VectorDot approach takes dot product of RRV
of VM and RUV of PM, the length of PM’s RUV plays a role
in deciding the target PM. This factor is responsible for the
flaw in VectorDot approach. Instead, it should have picked
the PM, whose RUV subtends larger angle with the VM’s
RRV. So, an easy way to get this information is to find the
dot product between the VM’s RRV and the unit vector along
PM’s RUV. Let us illustrate this using the same example.

The unit vectors of RUVs of PM1 and PM2 are respectively

R̂UV (PM1) =
0.5̂i + 0.4ĵ√
0.52 + 0.42

= 0.78̂i + 0.62ĵ

R̂UV (PM2) =
0.3̂i + 0.4ĵ√
0.32 + 0.42

= 0.6̂i + 0.8ĵ

Now the dot products will be
−−−→
RRV (V M) · R̂UV (PM1) = 0.1 ∗ 0.78 + 0.2 ∗ 0.62 = 0.202

−−−→
RRV (V M) · R̂UV (PM2) = 0.1 ∗ 0.6 + 0.2 ∗ 0.8 = 0.22

And the PM with smaller dot product, i.e., PM1 will be
chosen as the target PM. However, the unit vector approach
does not solve the problem completely as we discuss below.

There is one more subtle problem with the approach used in
VectorDot. The authors claim that they used a best fit scheme
which considers placing the VM on that PM which gives the
lowest dot product (between RRV and RUV). But the method
used by VectorDot may not always be a best fit scheme. For
example, consider the example shown in Figure 5. The Figure
shows two PMs which have different RUVs. But the magnitude
of the two vectors are same. Since the angle between VM’s
RRV and PM2’s RUV is more than that between VM’s RRV
and PM1’s RUV, VectorDot would choose PM2 as target PM
(because the earlier one will have lesser dot product). But

Fig. 4. Illustration of VectorDot Method

Fig. 5. Mitigating Problem in VectorDot by Using RCV

after placing VM on PM2 it can be seen that it turns out
to be a best fit only in terms of CPU. The Memory is still
quite underutilized. If the VM is placed on PM1 then it could
have resulted in a better utilization of Memory resource. It
can be verified that the unit vector method mentioned above
would also have the same problem as VectorDot, i.e., it will
choose PM2 as the target PM. This flaw is introduced because
VectorDot mechanism did not consider RCV while attempting
to achieve best fit. The flaw can be corrected by comparing the
angle between between VM’s RRV and RCVs of the PMs and
choosing the PM whose RCV subtends the smallest angle with
VM’s RRV. The intuitive reason behind the above remedial
method is that the closer the VM’s RRV to the RCV of a PM,
the more balanced its final RUV (after the VM is placed on
the PM under consideration) would be.

E. Virtualized Server Load

The work reported in [4] uses a metric called Virtualized
Server Load (VSL) for load balancing and placement. This
metric is defined as follows.

V SLhost =
X

resource

wresource ×
P

v∈V Mhost
vresourceUsage

HostresourceCapacity

where resource∈ {CPU,Memory,Disk} and wresource is
the weight associated with each resource, V Mhost is the set
of VMs hosted on Host, vresourceUsage gives the utilization
of resource by VM and HostresourceCapacity is the total
capacity of Host in terms of resource. This metric is used to
represent the utilization of a server and is primarily employed
for load balancing. The VSL value is found for all the servers
in the infrastructure and the mean and standard deviation is
calculated. The mean of the VSL values of PMs in a set L
is denoted by by µL and standard deviation on the same load
set is denoted by σL. The ratio of the two (shown below) is
taken as an indicator of the load balance factor of the set of
L PMs.

CL =
µL

σL

In the event of overload or load imbalance the VMs which
cause CL to decrease are marked for migration. It can be
seen that this approach tries to make VSL values of all the
PMs as close to each other as possible. It can be seen that



VSL essentially uses normalized utilization of resource of a
VM (normalized with respect to PM’s utilization) for load
balancing. Hence it suffers from the similar problems as that
exhibited by SandPiper.

IV. OUR METHODOLOGY

In the previous section, we saw shortcomings of some of the
existing methods used in VM placement. Before we present
our novel methodology, we would like to outline the properties
that metrics and parameters used in VM placement should
have, so that the anomalies pointed out in the previous sections
can be avoided.

