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Revisiting WFQ: Minimum Packet Lengths
Tighten Delay and Fairness Bounds

Anirudha Sahoo and D. Manjunath

Abstract— In this paper we consider the bounds on the sample
path discrepancy between the ‘idealized’ generalized processor
sharing (GPS) and the ‘practical’ weighted fair queueing (WFQ)
scheduling disciplines. We show that when both the minimum
packet lengths and the weights are non zero, the discrepancy
bounds can possibly be tighter than that in [1] and [2]. This new
upper bound on the delay discrepancy is then used to provide an
upper bound on the discrepancy in the instantaneous throughput,
which can also be significantly tighter than those in [1] and [2].

Index Terms— Scheduling, Weighted Fair Queueing (WFQ),
Generalized Processor Sharing (GPS), fairness bound.

I. INTRODUCTION

GENERALIZED processor sharing (GPS) generalizes the
ideal of processor sharing (PS) and is a max-min fair

way of sharing link capacity. Weighted fair queueing (WFQ)
was first proposed as an emulation of the PS in [3] and
its fairness issues were first analyzed in [1]. By assuming
a maximum packet length, they obtained a bound on the
discrepancy, the difference in the instantaneous throughput
of a flow between the ideal GPS and the WFQ systems. It
can be shown that this is the best discrepancy possible by a
non preemptive scheduler. Since the instantaneous throughput
difference between GPS and WFQ is bounded, it follows that
the instantaneous queue lengths differences are also bounded.
They also bound the difference in the delays in the WFQ
and the GPS systems. In a widely cited paper, Parekh and
Gallager [2] refer to WFQ as packetized-GPS or PGPS, and
provide fairly simplified proofs for the delay and the fairness
bounds between a GPS and the PGPS or WFQ systems. This
is now considered the standard proof, e.g., see [4]. Since
the above seminal papers, many variations of WFQ have
been introduced, e.g., [5]–[9] that address implementation
complexity and provide other useful properties.

To the best of our knowledge, all analyses of PGPS, WFQ
and related schedulers consider only the maximum packet
length in describing the discrepancy and none of them consider
the case of a link also prescribing a minimum packet length.
This is important because most networks do prescribe such a
minimum corresponding to, for example, the header and the
trailer lengths. In this paper, we show that for two important
performance measures—delay and instantaneous throughput,
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the discrepancy between the GPS and WFQ (or PGPS) is much
tighter when the link also prescribes a minimum packet length.
Recall that the latter is also a relative fairness measure.

In the next section, we first derive an upper bound on the
delay discrepancy when the minimum packet length is non
zero. We will see that the correction to the well known bound
of [1] and [2] can be significant. The new upper bound on the
delay discrepancy is then used to provide an upper bound on
the discrepancy in the instantaneous throughput, which is also
significantly tighter than those in [1] and [2]. We conclude in
Section III with examples and a brief discussion.

II. DISCREPANCY ANALYSIS WITH

MINIMUM PACKET LENGTHS

Recall that in the WFQ system, scheduling instants occur
at the departure times (end of transmission). The new packet
that is scheduled for transmission is the one that would
have departed earliest in the corresponding GPS system from
among those that are present in the system at the scheduling
instant.

We consider a link of capacity C serving N flows indexed
i = 1, . . . , N. The packets from each flow are served ac-
cording to FIFO. Let Lmin and Lmax be the minimum and
maximum packet lengths that the link supports. Let φi be
the weight of flow i. Recall that GPS and WFQ guarantee a
minimum rate of φi∑

i φi
to flow i. Let

φmin := min
i

φi, φmax := max
i

φi, φ =
∑

i

φi.

The arrival instants of the packets also remain the same in both
systems. Note that these packets can arrive from any flow.

Our sample path analysis is along the lines of [2] and [4] and
the notations are similar to that in [4]—we consider identical
input sequences to both the GPS and the WFQ systems and
analyze the discrepancies. Packets are numbered according to
their departure times in the WFQ system.

Let d̂k be the time at which the k-th packet, pk, departs
from the WFQ system, ak its arrival time to both the systems
and dk its departure time in the GPS system and Lk the length
of the packet. Let ŝk be the time at which the transmission of
packet pk starts in the WFQ system.

The following lemma will be useful in the proof of the
theorem and is a fairly straightforward consequence of the
definition of WFQ. See [1], [2], [4] for a proof.

Lemma 1: If packets pk1 and pk2 are present in the system
at a scheduling instant and if packet pk1 is scheduled to
transmit before packet pk2 in WFQ, then packet pk1 departs
before packet pk2 in the GPS. This, of course, implies that
packet pk1 departs before packet pk2 in the WFQ system.
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Fig. 1. Events of interest in the WFQ and GPS systems. (Adopted from [4])

The following theorem presents the tighter bound on the
departure time of a packet in WFQ and GPS system.