A. Properties Required for Metrics Used in VM placement
1) Shape: The metric should retain the shape of the abstract

multi-dimensional object representing VM or PM.
2) Remaining Capacity: The metric should carry the infor-

mation about remaining capacity or exploitable capacity
(of all resource types) which will be used while placing
the objects (VMs).

3) Remaining Capacity of Individual Dimension: The met-
ric should also retain the remaining capacity of each
individual resource type.

4) Combined Utilization: Combined utilization (of all re-
source types) information of PM should be carried by
the metric.

5) Utilization of Individual Dimension: Information about
utilization of each resource type (dimension) should also
be available.

A metric having all the properties mentioned above can
be used for VM placement, server consolidation and load
balancing. But it is very difficult for a single metric to have
all the above properties. Hence, it is better to have different
metrics to address different problems. Since we use a vector
based method, we carry all the information required to come
up with different metrics to address above said problems.

B. Operations Required for Resource Management in Data
Centers

The broad operation of VM Placement can be categorized
into following more specific operations:

• Static VM placement : In this problem, a set of VMs with
their respective resource requirement is given. A set of
PMs with their individual capacity is given. The objective
is to place the VMs in the PMs such that the total number
of PMs required is minimized.

• Dynamic VM placement: Here, a set of PMs with their
current resource utilization is given. As and when new
VMs arrive, the goal is to place a new VM in a PM such
that a given objective is satisfied (e.g., such that PMs are
load balanced)

• PM Load balancing : This operation involves identifying
overloaded PMs and then migrating some VMs (in those
PMs) to other PMs in the system so that the overloading
of PMs is mitigated.

• PM Consolidation: The idea here is to identify PMs run-
ning at low utilization and then migrating VMs resident
on those PMs to other PMs such that those low utilization
PMs can be taken off-line.

None of the existing approaches we discussed in the pre-
vious section provide methodologies to support all of the

above mentioned operations related to VM placement. In the
subsequent sections, we would present the theory behind our
methodology. Then we will present algorithms to perform each
of these operations related to VM placement.

C. Representation of Resources
We represent all the quantities related to various resources

as vectors. All these vectors has been defined and explained in
Section III-B. Note that if an administrator does not want to
allow all the capacity of the PM to be utilized, then allowable
fraction of the capacity (of each resource type) will define
the NRC. Since we represent all the quantities of resource as
vectors the shape of the resources are preserved while making
various decisions related to VM placement.

D. Planar Resource Hexagon
We have resource vectors TCV, RUV, RCV and RRV in

the 3-D space which we will use for making different VM
placement decisions. One of our prime goals while placing
VM is to make the resource utilization of PMs as balanced
(along each resource dimension) as possible, i.e., the RUV of
a PM should be as closely aligned to the TCV as possible. This
would require that we have a way of finding complementary
VM for a PM. For example, a VM which has more requirement
along MEM compared to CPU (imbalanced in MEM), should
be placed on PM which is less utilized in MEM compared to
CPU. To achieve this goal of finding a good match for a given
VM, we have devised a novel approach which we present next.

We begin with the NRC and project it on a plane perpendic-
ular to the principal diagonal of the cube as shown in Figure 6.
It is easy to see that this would result in a regular hexagon on
the said projection plane. We refer to this as Planar Resource
Hexagon (PRH). Corners (0, 0, 0) and (1, 1, 1) of the NRC
map to the center of the PRH. Other six corners maps to the
six vertices of the hexagon as marked in the figure. Then we
take the projection of tip of the resource vectors TCV, RUV
(of PM) and RRV (of VM) onto the projection plane. The
projection points of these three vectors would be inside the
regular hexagon. For simplicity, the projection point of RUV
of PM (RRV of VM) will be referred to as position of PM
(VM) in the PRH. Note that the projection of tip of TCV is
the center of the PRH.

The PRH is divided into six equal parts in the form six
equilateral triangles. All the six triangles are congruent to each
other. These six triangles make it very convenient to classify
resource vectors RUV and RRV in terms of their individual
resource dimension. We have named these six triangles as per
the position of projection of tip of the vector. For example in
Figure 7, 4CM defines the region where the projection of tip
of RUV (of a PM) whose CPU > MEM > IO, fall in the
PRH. Likewise, 4CI represents the region where the projec-
tion of tip of RUV (of a PM) whose CPU > IO > MEM
would fall on the PRH. Other triangles can be identified
by similar inequalities. When there is a tie between two or
more resources then it should be broken using some order
of priority among the resources as per user’s preference. We
will refer to these triangles as resource triangles (RT). These
triangles can be exploited to figure out relative imbalance of
a resource vector along each resource axis and to identify
a complementary resource vector which can balance out the
individual resources. This is very helpful while choosing



suitable target PM for a VM. For this purpose of choosing
target PM of a given VM, we define complementary resource
triangle (CRT) of a RT . For resource triangle CI , CPU is
the most utilized resource, MEM is least utilized and IO is
in between the other two. For triangle MI , MEM is most
utilized, CPU is least and IO is in between the two. Thus,
4CI and 4MI are complementary of each other in terms of
resource usage. It is easy to verify that the opposite triangles
in the PRH are complementary of each other. We index these
six triangles from 0 to 6 as shown in the Figure 7.

Fig. 6. Obtaining Pla-
nar Resource Hexagon
from NRC

Fig. 7. The Planar Re-
source Hexagon (PRH)

E. Categorization of Overall Utilization

The Planar Resource Hexagon captures the directionality
of a resource vector. The point representing RUV of a PM
or RRV of a VM in the PRH carries information about the
relative utilization of different resources. But it does not have
the information about the overall utilization. This information
is important in classifying utilization level of a PM. This
classification, in turn, is required while making load balancing
and consolidation decisions. We categorize overall utilization
of a PM as LOW , MEDIUM or HIGH . We define a PM
to have overall HIGH utilization if any of its individual
resources has high utilization. Essentially, these three levels
of utilization define three cubes in the NRC cube as shown
in Figure 8. A simple algorithm to find the overall utilization
of a PM is given in Algorithm 1. Note that even though the
algorithm uses a max function, it is actually not required to
look at individual resources to compute this function. Knowing
the triangle where a PM lies, the individual resource which
has the maximum utilization can be determined instantly. For
example, if this point lies in triangle CM then CPU has the
highest utilization. The threshold for deciding the utilization
level can be left to the user.

Algorithm 1 GetOverallPMUtilization()
1: if max(CPU, MEM, IO) ≥ HIGH then
2: Utilization level is HIGH;
3: else if max(CPU, MEM, IO) ≥MEDIUM then
4: Utilization level is MEDIUM;
5: else
6: Utilization level is LOW;
7: end if

It may not be clear why we are suggesting to look at the
individual resource that has maximum utilization to decide
the overall utilization of a PM, instead of just looking at

the magnitude of PM’s RUV. The magnitude of PM’s RUV
is not a good representation of the overall utilization. For
example, consider two PMs, PM1 and PM2 whose RUVs are
of same length. Let us say PM1 is more tilted towards the
CPU axis whereas PM2 is tilted towards the TCV. In such a
scenario, PM1 would have lesser amount of CPU to offer than
PM2. Thus even if other resources are less utilized for PM1
(than PM2), the CPU becomes the bottleneck for PM1. Hence,
utilization of CPU should be used to decide overall utilization
of PM1.

It should be clear that we are using two levels of catego-
rization for a PM. First we try to find the triangle in the PRH
in which a PM lies and then we find its overall utilization
level. Thus, there are a total of eighteen (six triangles and
three utilization levels) categories to which a PM may belong.

F. Ordering VMs or PMs Inside a Resource Triangle
Inside a given resource triangle, we order the resource

vectors as per its distance from the principal diagonal of NRC.
This distance is essentially a measure of imbalance of the
resource vector with respect to the TCV. We represent this
imbalance factor as vector RIV. RIV preserves directionality
(imbalance towards which resource axis or axes) as well as the
amount of imbalance. It is quite easy to compute this vector
for a given resource vector. We outline the major steps below.
Assume that a resource vector (say RUV) is represented by
ĉi+mĵ + iok̂, where c, m and io are the normalized value of
CPU, MEM and IO used by the resource vector respectively.
î, ĵ and k̂ are the unit vectors along CPU, MEM and IO axes
respectively. The projection vector of this vector along the
principal diagonal of NRC is given by

(
1√
3
∗ c +

1√
3
∗m +

1√
3
∗ io)(

1√
3
î +

1√
3
ĵ +

1√
3
k̂)