Theorem 1: For all packets in the WFQ scheduler,

d̂k ≤ dk +
Lmax

C
−

(
φmin
φmax

)
Lmin

C
. (1)

Proof: Since both the GPS and WFQ are work conserv-
ing queueing disciplines, their busy periods will be identical
and it suffices to consider a busy period that starts, without loss
of generality, at time 0. Further, during a busy period, WFQ
and GPS schedulers will transmit the same set of packets.
Since the packets are indexed according to their departure in
the WFQ, d̂1 < d̂2 < · · · .

Since the busy period starts at 0, clearly, d̂k =
∑ k

i=1 Li

C . We
need to consider two cases for the ordering of the departure
times of packets in GPS relative to that in WFQ.

Case 1: None of the packets p1, p2, . . . , pk−1 departs after
dk in GPS. Hence, in GPS, at least

∑k
i=1 Li bits have been

transmitted up to dk and we have

dk ≥
∑k

i=1 Li

C
.

Since d̂k =
∑ k

i=1 Li

C , the theorem is trivially true.

Case 2: There are some packets that depart earlier in
WFQ than in GPS. These packets consume bandwidth that
was meant for other packets and hence delay them. Consider
such a packet pm, 1 ≤ m ≤ k − 1 that has the largest
index, such that dm > dk. Of the packets that should have
departed after packet pk, pm is the last packet that departs
earlier than pk in WFQ and packets pm+1, . . . , pk−1 depart
earlier than packet pk in both WFQ and GPS. This means,
dm+1 ≤ dk, dm+2 ≤ dk, . . . , dk−1 ≤ dk. By Lemma 1,
packets pm+1, pm+2, . . . , pk were not present in the WFQ
system at time ŝm, because if they were, one of them would
have been chosen for service instead of pm. Figure 1 shows
an example situation.

In the interval [ŝm, dk], GPS has transmitted complete
packets pm+1, . . . , pk. In the same interval, it would have
also served some bits of packet pm. Let L′

m be the minimum
number of bits of packet pm that was transmitted by GPS in
this interval [ŝm, dk]. Hence,

dk ≥ ŝm +
∑i=k

i=m+1 Li

C
+

L′
m

C
. (2)

Let fk and fm be the flow to which packet pk and pm belong
respectively. Since packet pk was completely transmitted by
GPS in the interval [ŝm, dk], (it arrived after ŝm and departed
at dk) the number of bits of packet pm that were transmitted

in this interval is at least φfm

φfk

Lk, i.e.,

L′
m ≥ φfm

φfk

Lk. (3)

From Figure 1, it is clear that

d̂k = ŝm +
Lm

C
+

∑k
i=m+1 Li

C
. (4)

Using (3) and (4) in (2), we get

dk ≥ d̂k − Lm

C
+

φfm

φfk

Lk

C
. (5)

But Lm ≤ Lmax and
(

φfm

φfk

)
Lk ≥

(
φmin
φmax

)
Lmin. Hence, from

(5), we get

dk ≥ d̂k − Lmax

C
+

(
φmin
φmax

)
Lmin

C
(6)

and the theorem follows. �

This delay bound also impacts the fairness discrepancy of
WFQ. Let U j(t) and Û j(t) be the number of bits of flow j
transmitted by GPS and WFQ respectively up to time t. [1], [2]
have shown that for all t and for all j, U j(t)−Û j(t) ≤ Lmax.
Theorem 2 below shows that this discrepancy is tighter if the
link prescribes a minimum packet length.

Theorem 2: (i) Let Lj
k denote the number of bits in k-th

packet of flow j, pj
k. The fairness discrepancy between the

WFQ and GPS systems satisfies the following inequality. For
d̂j

k−1 ≤ t ≤ d̂j
k,

U j(t) − Û j(t) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lmax − φmin
φmax

Lmin

if Lj
k ≤ Lmax − φmin

φmax
Lmin

Lj
k −

(
φj

φ

∣∣∣Lmax − Lj
k − φmin

φmax
Lmin

∣∣∣)
if Lj

k ≥ Lmax − φmin
φmax

Lmin

(7)
(ii) Further, for all t

U j(t) − Û j(t) ≤ Lmax − φmin

φmax

φj

φ
Lmin (8)

for all t ≥ 0 and for j = 1, . . . , N .
Proof: Consider packet pj

k. Since packets within a flow
are served in FIFO order, the total number of bits of flow j
until the departure of packet pj

k under the two systems should
be equal, i.e.,

U j(dj
k) = Û j(d̂j

k). (9)

Since WFQ is a packet based scheduler, the entire link
bandwidth is dedicated to a packet. Hence,

Û j(d̂j
k) = Û j(ŝj

k) + Lj
k, (10)

From Theorem 1 we have

dj
k ≥ d̂j

k −
(

Lmax

C
−

φmin
φmax

Lmin

C

)
.