The term in the right side parenthesis is the unit vector along
TCV and the term in the left side parenthesis is the magnitude
of projection of RUV on TCV. The above expression is
simplified to

(
c + m + io

3
î +

c + m + io

3
ĵ +

c + m + io

3
k̂)

So the RIV is given by the vector difference between the
RUV itself and the projection vector shown above, which is

(c− c + m + io

3
)̂i + (m− c + m + io

3
)ĵ + (io− c + m + io

3
)k̂

Having introduced all the concepts required for our method-
ology now we will show how the three functionalities, namely
VM placement, load balancing and server consolidation, re-
quired to manage resources of PMs can be designed.

G. Static VM Placement
In this operation, a set of VMs with their respective resource

requirements is given. A set of PMs, on which the those VMs
are to be placed, is given. The goal is to place the VMs in
PMs such that the total number of PMs required to place all
the VMs is minimized. Since this is a NP-hard problem, we
provide a heuristic. Here, we assume that this static placement
happens when the system is coming up. However, if a static
placement is to happen at any other time, our algorithm can
be easily modified for that situation. The algorithm is given in
Algorithm 2. Essentially, the algorithm starts out with the VM
which is least imbalanced. This VM would be put on the first



PM. The new RUV of the PM is computed and its new position
(new resource triangle) in the PRH is found (Line 22). Then
VMs in the complementary resource triangle is considered
(Line 23) and the VM which best complements the PM is
chosen. This is determined by the addition of their RIVs and
choosing the one with the smallest value (Line 21). So, the
algorithm tries to place the VMs such a way that after the
placement the PMs are as close to the center of the PRH as
possible.

Algorithm 2 StaticVMPlacement
1: T ← triangle in which the VM with least (in magnitude) RIV lies;
2: Introduce a new PM;
3: while All VMs are not placed do
4: NumPotentialV Ms← 0; NumV Ms← 0;
5: for all unplaced VMs in T do
6: NumV Ms← NumV Ms + 1;
7: /*check individual resources to see if the PM can host this VM*/
8: if PM can host this VM then
9: NumPotentialV Ms← NumPotentialV Ms + 1;

10: Compute the vector addition of RIV of PM and RIV of VM;
11: M ← magnitude of this addition vector;
12: end if
13: end for
14: if NumV Ms == 0 then
15: /*Choose the neighbor of triangle T (configurable left of right)*/
16: T ← neighbor(T ); continue;
17: end if
18: if (NumV Ms > 0)AND(NumPotentialV Ms == 0) then
19: Introduce a new PM; continue;
20: end if
21: Place the VM with least M on the current PM and mark the VM as

placed;
22: Compute the new RUV of this PM (after the VM is placed);
23: T ← CRT of the resource triangle to which this PM belongs;
24: end while

H. Dynamic VM Placement
In case of dynamic VM placement there is one new VM

which needs to be placed in a PM. The target PM for this
new VM can be chosen based on one of the two goals:

• Load Balancing : Placing the new VM in such a manner
that it helps in load balancing. For this purpose, the
algorithm starts out with the PM which is least loaded
and has complementary resource usage with respect to
the VM.

• Server Consolidation : Placing the new VM such that it
helps in server consolidation. In this case, the algorithm
starts out with the PM with high load and has comple-
mentary resource usage with respect to the VM.

The algorithm for dynamic VM placement is shown in
Algorithm 4. The goal value in this algorithm can be
LOAD BALANCE or CONSOLIDATE. This algorithm
starts out with getting potential PMs for the VM by calling
Algorithm 3. Then it just chooses the PM which is most
complementary to the VM. Note that the best complementary
PM is one whose RIV is of same magnitude as the VM’s
RIV and is in the opposite direction. The main subroutine
called in this algorithm is GetPotentialPMs(). This algorithm
(Algorithm 3) uses a heuristics to identify potential PMs for
the VM. To understand this heuristics please refer to Figure 9.
The figure shows the PRH and shows the triangle where a
potential PM is being considered (say triangle 0). The first
level neighbor of triangle 0 (where the PM belongs) are
triangles 1 and 5. The second level neighbors are triangles
2 and 4. The traversal of the algorithm is along the pyramid
shown to the right of the PRH in the figure. For load balancing,

Fig. 8. Resource Utilization
Levels in Form of Sub-cubes

Fig. 9. Finding Potential PMs

in this example, it would first pick all the PMs in triangle 0
which have LOW overall utilization (marked as 0L in the
figure) (Line 6 in Algorithm 3). If no PM was found, then it
would pick PMs in triangle 0 with MEDIUM utilization and
PMs in triangles 5 and 1 with LOW utilization (marked as 5L
0M 1L in the figure) (Line 9). If still no PM was found, then
it would pick PMs in triangle 0 with HIGH utilization, PMs
in triangle 5 and 1 with MEDIUM utilization and PMs in
triangle 4 and 2 with LOW utilization (marked as 4L 5M 0H
1M 2L) (Line 13). This order of traversal of resource triangles
tries to have a compromise between overall utilization of the
PMs and the imbalance in RUV.

Algorithm 3 GetPotentialPMs(VM, goal)
1: /* goal can be either LOAD BALANCE or CONSOLIDATE */
2: T ← CRT of the triangle in which the VM lies;
3: PotentialPMlist← ∅;
4: if goal = LOAD BALANCE then
5: {/* start from LOW util to HIGH util as shown in Figure 9*/}
6: PotentialPMlist ← {PMs in T which have LOW utilization};
7: Remove PMs from PotentialPMlist which can not support the VM;
8: if PotentialPMlist= ∅ then
9: PotentialPMlist←{PMs in T which have MEDIUM

utilization}∪{PMs in T’s two first order neighbors which
have LOW utilization};

10: Remove PMs from PotentialPMlist which can not support the VM;
11: end if
12: if PotentialPMlist= ∅ then
13: PotentialPMlist←{PMs in T which have HIGH

utilization}∪{PMs in T’s two first order neighbors which
have MEDIUM utilization}∪{PMs in T’s two second order
neighbors which have LOW utilization};

14: Remove PMs from PotentialPMlist which can not support the VM;
15: end if
16: else if goal = CONSOLIDATE then
17: {start from HIGH util to LOW}
18: PotentialPMlist←{PMs in T which have HIGH utilization};
19: Remove PMs from PotentialPMlist which can not support the VM;
20: if PotentialPMlist= ∅ then
21: PotentialPMlist←{PMs in T which have MEDIUM

utilization}∪{PMs in T’s first order neighbors which have
HIGH utilization};

22: Remove PMs from PotentialPMlist which can not support the VM;
23: end if
24: if PotentialPMlist= ∅ then
25: PotentialPMlist←{PMs in T which have LOW utilization}∪{PMs

in T’s first order neighbors which have MEDIUM
utilization}∪{PMs in T’s second order neighbors which
have HIGH utilization};

26: Remove PMs from PotentialPMlist which can not support the VM;
27: end if
28: end if
29: if PotentialPMlist is Empty then
30: put all the PMs which were not checked above into PotentialPMlist;
31: Remove PMs from PotentialPMlist which can not support the VM;
32: end if
33: return PotentialPMlist;

I. Load Balancing
Load Balancing is required when there is a VM whose

resource requirements are not being fulfilled by the PM on
which it is hosted, thus leading to overload of the PM. The



Algorithm 4 DynamicPlaceVM(VM, goal)
1: PotentialPMlist← GetPotentialPMs(V M, goal);
2: if PotentialPMlist empty then
3: Introduce new PM;
4: end if
5: for all PM in PotentialPMlist do
6: Compute the vector addition of RIVs of PM and VM;
7: M ← magnitude of the above addition vector;
8: end for
9: Mark PM with the lowest M as the host for the VM;

resource crunch can happen for any resource. The algorithm
is presented in Algorithm 5. The algorithm uses cost which
is used to arrange VMs in VMlist. This cost can be defined
by the user. For example, the cost can be the memory foot
print of the VM, since it signifies the cost of migrating the
VM. Another cost can be the VMs utilization of the resource
which is causing overload on the PM.

J. Consolidation
When a PM runs on low utilization, the VMs on the server

can be migrated to other PMs so that this PM can be taken
off line. A simple algorithm to achieve this is presented in
Algorithm 8.