Changing signs, and hence the direction of the above inequal-
ity, and adding ŝj

k to both sides, we get

ŝj
k − dj

k ≤ ŝj
k − d̂j

k +
Lmax

C
−

φmin
φmax

Lmin

C
.
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Since d̂j
k − ŝj

k = Lj
k

C , the above inequality can be rewritten as

ŝj
k ≤ dj

k +
Lmax − Lj

k − φmin
φmax

Lmin

C
. (11)

Denote Zj
k := Lmax − Lj

k − φmin
φmax

Lmin. Since both U j(t)
and Û j(t) (and also the departure time of packets in both
the systems) are non-decreasing, we can write the following
inequality.

U j(ŝj
k) ≤ U j

(
dj

k +
Zj

k

C

)
(12)

Using (10) in (12) we get

U j(ŝj
k) − Û j(ŝj

k) − Lj
k ≤ U j

(
dj

k +
Zj

k

C

)
− Û j(d̂j

k). (13)

Zj
k could be positive or negative and we consider these cases

separately.

Case 1: Zj
k ≥ 0. In this case U j

(
dj

k + Zj
k

C

)
will be upper

bounded by U j(dj
k) + Zj

k. This is because the maximum
number of bits that can be transmitted in time Zj

k/C is Zj
k.

Using this bound and (9) in (13), we get

U j(ŝj
k) − Û j(ŝj

k) ≤ Lj
k + Zj

k.

Substituting for Zj
k we get

U j(ŝj
k) − Û j(ŝj

k) ≤ Lmax − φmin

φmax
Lmin. (14)

Case 2: Zj
k < 0. In this case a simple upper bound on

U j
(
dj

k + Zj
k

C

)
would be U j(dj

k) and

U j(ŝj
k) − Û j(ŝj

k) ≤ Lj
k

This can be further tightened by upper bounding

U j
(
dj

k + Zj
k

C

)
by U j(dj

k) − Wmin

(
Zj

k

C

)
where Wmin

(
Zj

k

C

)
is the minimum work that will be done in the interval |Zj

k|
C in

the GPS system. From (13), we get

U j(ŝj
k) − Û j(ŝj

k)≤Lj
k + U j

(
dj

k

)
− Û j(d̂j

k) − Wmin

(
Zj

k

C

)

≤ Lj
k −

(
φj

φ
|Zj

k|
)

(15)

In obtaining the last equality above, we have used (9) and the
fact that minimum number bits of flow j that is transmitted
in the GPS system in a time interval T is

(
φj

φ

)
TC.

The slope of Û j alternates between C when a packet from
flow j is served and 0 when flow j is not being served. Since
the slope of U j also follows the same limits, for d̂k−1 ≤ t <
d̂k, the difference U j(t) − Û j(t) has its maximum value at

ŝk, when the packet of flow j starts service in WFQ. Thus
part (i) of the theorem holds.

To prove part (ii) consider the case of Zj
k < 0, when the

fairness discrepancy is given by (15). Note that Zj
k < 0 occurs

while Zj
k ≥ 0 need not occur. Now observe that |Zj

k| increases

linearly with Lj
k when Zj

k < 0 and that the slope of
(

φj

φ |Zj
k|

)
is φj

φ ≤ 1. In the RHS of (15), we are subtracting
(

φj

φ |Zj
k|

)
from Lj

k. Hence the maximum value of the RHS in (15) occurs
when Lj

k = Lmax and we have

U j(ŝj
k) − Û j(ŝj

k) ≤ Lmax − φmin

φmax

φj

φ
Lmin

Since φj

φ ≤ 1, the bound obtained above for Zj
k < 0 is looser

than that obtained for Zj
k ≥ 0 in (14) and part (ii) of the

theorem follows. �

III. DISCUSSION

It is instructive to consider some special cases to see the
impact of the tighter bounds on the discrepancy. First consider
the case when all the flows have equal weight, i.e., φmax =
φmin. Then (1) says that the delay discrepancy between the
WFQ and GPS schedulers is upper bounded by Lmax−Lmin

C .
A second case of interest is that of fixed size packets,

i.e., Lmax = Lmin for which the delay discrepancy is upper
bounded by (1− φmin

φmax
)Lmax. This can be substantially smaller

than the Lmax bound. This case is of special interest because
most streaming traffic (e.g., VoIP) use fixed size packets. Note
that, if in this system φmin = φmax then the delays in the WFQ
system is never greater than the delay in the GPS system.
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