Algorithm 5 LoadBalance(PM)
1: Order all VMs hosted on PM as per some cost into VMlist;
2: for all VM in VMlist do
3: DynamicPlaceVM(VM, LOAD BALANCE);
4: if PM not Overloaded anymore then
5: BREAK;
6: end if
7: end for

Algorithm 6 LoadBalanceALLPMs()
1: for all Triangles T in Planar Resource Hexagon do
2: for all PM in T with HIGH utilization do
3: if PM is Overloaded then
4: LoadBalance(PM);
5: end if
6: end for
7: end for

Algorithm 7 Consolidate(PM)
1: Arrange all VMs hosted on PM in VMlist;
2: for all VM in VMlist do
3: DynamicPlaceVM(VM, CONSOLIDATE);
4: if No more VMs on PM then
5: Remove PM;
6: end if
7: end for

V. DISCUSSION

This paper clearly points out shortcomings of some of
the work reported in the existing literature. We feel that the
subtle drawbacks and anomalies are not very obvious in those
studies. Hence, we think it will help the research community
realize the shortcoming and prevent them from going in the
wrong direction while dealing with VM placement, server load
balancing and server consolidation problem.

We would like the readers to appreciate our methodology
in terms of its correctness vis-a-vis the other literature in this
field. It is easy to verify that the anomalies shown in the
examples given for SandPiper and VectorDot do not exist in
our methodology. We acknowledge that some of the algorithms
presented here which uses our methodology are heuristics
and hence may not be the most efficient. The intention of
presenting those algorithms is to depict a way of using our
methodology in solving the above three problems rather than
showing their efficiency.

Algorithm 8 ConsolidateALLPMs()
1: for all Triangles T in Planar Resource Hexagon do
2: for all PM in T with LOW utilization do
3: Consolidate(PM);
4: end for
5: end for

VI. CONCLUSION AND FUTURE WORK

We have presented some of the methodologies used in
existing literature in making VM placement and migration,
server consolidation and load balancing decision. We have
pointed out the drawbacks and anomalies present in those
methodologies and where those anomalies originate from. We
have proposed a novel methodology based on vector arithmetic
to address these drawbacks and build the theory which can be
used not only to make the decisions robust but also to make
the process of choosing PMs easier and more appropriate. We
feel that our methodology is the right step towards devising
more efficient algorithms free of anomalies.

We intend to evaluate the performance of our methodology
and compare it with the other methodologies in the litera-
ture. We are also going to evaluate the efficiency of various
heuristics proposed in this paper (e.g., GetPotentialPMs). In
the current version, we divide PRH into six triangles to define
position of a PM or VM. We would like to increase the
granularity of position of PMs or VMs by dividing the PRH
into more number of triangles. However, more granularity
leads to more balanced servers after VM placement, but comes
at the cost of more computation to choose target PM for a VM.

REFERENCES

[1] Bin packing problem. Wikipedia.
[2] Vmware. www.vmware.com.
[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[4] E. Arzuaga and D.R. Kaeli. Quantifying load imbalance on virtualized
enterprise servers. In Proceedings of the first joint WOSP/SIPEW
international conference on Performance engineering, pages 235–242.
ACM, 2010.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177. ACM, 2003.

[6] F. Benevenuto, C. Fernandes, M. Santos, V. Almeida, J. Almeida,
G. Janakiraman, and J. Santos. Performance models for virtualized appli-
cations. In Frontiers of High Performance Computing and Networking–
ISPA 2006 Workshops, pages 427–439. Springer, 2006.

[7] J.P. Casazza, M. Greenfield, and K. Shi. Redefining server performance
characterization for virtualization benchmarking. Intel Technology Jour-
nal, 10(3):243–251, 2006.

[8] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance
management in virtualized server environments. In Network Operations
and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages
373–381. IEEE, 2006.

[9] A. Kochut and K. Beaty. On strategies for dynamic resource man-
agement in virtualized server environments. In Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, 2007.
MASCOTS’07. 15th International Symposium on, pages 193–200. IEEE,
2008.

[10] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage virtualization:
integration and load balancing in data centers. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, pages 1–12. IEEE
Press, 2008.

[11] J.E. Smith and R. Nair. The architecture of virtual machines. Computer,
38(5):32–38, 2005.

[12] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy. Predicting
Application Resource Requirements in Virtual Environments. 2008.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and
gray-box strategies for virtual machine migration. In Proc. Networked
Systems Design and Implementation, 2007.


